Учебно-методический комплекс по дисциплине «Материаловедение» Специальность icon

Учебно-методический комплекс по дисциплине «Материаловедение» Специальность


1 чел. помогло.
Смотрите также:
Учебно-методический комплекс по дисциплине «материаловедение» Учебно-методический комплекс...
Учебно-методический комплекс по дисциплине «материаловедение» Учебно-методический комплекс...
Учебно-методический комплекс по дисциплине «материаловедение» Учебно-методический комплекс...
Учебно-методический комплекс по дисциплине «Юридическая психология специальность «Юриспруденция»...
Учебно-методический комплекс по дисциплине «материаловедение» Учебно-методический комплекс...
Учебно-методический комплекс по дисциплине «Введение в специальность» специальность:...
Учебно-методический комплекс специализации «Физическое материаловедение» Обсужден и принят на...
Учебно-методический комплекс по дисциплине «Технология строительных процессов» Специальность...
Учебно-методический комплекс по дисциплине «Криминалистика» специальность...
Учебно-методический комплекс по дисциплине Спецсеминар гсэ «этнология» Специальность: 031800...
Учебно-методический комплекс по дисциплине Спецсеминар гсэ «этнология» Специальность: 031800...
Учебно-методический комплекс по дисциплине Геополитика Специальность...



Загрузка...
страницы:   1   2   3
скачать
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА


государственное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ»

(МИИТ)


УТВЕРЖДЕНО:

Проректором по учебно-методической работе - директором РОАТ

«_27_»_____10____2010_г.


Кафедра «Здания и сооружения на транспорте»

Автор: Баженов В.К.


Учебно-методический комплекс по дисциплине

«Материаловедение»


Специальность:

270102 Промышленное и гражданское строительство (ЗГС)

270201 Мосты и транспортные тоннели (ЗМТ)

270204 Строительство железных дорог, путь и путевое хозяйство (ЗЖД)

270112 Водоснабжение и водоотведение (ЗВК)


Утверждено на заседании

Учебно-методической комиссии академии

Протокол № 1

« 26 » октября 2010г.


Утверждено на заседании кафедры «Здания и сооружения на транспорте»

Протокол №

« 22 » октября 2010г.




Москва

Автор-составитель

Баженов Валерий Клавдиевич, к.т.н., доцент,


Учебно-методический комплекс по дисциплине «Материаловедение» составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования специальности 270102 Промышленное и гражданское строительство (ЗГС),

270201 Мосты и транспортные тоннели (ЗМТ), 270204 Строительство железных дорог, путь и путевое хозяйство (ЗЖД), 270112 Водоснабжение и водоотведение (ЗВК)

Дисциплина входит в федеральный компонент цикла общепрофессиональных дисциплин и является обязательной для изучения


^ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

государственное образовательное учреждение высшего

профессионального образования

^ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ»

(МИИТ)

СОГЛАСОВАНО: Выпускающая кафедра «Здания и сооружения на транспорте »


УТВЕРЖДЕНО: Проректором по учебно-методической работе-директором РОАТ

«_27»_____10_____2010_г.

СОГЛАСОВАНО:

Выпускающая кафедра «Железнодорожный путь,

машины и оборудование»


СОГЛАСОВАНО:

Выпускающая кафедра «Теплоэнергетика и

водоснабжение на железнодорожном транспорте »


Кафедра «ЗДАНИЯ И СООРУЖЕНИЯ НА ТРАНСПОРТЕ»


Автор: Баженов В.К.


^ РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ

«Материаловедение»

для студентов 3 курса специальностей


270102 Промышленное и гражданское строительство (ЗГС)

270201 Мосты и транспортные тоннели (ЗМТ)

270204 Строительство железных дорог, путь и путевое хозяйство (ЗЖД)

270112 Водоснабжение и водоотведение (ЗВК)


Утверждено на заседании

Учебно-методической комиссии академии

Протокол № 1

« 26» октября 2010г.


Утверждено на заседании кафедры

«Здания и сооружения на транспорте»

Протокол № 3

« 22 » октября 2010 г.




Москва 2010



  1. ^ Цель изучения дисциплины


Цель изучения дисциплины «Материаловедение» - дать будущим инженерам-строителям знания и умения, которые помогут правильно выбирать строительные материалы с учетом их технологичности, свойств и технико-экономической эффективности. Для того чтобы каждое сооружение было прочным и долговечным, необходимо материалы применять рационально, в соответствии с их назначением. Кроме того, дать студенту базовые знания по материалам, необходимым для изучения последующих дисциплин, связанных с проектированием, строительством и эксплуатацией железнодорожного пути, а также мостов и тоннелей.


  1. Требования к уровню освоения содержания дисциплины


Изучив дисциплину, студент должен:

    1. Знать и уметь использовать строительные материалы.

    2. Иметь опыт в определении свойств материалов.

    3. Иметь представление о способах получения материала, о строе для его изготовления, технологических схемах производства, о применении материалов и т.д.


^ 3. Объем дисциплины и виды учебной работы


Вид учебной работы

Всего часов

Курс - III

Специальность

С, МТ

ПГС, ВК

С, МТ

ПГС, ВК

Общая трудоемкость дисциплины

130

60







Аудиторные занятия:

20

8







Лекции

8

4







Лабораторный практикум

12

4







Самостоятельная работа:

95

37







Контрольная работа

1

1

15

15

Вид итогового контроля







зачет, экзамен

экзамен



^ 4. Содержание дисциплины

4.1. Разделы дисциплины и виды занятий


№ п/п

Разделы дисциплины

Лекции

Лабораторный практикум, час

Специальность

ПГС, ВК

С, МТ

ПГС, ВК

С, МТ

1

Введение

1

1







2

Строение и основные свойства материалов

1

1

2

2

3

Природные каменные материалы

1

2

2

2

4

Минеральные вяжущие вещества

0,5

2




4

5

Бетон

0,5

2




4

6

Строительные растворы













7

Керамические материалы













8

Искусственные каменные материалы и изделия на основе вяжущих.













9

Теплоизоляционные и акустические материалы














4.2. Содержание разделов дисциплины


4.2.1. Введение


Основы строительного материаловедения. Нормативные документы. Стандарты, СНиПы [1, c. 5-9].


^ 4.2.2. Строение и основные свойства материалов


Модели строения и структур материалов. Свойства материалов – физические, механические, химические и технологические. Зависимость свойств материалов от его состава, строения и структуры [2, c. 3-7; 1, c. 6-18].


^ 4.2.3. Природные каменные материалы


Изверженные, осадочные и метаморфические породы. Области применения. Сырье для изготовления строительных материалов [2, c. 43-45; 1, c. 64-92].


^ 4.2.4. Минеральные вяжущие вещества


Классификация минеральных вяжущих веществ. Цементы, прочность, скорость твердения, сроки схватывания. Сырье для получения. Химико-минералогический состав портландцемента. Теория твердения портландцемента. Свойства. Коррозия. Марки портландцемента. Добавки, вводимые при помоле цемента. Воздушная и гидравлическая известь. Гипсовые вяжущие. Высокопрочный гипс. Ангидритовые вяжущие. Жидкое стекло. Применение воздушных вяжущих веществ в железнодорожном строительстве. [2, c. 12-19; c. 178-215].


4.2.5. Бетон


Классификация бетонов по основному назначению, структуре, виду вяжущих и заполнителю. Марки и классы бетонов. Материалы для приготовления бетонов. Требования к воде. Заполнители для бетона и их классификация. Пески, применяемые для бетона, и требования к ним. Крупные заполнители для бетона. Химические добавки, вводимые в его состав. Бетонные смеси. Факторы, влияющие на связность и способы ее регулирования. Удобоукладываемость и подвижность. Прочность бетона и ее зависимость от состава, структуры и степени наполнения. Методы подбора состава бетона. Строительно-технические свойства бетона [2, c. 26-35].


^ 4.2.6. Строительные растворы


Классификация строительных растворов, характеристики свойств растворной смеси. Подбор состава раствора [1, c. 285-290].


^ 4.2.7. Керамические материалы


Область применения керамических материалов в железнодорожном строительстве. Классификация керамических – строительных материалов. Стеновые, облицовочные, санитарно-технические [2, c. 73].


^ 4.2.8. Искусственные каменные материалы и изделия на основе вяжущих


Автоклавные силикатные материалы. Силикатный кирпич и бетон. Схема производства, свойства и области применения.


^ 4.2.9. Теплоизоляционные и акустические материалы


Общие сведения. Состав и свойства. Связующие вещества. Основы производства полимерных материалов. Модификация полимерных строительных материалов.


4.3. Лабораторный практикум


№ п/п

№ раздела дисциплины

Наименование лабораторных работ

1

2

Свойства материалов

2

3

Природные каменные материалы

3

4

Гидравлические и воздушные вяжущие

4

5

Мелкий и крупный заполнитель для бетона


^ 5. Самостоятельная работа


а) Предусмотрена контрольная работа.

б) Перечень разделов дисциплины для самостоятельного обучения: 6, 7, 8 и 9.


^ 6. Учебно-методическое обеспечение дисциплины


6.1. Рекомендуемая литература


Основная литература


  1. Михайлова И, Васильев К. Современные строительные материалы. – М.: Эксмо, 2005.

  2. Баженов В.К., Чепелев Р.Н., Милых Т.И. Материаловедение и технология конструкционных материалов. Раздел – металлы. – М.: РГОТУПС, 2006.

  3. Баженов В.К., Милых Т.И. Материаловедение. Уч. пособие. – М.: РГОТУПС, 2003.


Дополнительная литература


  1. Справочник снабжения. Строительные смеси, растворы, камни и гипсокартон. – М.: Торговый дом металлов, 2004.

  2. Микульский В.Г. и др. Строительные материалы (Материаловедение и технология). 3-е изд. – М.: М-во образования РФ, 2002.

  3. Баженов П.И. Комплексное использование минерального сырья и экология. – М.: АСВ, 1994.


^ 6.2. Средства обеспечения освоения дисциплины


Компьютерные программы по подбору состава бетона.


7. Материально-техническое обеспечение дисциплины


Лаборатория «Строительные материалы».


^ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ


Основной целью выполнения контрольных работ – закрепление теоретических знаний и приобретения навыков в решении практических задач по вопросам использования материалов в строительстве зданий и в транспортном строительстве.


2. Методические указания к выполнению контрольных работ

2.1. Основы строения и свойств материалов


1. Физические свойства.

Истинная плотность (г/см3, кг/м3) – масса единицы объема абсолютно плотного материала.

= m/V.

m – масса материала

V – объем в плотном состоянии

Средняя плотность (г/см3, кг/м3) – масса единицы объема материала в естественном состоянии (объем определяется вместе с порами).

m = m/Ve..

m – масса материала

Ve – объем в естественном состоянии

Насыпная плотность – масса единицы объема в насыпном состоянии.

Пористость П есть степень заполнения объема материала порами:

П = Vп/Vе или Vп – объем пор

Vе – объем в естественном состоянии



Гигроскопичность – способность материалов поглощать влагу из воздуха.

Влажность материала определяется содержанием влаги, отнесенной к массе материала в сухом состоянии.

Водопоглащение – способность материала впитывать воду.

Различают объемное водопоглащение (Wv) и водопоглащение по массе (Wm).

Wv = [(m1 - m)/V]x100% и

Wm = [(m1 - m)/m]x100%

m1 – масса образца, насыщенного водой, г;

m – масса сухого образца, г;

V – объем образца в естественном состоянии, см3.

Отношение между водопоглащением по массе и объему численно равно средней плотности материала, т.е.

Wv/ Wm= [(m1 - m)/V]/[(m1 - m)/m] = m/Ve = m

Из этой формулы перехода можно вывести формулу перехода от одного вида водопоглащения к другому:

Wv = Wmm

Водостойкость – способность материала сохранить свою прочность после насыщения водой. Она характеризуется коэффициентом размягчения, который определяется как отношение предела прочности материала (при сжатии) в насыщенном состоянии к пределу прочности в сухом состоянии:

К = Rнас/Rсух.

Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким.

^ 2. Механические свойства.

Прочность – свойства материала сопротивляться разрушению под действием напряжений, возникающих от нагрузки или других факторов. Прочность материала характеризуется пределом прочности при сжатии, изгибе и растяжении.

Rсж(Rраст) = Р/F,

где Р – разрушающая нагрузки, Н;

F – площадь поперечного сечения, м2;

Предел прочности при изгибе (Rизг) при одном сосредоточенном грузе и образце – балке прямоугольного сечения определяется по формуле:

Rизг = 3РL/2bh2

При двух равных грузах, расположенных симметрично оси балки:

Rизг = Р(L - a)/bh2

где Р – разрушающая нагрузка, Н;

L – пролет между опорами, м;

a – расстояние между грузами, м;

b – ширина оболочки, м;

h – высота оболочки, м.


Пример решения задачи.

1. Образец камня в виде куба со стороной 5 см имел массу в сухом состоянии 240 г. После насыщения его водой масса составила 248 г. Определить среднюю плотность и водопоглощение.

Решение:

объем образца ^ V = 53 = 125 см3

средняя плотность m = 240:125 = 1, 918 г/см3

Водопоглащение по массе Wm = [(248-240):240]х100 = 3,31%

Водопоглащение по объему Wо = [(248-240):125]х100 = 6,4%

2. Образец бетона разрушился при испытании на сжатии при показании манометра 30 МПа. Определить предел прочности при сжатии, если известно, что площадь образца в 2 раза меньше площади поршня.

Решение:

Усилие, передаваемое поршнем составит Р = Rn F = 30F

Предел прочности образца

Rсж = Р/Fобр = 30F/0,5F = 60 МПа


3. Минеральные вяжущие вещества.

Минеральными вяжущими веществами называют искусственно получаемые порошкообразные материалы, которые при затворении водой образуют пластичное тесто, способное в результате физико-химических процессов затвердевать и переходить в камневидное состояние.

Минеральные вещества в зависимости от способности затвердевать в определенной среде и сохранять прочность во времени делятся на воздушные и гидравлические. Воздушные вяжущие – вещества, которые способны твердеть только на воздухе. К воздушным вяжущим относятся воздушная известь, гипсовые и магнезиальные вяжущие, жидкое стекло и др. Гидравлические вяжущие – вещества, которые способны твердеть на воздухе и воде. К гидравлическим относятся гидравлическая известь, романцемент, портландцемент и его разновидности.

3.1. Строительной известью называют продукт обжига (до удаления углекислоты) известняка, ракушечника, мела, доломитизированного известняка и т.д.

CaCO3 + 177,7 кДж = CaO + CO2

В результате обжига получают продукт в виде кусков белого цвета, называемый комовой известью (кипельной).

В зависимости от способа измельчения комовой извести различают негашеную молотую и гашеную (гидратную).

Гашение извести происходит по следующей реакции:

CaO + H2O = Ca(OH)2 + 65,2 кДж

Процесс твердения извести включает несколько этапов. В результате испарения воды частицы Ca(OH)2 сближаются между собой, затем образуют прочные кристалличесие сростки, кроме того, происходит взаимодействие гидрооксида кальция с углекислым газом воздуха.

Ca(OH)2 + CO2 + n H2O = CaCO3 + (n + 1) H2O

3.2. Гипсовыми вяжущими веществами называют материалы, состоящие из полуводного гипса или ангидрита и получаемые тепловой обработкой двуводного гипса (CaSO4 x 2 H2O), природного ангидрита и некоторых отходов промышленности.

Гипсовые вещества в зависимости от температуры обработки разделяют на две группы: низкообжиговые (строительный и высокопрочный гипс) и высокообжиговые (ангидритовые). Первые получают тепловой обработкой при низких температурах (110 – 180С)

CaSO4  2 H2O = CaSO4  0,5 H2O + 1,5H2O

Вторые – обжигают при высоких температурах (600 - 900С)

Процесс твердения гипса происходит по реакции:

CaSO4  0,5 H2O + 1,5 Н2О = CaSO4  2 H2O

По прочности при сжатии установлено 12 марок гипса: Г-2, Г-3, Г-5, Г-6, Г-10,

Г-7, Г-13, Г-16, Г-19, Г-22, Г-25.

Высокопрочным гипсом называют вяжущее, состоящее из полуводного сульфата кальция, получаемое термической обработкой двуводного гипса в автоклаве под давлением пара.

Он обладает меньшей водопотребностью, что позволяет получить гипсовые изделия с большой плотностью и прочностью.

3.3. Магнезиальные вяжущие вещества представляют собой тонкомолотые порошки, содержащие оксид магния и твердеющие при затворении водными растворами хлористого или сернокислого магния. Они делятся на два вида: каустический магензий (MgCO3) и каустический доломит (CaCO3 ∙ MgCO3). Магнезиальные вяжущие обладают способностью прочно сцепляться с древесными опилками, стружками и другими органическими заполнителями.

Эти вяжущие применяются для изготовления теплоизоляционных материалов, устройства теплых и износостойких ксилолитовых полов и плиток.


3.4. Жидкое стекло представляет собой натриевый (Na2О · SiO2) или калиевый силикат (K2O · SiO2) желтого цвета, который получают плавлением в печах при 1300˚ - 1400˚С измельченного чистого кварцевого песка с содой (Na2CO3) или поташа (K2 CO3). Жидкое стекло применяется для получения силикатных огнезащитных красок, предохранения естественных каменных материалов от выветривания, уплотнения грунтов и получения кислотоупорного цемента.

Кислотоупорный цемент – тонкоизмельченная смесь кварцевого песка и кремнефтористого натрия, затворенная жидким стеклом.

3.5. Гидравлическая известь – продукт умеренного обжига мергелистых известняков, содержащих 6-20% глинистых и тонкодисперсных песчаных примесей.

Гидравлическую известь применяют для приготовления кладочных и штукатурных растворов.

3.6. Портландцементом называется гидравлическое вяжущее вещество, получаемое тонким измельчением портландцементного клинкера с гипсом и добавками. Портландцемент получают двумя способами: мокрым и сухим. В результате обжига (t = 1450˚С) смеси глины и извести получается клинкер, который состоит из основных клинкерных минералов:

трехкальциевый силикат (3CaO · SiO2)

двухкальциевый силикат (2CaO · SiO2)

трехкальциевый алюминат (3CaO · Al2O3)

четырехкальцыевый алюмоферит (4CaO · Al2O3 · Fe2O3)

Взаимодействие портландцемента с водой приводит к образованию новых гидратных веществ, которые плохо растворяются в воде. Прочность цементного камня характеризуется маркой цемента. Марку цемента устанавливают по пределу прочности при изгибе образцов призм размером 40х40х160 мм и при сжатии их половинок, изготовленных из цементно-песчаного раствора 1:3 (по массе) на стандартном Вольском песке.

Предел прочности при сжатии в возрасте 28 сут. называют активностью цемента. Портландцементы разделяют на марки 400, 500, 550 и 600.

^ Примеры решения задач.

1. Определить количество негашеной (комовой) извести, полученной из 10т. чистого известняка с влажностью 10%.

Решение:

При нагревании известняка вода в количестве 10% должна испариться, после чего сухого известняка останется 10000 – 1000 = 9000 кг. Исходя из химической формулы известняка и реакции, происходящей при обжиге, можно определить количество негашеной извести:

CaCO3 = CaO + CO2

100 = 56 + 44

9000 х (56/100) = 5040 кг

2. Определить пористость цементного камня, если В/Ц = 0,4. Для прохождения реакции при твердении цемента требуется 18% воды. Истинная плотность цемента – 3,1г/см3.

Абсолютный объем, занимаемый цементным тестом:

^ Vт = 1/3,1 + 0,4 = 0,72

Абсолютный объем, занимаемые цементным камнем:

Vк = 1/3,1 + 0,18 = 0,5


Относительная плотность цементного камня:

Vк /Vт = 0,5/0,72 = 0,69

Пористость:

1 – 0,69 = 0,31


4. Керамические материалы.

Керамическими называют материалы, изготовленные из глин с добавлением других материалов путем формирования, сушки и последующего обжига.

Сырье, используемое для производства керамики, подразделяют на пластичные: глины и каолины и непластичные: отощающие и выгорающие добавки и плавки.

По огнеупорности глины подразделяются на огнеупорные, тугоплавкие и легко-плавкие с огнеупорностью соответственно выше 1580ºС, в пределах 1580º-1350ºС и ниже 1350ºС.

При изготовлении керамических изделий для уменьшения пластичности, воздушной и огневой усадки в состав керамических масс вводят отощающие материалы, имеющие небольшую усадку в процессе сушки и обжига.

К отощающим материалам относят кварцевой песок, пылевидный кварц, кремень, шамот, глины, бой керамических изделий и т.д.

В глиняную массу при производстве керамических изделий вводят плавни, способные снижать температуру ее спекания и огнеупорность.

К числу наиболее применяемых плавней относят – полевые шпаты, сиениты, доломит, магнезит и мел.

Пример решения задач.

1. Какое количество обыкновенного красного кирпича можно приготовить из 5 т. глины? Влажность глины 10%, потери при прокаливании 8% от массы сухой глины. Кирпич должен быть со средней плотностью 1750 кг/м3.


Решение:

Масса глины после обжига: 5000 : 1,1 : 1,08 = 4209 кг

Объем 1000 шт кирпича: 1000 х 0,25 х 0,12 х 0,065 = 1,95 м3

Масса 1000 шт: 1,95 х 1750 = 3412 кг

Из 4209 кг обожженной глины можно получить кирпичей (4209/3412) х 1000 = 1230 шт.


5. Искусственные каменные необожженные материалы.

Искусственные каменные материалы получают в результате формирования и твердения растворных или бетонных смесей, приготовленных на основе извести, гипса, магнезиальных вяжущих веществ и портландцемента.

Для получения искусственных материалов в качестве заполнителей применяют кварцевой песок, шлаки, золы, древесные опилки, волокнистые материалы, в частности асбестовое волокно, древесные стружки и др.


^ Пример решения задач.

1. Подсчитать расход материала на 1 м3 известково-песчаного раствора состава 1:5 по объему при условии, что известковое тесто и готовый раствор пустот не имеют, а песок имеет пустот 38%

Решение:

Абсолютный объем раствора 1:5 составляет: 1 + 5(1 – 0,38) = 4,1

Коэффициент выхода раствора  = 4,1/(1+5) = 0,68.

Расход известкового теста на 1 м3 раствора 1/0,68(1+5) = 0,24 м3

Расход песка 5 х 0,24 = 1,2 м3

6. Лесные материалы.

Древесина как анизотропный материал обладает разнообразными физико-механическими свойствам, которые следует учитывать при использовании древесных пород в конструкциях зданий и сооружений.

Свойства древесины в значительной степени зависят от влажности. В зависимости от содержания влаги, различают мокрую древесину с влажностью более 100%, свежесрубленную – 35-40%, воздушно-сухую – 15-20%, комнатно-сухую –

8-12% и абсолютно сухую древесину.

Условно за стандартную влажность, на которую пересчитывают все показатели свойств древесины, принята влажность 12%.

Плотность древесины увеличивается с повышением влажности. Обычно плотность древесины приводят к плотности при влажности 12% по формуле

12 = W[1+0,01(1-K0)(12-W)]

где 12 – плотность при влажности 12%;

W – плотность при той влажности, которую он имеет в момент определения;

^ K0 – коэффициент объемной усушки (колеблется в пределах 0,2 –0,75);

W- влажность древесины.

Прочность древесины также зависит от влажности, с повышением влажности она уменьшается. Предел прочности Rw, полученный при влажности древесины в момент испытания, можно пересчитать на 12% влажность по формуле

R12 = Rw[1+a(W-12)]

где R12 – предел прочности при влажности 12%

Rw – предел прочности при влажности W

а – пересчетный коэффициент (при сжатии и изгибе а=0,04, при скалывании а=0,03).

Пример решения задач.

1. Образец дуба с поперечными разрезами 2х2 см, высотой 3 см и влажностью 9% разрушился при испытании на сжатие при Р=32600Н. Определить предел прочности при влажности 12%.


Решение:

Определяем прочность при влажности 9%

R = P/F = 32600/(0,02x0,02) = 81500000 Па = 81,5 МПа

Прочность при 12% влажности определяется по формуле

R12 = R[1+(W-12)] = 81,5[1+0,04· (-3)] = 71,6 МПа


7. Органические вяжущие вещества.

Органические вяжущие вещества представляют собой природные или искусственные. Органические вяжущие вещества разделяют на битумы и дегти. На основе битумов и дегтей изготовляют другие вяжущие вещества и материалы в виде эмульсий и паст, асфальтовых лаков, асфальтовых растворов и бетонов. На основе битумов изготовляют различные рулонные материалы.

^ Пример решения задач.

1. Определить марку битума. Известно, что глубина проникновения иглы 4 мм, растяжимость 40 см, температура размягчения 51С.

Решение:

По таблице физико-механических свойств битума определяем:

битум марки БН-50/50

^ 8. Состав и свойства бетона.

Состав бетона принято выражать соотношением между массой или объемом цемента, песка, щебня или гравия и воды в виде 1:х:у и В/Ц

Здесь масса или объем цемента принята за единицу, х и у – соответственно число частей мелкого и крупного заполнителя на 1 часть цемента; В/Ц – водоцементное отношение. Различают номинальный (расчетный) и полевой составы бетона.

Состав бетона, установленный в лабораторных условиях на сухих заполнителях называют номинальным; на строительных площадках, заводах заполнители имеют естественную влажность, поэтому номинальных состав пересчитывается на так называемый полевой состав. Прочность бетона в зависимости от В/Ц отношения выражается уравнением

Rб = ARц(Ц/В0,5)

где А – коэффициент качества заполнителя

Rц – активность цемента, МПа (КГС/см2)

Прочность бетона изменяется во времени. Нарастание прочности во времени приближенно может быть выражено логарифмической зависимостью

Rn = R28(lgn/lg28)

где Rn и R28 – прочность

n – возраст бетона


Пример решения задач.

1. На 1м3 бетона расходуется цемента Ц-300, песка П-600, гравия Г-1200 и воды В-200л. Выразить состав бетона в виде соотношения масс 1:х:у: и В/Ц

Решение:

Х = П/Ц = 600/300 = 2

У = Г/Ц = 1200/300 = 4

В/Ц = 200/300 = 0,67

2. Подсчитать расход материалов на 1 м3 уплотненной смеси, если на опытный замес было затрачено 2,5 кг цемента, 1 л воды. 3 кг песка и 5 кг щебня, а средняя плотность составила 2300 кг/м3

Решение:

Суммарная масса всех материалов на опытный замес: 2,5+1+3+5=11,5 кг

Тогда доля цемента составит 2,5/11,5 = 0,217; воды 1/11,5 = 0,087;

песка 5/11,5 = 0,261; щебня 3/11,5 = 0,435

Расход компонентов на 1 м3 уплотненной бетонной смеси: цемента 0,217 х 2300 = 500 кг; воды 0,087 х 2300 = 200 л; песка 0,261 х 2300 = 600 кг; щебня 0,435 х 2300 = 990 кг.


9. Кристаллизация и фазовый состав железоуглеродистых сплавов.

В сплавах в зависимости от состояния различают следующие фазы: жидкие и твердые растворы, химические и промежуточные соединения.

Фазой называется физически и химически однородная часть системы, имеющая одинаковый состав, строение, одно и то же агрегатное состояние и отделенная от остальных частей системы поверхностью раздела.

Поэтому жидкий металл представляет собой однородную систему, а смесь двух различных кристаллов или временное существование жидкого расплава и кристаллов соответственно двух – и трехфазные системы. Вещества, образующие сплавы называются компоненты. Процесс кристаллизации металлических сплавов описывают диаграммами состояния или фазового равновесия, получаемыми на основе термического анализа (диаграмма состояния Fe-Fe3C).

В зависимости от процентного содержания углерода железоуглеродистые сплавы имеют следующие наименования:

  • техническое железо С  0,02 %

  • доэвтектойдные стали С = 0,02 - 0,8%

  • эвтектойдные стали С = 0,8 %

  • заэвтектойдные стали С =0,8 – 2,14%

  • доэвтектические чугуны С + 2,14 – 4,5%

  • эвтектика – ледебурит С = 4,3%

  • заэвтектический чугун С = 4,3% - 6,67%


Пример решения задач.

1. Построить кривую охлаждения сплава (железо-карбид железа) в интервале температуры от 00 до 16000С содержащего углерода 2,14%.

Решение:

На диаграмме фазового состояния Fe-Fe3C проводим прямую из точки горизонтальной прямой с содержанием С = 2,14%. Линия пересекает).


ТºС

1500

Ж

1200 Ж + А


900 А + Ц




600 Ц + П


300

t, время





оставить комментарий
страница1/3
Баженов В.К
Дата02.10.2011
Размер0,78 Mb.
ТипУчебно-методический комплекс, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3
плохо
  4
не очень плохо
  1
хорошо
  2
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх