Конспект лекций по Экологии Лекция 1 icon

Конспект лекций по Экологии Лекция 1


4 чел. помогло.
Смотрите также:
Предлагаемый конспект опорных лекций отражает традиционный набор тем и проблем курса «Введение в...
Конспект лекций по курсу тмм. Автор: Тарабарин В. Б 10. 1997г. Лекция 1...
Конспект лекций 2010 г. Батычко Вл. Т. Муниципальное право. Конспект лекций. 2010 г...
Организация предпринимательской деятельности: Конспект лекций...
Опорный конспект лекций по макроэкономике Автор: Фридман А. А...
Конспект лекций 2011 г. Батычко В. Т. Семейное право. Конспект лекций. 2011 г...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Конспект лекций Конспект лекций по дисциплине "Организационное поведение"...
Конспект лекций 2011 г. Батычко Вл. Т. Конституционное право зарубежных стран. Конспект лекций...
Конспект лекций 2010 г. Батычко В. Т. Уголовное право. Особенная часть. Конспект лекций. 2008 г...
Конспект лекций 2010 г. Батычко В. Т. Уголовное право. Общая часть. Конспект лекций. 2010 г...



Загрузка...
страницы: 1   ...   5   6   7   8   9   10   11   12   13
вернуться в начало
скачать

^ ТЕХНОЛОГИЧЕСКИ ИЗМЕНЕННЫЙ ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

Техногенный фон постоянно возра­стает в связи с индустриализацией стран, в процессе которой в природ­ную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из глубин Земли вместе с углем, рудой, нефтью, газом, минеральными удобрениями, термальными водами и др.

1. Главными источниками техногенного фона являются строительные материалы, к которым добавляются отходы добычи различных руд или угольная зола, сам угольный топливный цикл, а также добыча и приме­нение а сельском хозяйстве удобрений для почв.

2. Одним из материалов, использование которого приводит к увеличе­нию естественного фона излучения, является уголь. При добыче, сжигании угля, использовании угольной золы для строительных материалов происходит перераспределение радионуклидов из земных глубин в биосферу, что обусловливает увеличение облучения населения.

В некоторых странах более 1/3 образующейся золы используется в качестве добавки к цементам, асфальтам и бетонам. Последний иногда на 50% состоит из зольной пыли. Использование золы в качестве добавки к строительным материалам, а также при внесении ее в больших количе­ствах в почву приводят к увеличению радиационного фона.

На отопление жилых домов и приготовление пищи расходуется мень­ше угля, чем на ТЭС, но зато вследствие несовершенства технологии больше зольной ныли летит в атмосферу в пересчете на единицу топлива, вследствие чего ожидаемая эффективная коллективная доза облучения населения за счет отопления домов углем значительно больше, чем в результате эксплуатации ТЭС.

Использование нефти на электростанциях также ведет к концентрированию радионуклидов U, Th, K. Еще меньшую радиационную опасность представляют производство и использование природного газа.

Добыча и использование фосфатных руд также обусловливает увели­чение технологически повышенного естественного радиационного фона.


^ ИСКУССТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

1 - Ядерное оружие

Периодами наиболее интенсивных испытаний этого оружия были 1954-195Я гг. (США, Великобритания, СССР) и 1961-1962 rr, (СССР, США), когда было взорвано оружие об­щей мощностью 513 Меготротилового эквивалента. После 1963 г. испыта­ния в атмосфере и под водой в СССР и США были прекращены, несколь­ко серий испытаний в атмосфере до 1981 г. были проведены Францией и Китаем. Подземные испытания ядерного оружия проводятся по сей день, но они, как правило, происходят в условиях, исключающих радиоактив­ные осадки и загрязнение окружающей среды.

К середине 80-х п. прошлого века — пику гонки ядерных воору­жений — две сверхдержавы — СССР и США накопили гигантские арсеналы атомного и термоядерного оружия: около 18 млрд. т в тротиловом эквиваленте (A.M. Рябчиков, 1987 г.), что составляло более 3 т на каждого жителя планеты. В разгар самого острого противостояния число ядерных боеголовок достигло 56400, причем мощность каж­дой из них была в среднем в 25 раз больше бомбы, взорванной над Хиросимой (около 13 кт). С учетом количества ядерного оружия еще трех держав (Франции, Англии и Китая) общая численность боего­ловок составляла около 60 тыс.

Взрывная мощность накопленного ядерного оружия, по подсче­там специалистов, более чем в 1000 раз превышала взрывную мощ­ность всех боеприпасов, использованных во время второй мировой войны (около 7 млн т), а также боевых действий в Корее и Вьетнаме (более 10 млн т) вместе взятых. В ходе указанных войн, как извес­тно, погибло 44 млн человек. Ныне признается, что три страны (США, Россия и Китай) обладают возможностью многократного вза­имного гарантированного уничтожения.

^ Испытания ядерного оружия: масштабы и экологические последствия.

Из материалов ООН известно, что с 1945 по конец 19S7 г. на нашей планете было проведено 1741 ядерное испытание, из них 899 взрывов осуществили США (по другим данным — 919), 620 — СССР, 151 — Франция, 41 — Англия и 30 — КНР. К 1989 г. было проведено уже 1880 взрывов. При этом суммарная мощность ядерных взрывов, произведенных только в США, равнялась 11050 атомным бомбам, сбро­шенным на Хиросиму (В.В. Довгуша и др., 1995 г.). СССР в 1962 г. испытал на полигоне Новая Земля сверхмощную бомбу в 52 мегатон­ны. Напомним, общее количество взрывчатки, использованное в годы второй мировой войны, составило около 7 мегатонн.

В течение почти 40 лет ядерных испытаний на Земле происходи­ло накопление радионуклидов. В биосферу было выброшено 12,5 т продуктов деления (при взрыве атомной бомбы над Хиросимой выде­лилось около 1 кг продуктов деления). Взрывы изменили равновес­ное содержание в атмосфере углерода |4С (с периодом полураспада 5730 лет) на 2,6%, а радиоактивного изотопа трития (с периодом полураспада 12,3 года) — почти в 100 раз.

Радиоактивное излучение на поверхности Земли достигло к 1963 г 2% сверх естественного фона.

^ 2 - Атомные электростанции

В РФ насчитывается 29 энергоблоков. В центральной России (Центральный и Центрально-Черноземный эко­номические районы) в настоящее время присутствуют четыре атомные электростанции. Общая мощность их ядерных энергетических установок составляет около 11 мВт.

Следует отметить, что перед электростанциями на иных видах топлива АЭС имеют ряд экологических преимуществ. Они сохраняют для населения жизненные пространства, тогда как вокруг угольных электростанций сепии гектаров занимают золоотвалы вредной угольной пыли; для эксплуата­ции гидроэлектростанций затопляют под водохранилища плодородные пойменные луга, а использование ветряных источников электроэнергии, сопровождаемое интенсивными акустическими колебаниями, распуги­вает на километры вокруг себя все живое.

Установлено, что влияние АЭС на радиоактивное загрязнение почв и фунтов незначительно и несопоставимо с ее естественным уровнем радиоактивности Показано, что золоотвалы угольных станций создают ради­ационный фон в 5-40 раз выше, чем выбросы АЭС.

В то же время, необходимо учитывать, что тепловые выбросы АЭС в 1,5 раза больше, чем на ТЭС, и это часто приводит к ухудшению эколо­гической ситуации как в водоемах-охладителях, так и в близлежащих естественных водоемах и грунтовых водах.

В выбросах АЭС в атмосферу присутствуюттакие радионуклиды, как радиоактивные благородные газы (ксенон, криптон),

^ Аварии на радиационных объектах.

Какой бы совершенной ни была современная боевая техника, какие бы системы контроля и подстра­ховки не устанавливались, аварии и катастрофы невозможно исклю­чить. Согласно источникам, за последние 40 лет произошло не менее 130 серьезных аварий только американских бомбардировщиков и ра­кет, при которых была вероятность ядерного или даже термоядерного взрыва. В результа­те аварий и катастроф на советских и российских АПЛ с 1968 по 2000 г. в Мировом океане оказалось 7 энергетических ядерных установок. Всего же, по данным американского журнала «Тайме», на дне Мирового океана находится 7 затонувших АПЛ различной нацио­нальной принадлежности, 10 атомных реакторов и 50 ядерных (атом­ных и водородных) боеприпасов.

Согласно японским исследованиям, в результате коррозии в мор­ской воде уже «потекла» водородная бомба, которую американцы потеряли в Тихом океане. Выявлена повышенная радиоактивность и в районе, где лежат на дне погибшие АПЛ США «Трешер» и «Скор­пион».

Чтобы подчеркнуть важность мероприятий, направленных на предотв­ращение аварий на радиационно-опасных объектах, академик В. Котлов (1997 г.) указывает, что в РФ насчитывается таковых 34 тысячи. Из них 29 атомных энергоблоков, 113 научно-исследовательских реакторов, крити­ческих и подкритических сборок с ядерными материалами, 245 АПЛ, из которых большая часть выведена из эксплуатации, 12 атомных надводных судов, тысячи тонн отработанного ядерного топлива, 3 млрд кюри вре­менно захороненных РАО.

^ Чернобыльская катастрофа: трагический опыт и предупреждение. Серьезным предостережением человечеству явилась катастрофа, слу­чившаяся на Чернобыльской АЭС 26 апреля 1986 г. и нанесшая не­поправимый ущерб как множеству людей, так и развитию отечествен­ной атомной энергетики.

Во время плановых исследований реактор четвертого энергоблока, загруженный 180 т радиоактивного топлива, потерял управление, что привело к взрыву и выбросу в атмосферу около 50 т топлива. Оно испарилось и образовало огромный атмосферный резервуар долгоживущих радионуклидов. Еще около 70 т топлива было выброшено за пределы реактора с периферийных участков активной зоны боковыми лучами взрыва. Помимо топлива взрывом было выброшено и около 700 т радиоактивного реакторного графита. Примерно 50 т ядер­ного топлива и 800 т графита остались в разрушенном реакторе. Вслед­ствие большой температуры в нем графит в последующие дни выгорел и тем самым способствовал увеличению количества радиоактивных осад­ков. Отметим для сравнения, что общая масса радиоактивных веществ, которые образовались в результате взрыва бомбы над Хиросимой, со­ставила лишь 4,5 т. При этом долгоживущих и поэтому особо опасных радионуклидов поступило в биосферу в 600 раз больше, нежели после ядерного взрыва 1945 г.

Согласно имеющимся данным, последствия катастрофы оказа­лись крайне тяжелыми. Во время самой аварии погибли 2 человека, 29 умерли позже от острого лучевого поражения, около 150 тыс. человек эвакуированы из 30 километровой зоны, которая прилегает к АЭС. В этой зоне запрещены проживание людей и ведение хозяй­ственной деятельности.

Выброшенное из реактора топливо в виде мелкодисперсных час­тиц диоксида урана, высокоактивных радионуклидов Йода-131, плутония-239, нептуния-139, цезия-Ш, стронция-90 и других радио­активных изотопов, вызвало зафязнение многих регионов. При этом наиболее сильно пострадали районы Гомельской, Могилевской, Брян­ской, Киевской и Житомирской областей.

Ученые считают, что последствия катастрофы, прежде всего в отношении здоровья людей, в наибольшей степени проявят себя че­рез 10 лет после взрыва, т.е. в конце XX века. Следы ее в генном аппарате человека исчезнут не ранее чем через сорок поколений, т.е. почти через 1000 лет. Сейчас прогнозы уточняются.

Огромную опасность для здоровья человека представляет избира­тельное накопление радионуклидов в различных частях тела. Так, стронций-90, который легко аккумулируется в травах, переходит в организм, например, коровы, а далее с ее молоком попадает в орга­низм человека. В случае его накопления в костном мозге развивают­ся лейкоз или опухоль кости. Цезий-137, будучи менее раствори­мым, попадает в организм вместе с растительной пищей и аккумули­руется в печени или в половых железах. Последнее обстоятельство может привести к возникновению наследственных изменений.

^ 3. Хранение и обезвреживание радиоактивных отходов.

Количество и объемы средне- и низкоактивных РАО чрезвычайно велики. Предполагается., что к 2000 г, в России их накопится около 1,5млн м3, в США — около 3,6 млн м3.

Почти 98,5% ядерного топлива АЭС идет в отходы, представляю­щие собой радиоактивные продукты расщепления (плутоний, цезий, стронций и т.д.), которые нельзя уничтожить, а можно лишь вечно хранить на спецскладах.

Еше более опасные последствия имеют место в случаях катастроф и аварий на атомных объектах и предприятиях.

Крупная авария произошла в 1957 г. в Челябинской области на ра­диохимическом заводе по переработке ядерного топлива и извлечения плутония для ядерных бомб. Этот завод с 1949 г. сбрасывал РАО в от­крытые водоемы, в частности, в озеро Карагай поступило 120 млн кюри (1Ки=3,7-10шБк), что в два раза больше, чем в результате катастрофы в Чернобыле.

В дальнейшем для жидких РАО были изготовлены бетонные емкости с покрытием из нержавеющей стали. Однако именно в них про­изошел взрыв с выбросом 2 млн кюри. Облако прошло на север, оставив радиоактивный след длиной 105 км и шириной до 8 км. Из зараженной зоны переселили 17 тыс. жителей. Ликвидация следа производится до сих пор.

В системе МО РФ очень острой стала проблема нейтрализации РАО, которые образуются в процессе эксплуатации и ремонта, а так­же вследствие вывода из боевого состава атомных подводных лодок (АПЛ) 1 и 2-го поколений. Уже сейчас на Северном флоте, напри­мер, скопилось около 90 АПЛ с выслужившими свой срок реактора­ми. Всего же в пяти ядерных флотах мира (США, Россия, Китай, Англия и Франция) в 1990—1995 гг. предполагалось списать 190 реак­торов. При плановом сроке отстоя активных зон реакторов до 5—6 лет некоторые установки находятся в этом режиме от 7 до 14 лет. При этом специалисты отмечают, что ВМФ не хватает хранилищ для РАО, а имеющиеся находятся далеко не в лучшем состоянии.

^ Захоронение и обеззараживание РАО:

Свалки РАО в морях, в том числе и российских, возникли вслед за появлением атомного флота у ряда стран. Сбросы РАО, начавшиеся уже в 1959 г., продолжались систематически вплоть до 1992 г. в некоторых районах Балтийского, Баренцева, Белого, Карского, Охотского и Японско­го морей, а также в прибрежных водах архипелага Новая Земля и полуострова Камчатка.

По сводным данным (В.В. Догуша, 1995 г.), в период с 1964 по 1991 г. в северных морях затоплено 4900 контейнеров с твердыми РАО низкой и средней степени активности. У восточных берегов России, в Японском и Охотском морях за 1986—2000 г. было захоронено 6868 контейнеров со средне- и низкоактивными твердыми РАО, а также 38 судов и более 100 крупногабаритных обьектов. Их суммарная активность оценивается спе­циалистами в 22,2 тыс. кюри. За 30 лет эксплуатации атомного флота в экосистемы северных морей поступило около 100 тыс. м3 жидких РАО с активностью более 24 тыс. кюри.

Общее количество РАО, сброшенных в море США только в 1946— 1970 гг. составило более 86 тыс. контейнеров с суммарной радиоак­тивностью около 95 тыс. кюри. В 1971 — 1983 г.г. РАО предприятий военной и мирной атомной промышленности регулярно сбрасывали в морс Бельгия, Англия, Нидерланды и Швейцария, эпизодически — Франция, Италия, ФРГ, Швеция, Япония, Южная Корея. Под­считано, что всего за 1967—1992 г. в Атлантическом океане оказалось 94603 т РАО, размещенных в 188188 контейнерах, обшей активностью более I млн кюри.

К настоящему времени выработаны (К.М. Сытник и др.) следу­ющие технологии захоронения РАО;

1) для больших количеств высо­коактивных РАО — концентрирование и последующее хранение (по-средством остекловьщания, бетонирования и складирования в глубо­ких шахтах); 2) для небольших количеств высокоактивных РАО — извлечение долгоживущих изотопов с высокой токсичностью (ядови­тостью) перед удалением остаточной активности;

3) для отходов сред­ней степени активности — хранение до достижения распада коротко-живущих изотопов и последующее рассеивание в той или иной среде:

4) для относительно небольших количеств слабоактивных отходов — разбавление (например, водой) и последующее рассеивание.

1. Захоронение в изолированном виде (в капсулах). Технология состоит в переводе РАО в стекловидное состояние (путем заливания жидким стеклом), смешении с цементом или в заключении остеклованной массы в коррозионностойкие контейнеры, которые способ­ны выдержать большое внешнее давление. После этого их сбрасыва­ют на большие глубины. Англичане замуровывают отходы в бочки и сбрасывают в море. В Рос­сии для захоронения, как правило, используют так называемые водные линзы. В них закачивают в жидком виде не только радиоактивный строн­ций и цезий, но и плутоний-239, период полураспада которого состав­ляет 24 тыс. лет. Если за эти тысячелетия герметичность линзы нарушит­ся, последствия будут катастрофическими.


  1. Захоронение малоактивных РАО в предварительно разбавлен­ ном виде. Для тою, чтобы радиоактивность отходов, попавши в морскую среду, быстро убывала, сброс их рекомендовано осуществ­лять во время движения судна и желательно под винт. Ныне законо­дательство России запрещает подобное захоронение.

3. Длительное хранение высокоактивных РАО. Хранение высокоак­тивных жидких отходов (обычно это водные азотнокислые растворы) осуществляется в баках из нержавеющей стали с двойным дном, объ­емом от нескольких десятков до нескольких сотен кубометров. Уста­навливают их в бетонных камерах, а для того, чтобы предотвратить возможный взрыв скапливающегося водорода, резервуар непрерыв­но продувают воздухом. Отработанный воздух в дальнейшем очища­ют от радиоактивных аэрозолей в специальных фильтрах.

Содержимое некоторых баков постоянно перемешивают, так как выпадение твердых частиц, например плутония или урана, может привести к накоплению критической массы и, следовательно, ини­циировать ядерный взрыв. Выпадение же в осадок радиоактивных солей другой природы может способствовать резкому повышению тем­пературы и также породить взрыв, но уже тепловой, с выходом ра­диоактивности в окружающую среду.

Современное хранилище высокорадиоактивных отходов состоит из вертикальных шахт, горизонтальных штреков (коридоров) и соб­ственно помещений для захоронений, сооружаемых, например, в соляных породах на глубине порядка 600 м. В полу помещения бу­рятся шурфы для хранения канистр с растворами отходов высокой удельной активности (ОВУА). Между шурфами необходимо выдер­живать расстояние от 10 до 50 м. Причиной такого разнесения ка­нистр друг от друга является их сильное тепловыделение; нарушение режима последнего может привести к катастрофе.

4. На Западе (США, Франция) прорабатывалось несколько проек­тов долговременных хранилищ ОВУА, включая и довольно экзоти­ческие. Один из них связан с запуском тяжелых ракет, загруженных высокоактивными отходами, в сторону Солнца, с последующим их уничтожением. Однако следует помнить, что, согласно статистике, до 2% запусков ракет заканчиваются их авариями в пределах атмосфе­ры. Подобная катастрофа, естественно, обернется тяжелейшими последствиями, соизмеримыми с чернобыльской. В США ведутся длительная дискуссия и поиск мест для размещения двух грандиозных хранилищ для РАО на период до 10 тыс. лет. Они будут размешаться на глубине 300 — 1000 м в местах, не подверженных землетрясени­ям. Стоимость указанного проекта оценивается в 27 млрд дол.

^ На территории России суммарная активность незахороненных радио­активных отходов, по некоторым оценкам, превышает 4 млрд Ки. В Рос­сии есть 15 полигонов для захоронения, центры по утилизации отходов (Чслябинск-65, Красиоярск-26).

Аварии с выбросом радиоактивных веществ, которые имели место на ПО «Маяк» на севере Челябинской области, привели к образованию под озером Карагай «линзы» из радиоактивных рассолов, которая движется в направлении реки Теча со скоростью 80 м в год. Если эти соли попа­дут в водные объекты, то может быть загрязнена значительная террито­рия Западной Сибири и затем Ледовитый океан. Подобная ситуация сло­жилась и в бассейне Оби в Томской области в результате деятельности Сибирского химического комбината.

В Карском море были затоплены ра­диоактивные отходы с умеренной радиоактивностью почти 2,5 МКи, что позволило считать Карское море потенциально опасным районом Миро­вого океана. Опубликованные данные послужили толчком для более де­тальных исследований.

Согласно российскому законодательству, отходы, образующиеся в Процессе переработки иностранного отработанного ядерного топлива, Должны быть отправлены обратно — в ту страну, из которой они посту­пили. Эчхэ является мощным сдерживающим факторов для любой страны, желающей избавиться от этого вида высокоактивных отходов, а также для коммерческой деятельности.

^ РАДИАЦИОННАЯ СИТУАЦИЯ В РФ

Радиоактивное загрязнение приземного слоя атмосферы

За пределами загрязненных в результате Чернобыльской аварии территорий средние концентрации в воздухе таких радионуклидов, как цезий-137 и стронций-90, составляли соответственно 6,0410-7

Содержание радионуклидов в атмосферных выпадениях на загрязненных территориях Европейской части России также существенно превышало среднее по стране в 10 раз.

В районах, расположенных в зоне влияния ПО "Маяк" на Южном Урале, выпадения цезия-137 из атмосферы в течение 1994 г. были в 50-100 раз больше, чем в среднем по стране.

Радиоактивное загрязнение местности

1. В Европейской части России - это территории, загрязненные в результате аварии на Чернобыльской АЭС, где основным радионуклидом является цезий-137.

2. На Южном Урале - это районы, примыкающие к ПО "Маяк", и Восточно-Уральский радиоактивный след, образовавшийся в результате аварии на этом предприятии в 1957 г. и вследствие ветрового разноса радиоактивных аэрозолей пересохшего технологического водоема №9 ПО "Маяк" (оз. Карачай) в 1967 г.

3. На территории, попавшей под радиоактивные выпадения в результате аварии на Сибирском химическом комбинате (СХК).


Радиоактивное загрязнение водных систем

1. В водах рек, протекающих по загрязненным территориям Европейской части России, наблюдались повышенные концентрации цезия-137 и стронция – 90.

2. На Южном Урале в р.Теча, куда в 40-50-х гг. производились сбросы жидких радиоактивных стоков ПО "Маяк", концентрации стронция-90 в речной воде в 100-1000 раз превышали фоновые.

3. Уровни загрязнения морской воды стронцием-90 также не изменились по сравнению с 1993 г. В водах Каспийского, Охотского, Карского и Баренцева морей, а также в водах Тихого океана, омывающих берега Камчатки, концентрация стронция-90 колебалась в пределах (0,03-0,6)410-12 Ки/л.

^ Радиоактивные отходы

Предприятия Минатома России, на которых сосредоточены
радиохимические производства (ПО "Маяк", Сибирский химический
комбинат, Горно-химический комбинат), продолжают оставаться
потенциальными источниками радиоактивного загрязнения прилегающих
территорий. В ходе их эксплуатации накоплено большое количество
жидких и твердых радиоактивных отходов, суммарная активность которых
достигает 1,5 млрд. Ки. Особую озабоченность вызывает сосредоточение
средне- и низкоактивных жидких отходов в открытых водоемах-
хранилищах радиоактивных отходов на указанных предприятиях. В оз.Карачай. служившем до последнего времени приемником среднеактивных отходов, находится около 120 млн.Ки активности, преимущественно за
счет стронция-90 и цезия-137. В каскаде промышленных водоемов,
созданных в пойменной части верховьев р. Теча после прекращения
сбросов в нее отходов радиохимического производства, накоплено 350
,- млн. мЗ загрязненной воды, являющейся по сути своей низкоактивными отходами с суммарной активностью около 200 тыс. Ки. Наличие поверхностных водоемов-хранилищ жидких отходов приводит к проникновению радиоактивных веществ в грунтовые и подземные воды. Под оз. Карачай сформировалась линза загрязненных подземных вод объемом около 4 млн. мЗ и площадью до 10 км2. Скорость пространственного перемещения загрязненных подземных вод достигает 80 м/год. Существует возможность проникновения этих вод в другие водоносные структуры и выноса радионуклидов в гидрографическую сеть.

В настоящее время на 29 энергоблоках АЭС страны хранится 140 тыс. мЗ жидких отходов общей активностью 29 тыс. Ки, 8 тыс. мЗ отвержденных отходов активностью 2 тыс. Ки и 120 тыс. мЗ твердых отходов (оборудование,строительный мусор).

К настоящему времени в хранилищах пунктов накоплено около 200 тыс. мЗ отходов общей активностью около 2 млн. Ки.

К настоящему времени из эксплуатации выведено 121 АПЛ (СФ -70,ТОФ - 51), активные зоны выгружены на 42 ПЛА (СФ - 18, ТОФ - 24). В большинстве случаев отработавшее топливо находится в реакторах 15 и более лет.

В составе выведенных из эксплуатации АПЛ - 4 лодки с аварийными реакторами, способы утилизации которых до сих пор не разработаны.

Хранилища отработавшего ядерного топлива Мурманского морского пароходства (плавтехбазы "Лотта", "Лепсе" и "Имандра"), береговые и * плавучие хранилища ОЯТ ВМФ - 4 береговых технических базы (БТБ) и 9 плавучих (ПТБ) - полностью загружены.

^ Влияние малых доз радиации на здоровье детей.

Воздействие различных видов ионизирующего излучения в больших дозах вызывает соматические эффекты у облученного индивидуума и генетические эффекты у потомства. Соматические эффекты подразделяются на ранние — нестохастические и поздние — стохастические. К нестохастическим эффектам относят развитие острой и хронической лучевой болезни, местные радиационные поражения (лучевые катаракта, ожоги), функциональные и морфологические изменения органов и систем. Стохастические эффекты включают развитие лейкозов, новообразований различной локализации и врожденной патологии, обусловленной тератогенным влиянием радиации на плод.

^ Не стохастические эффекты. Облучение в малых дозах радиации не вызывает острой и хронической лучевой болезни, а также местных радиационных поражений. Влияние допороговых доз на функциональное состояние и морфологию органов во многом зависит от величины дозы. При дозах, близких к пороговым (50—100 бэр общего облучения), возможны следующие соматические эффекты.

1.В костно-мышечной системе происходит замедление роста, зависящее от возраста в момент облучения (чувствительность к облучению обратно пропорциональна возрасту ребенка.

2. Сердце: также является радиорезистентным органом в отличие от сосудистой системы, которая реагирует на радиационное воздействие развитием синдрома вегетососудистой дистонии, связанным с повышенной возбудимостью высших вегетативных отделов нервной системы, вызывающей изменения в нейрогуморальных механизмах регуляции гемодинамики.

3. Морфологических изменений ЦНС, как правило, не отмечается, но возможно замедление созревания высших отделов головного мозга, что отрицательно сказывается на психическом развитии ребенка.

4. Желудочно-кишечный тракт поражается одним из первых при облучении в дозе свыше 100 бэр, но практически не страдает при допороговом лучевом воздействии.

5. Наиболее радиочувствительными элементами организма являются кроветворные клетки. При одномоментном облучении в дозе 50—100 бэр могут происходить нерезко выраженные изменения гемограммы (снижение количества тромбоцитов, лейкоцитов, эритроцитов). При хроническом облучении в суммарной дозе 50—100 бэр возможно развитие нарастающей нейхтропении, лимфоцитопении, тромбоцитопении, реже анемии.

6. Общее облучение до 100 бэр не вызывает изменений деятельности эндокринных желез. Локальное воздействие на щитовидную железу дозы 30—200 бэр может вызвать функциональные изменения, а дозы свыше 200 бэр — такие заболевания, как узловой зоб, аутоиммунный тиреоидит, приобретенный гипотиреоз, рак щитовидной железы.

В то же время у детей встречаются различные отклонения в состоянии здоровья. В настоящее время не установлена их прямая связь с радиоактивным воздействием. У большинства детей выявляются различные заболевания: хронический тонзиллит, хронические воспалительные заболевания желудочно-кишечного тракта (хронический гастродуоденит, хронический холецистохолангит), множественный кариес, гиперплазия щитовидной железы I—II степени без нарушения ее функции, расстройства вегетативной нервной системы (вегетососудистая дистония, астеновегетативный синдром). Для детей раннего возраста характерно наличие рахита, паратрофии, аллергодерматозов.


^ Стохастические эффекты. Увеличение числа онкологических заболеваний (и соответственно их проявлений в клинической практике) возможно через 2—4 года после облучения. Лейкозы являются одним из наиболее характерных радиационных стохастических эффектов. Не отмечено четкой зависимости увеличения частоты лейкозов, связанных с радиационным воздействием, у детей, проживающих вблизи ядерных производств и полигонов, и у взрослых участников ядерных испытаний. Среди детей, облученных в период внутриутробного развития в Хиросиме и Нагасаки, также не обнаружено повышенной склонности к заболеванию раком. При этом существует риск увеличения случаев лейкозов у детей, отцы которых работают на ядерных производствах. Отсутствует в настоящее время рост лейкозов или сблидных опухолей у детей из радиационого загрязненных областей.


Лекция 7.


^ ВЛИЯНИЕ ТРАНСПОРТА НА ОКРУЖАЮЩУЮ СРЕДУ


Наряду с энергетикой, промышленностью, сельским хозяйством и строительством на окружающую среду существенное воздей­ствие оказывает транспорт. Транспорт всегда играл важную роль в жизни человечества, но особенно его роль возросла в XX в. Рассто­яние между любыми двумя точками земного шара можно преодо­леть за несколько часов.

Различают следующие основные виды транспорта: автомобиль­ный, воздушный, железнодорожный, морской, речной, магист­ральный трубопроводный (нефтепроводы и газопроводы).

В настоящее время земной шар покрыт густой сетью путей сооб­щения. Протяженность магистральных автомобильных дорог мира с твердым покрытием превышает 11,5 млн км, воздушных линий — 5,3 млн км, железных дорог — 1,3 млн км, трубопроводов — около 1 млн км, внутренних водных путей — 600 тыс. км. Транспорт стал одной из крупнейших отраслей народного хозяйства. На транспор­те занято 9 % всех работающих в народном хозяйстве, транспор­том потребляется примерно 13% топливно-энергетических ресур­сов, расходуемых в народном хозяйстве. Большую долю транспорт­ной работы выполняет промышленный транспорт, в составе ко­торого примерно 30 — 35% перевозок совершают железные доро­ги и около 60% — автомобили, а оставшиеся 5 — 10% — конвей­ерные виды (трубопроводы, транспортеры, канатные дороги), а также речные и морские суда.

Воздействие различных видов транспорта на окружающую сре­ду происходит различными путями.

Современным крупным аэропортам тре­буется, как правило, 25 — 50 км2 площади. Аэропорт в Далласе (штат Техас в США) занимает 70 км2. Добавим к этому, что примерно 120 км2 в зоне современного аэропорта становятся непригодными для заселения в основном по условиям безопасности полетов и чрезмерного шума.


Кардинально решает проблему экономии площадей строитель­ство железных и автомобильных дорог на эстакадах и особенно под землей. Но такие сооружения существенно повышают сто­имость транспортных сооружений: на эстакадах — в 1,5 — 2 раза, под землей — $ 3 — 4 раза. Во многих городах мира на эстакады подняты автомобильные и железные дороги, а также линии мет­рополитена. На эстакаду поднята скоростная железная дорога между Токио и Осака. С целью экономии площадей сооружаются также многоэтажные и подземные* гаражи и стоянки автомобилей. В Же­неве, например, подземный гараж размещен даже под частью площади озера. Строятся подземные железнодорожные вокзалы. Примером грандиозного подземного вокзала может служить но­вый вокзал в Токио. Уже давно практикуется использование тер­риторий, отвоеванных у моря. Наибольший опыт в этом отноше­нии накопили Нидерланды, примерно 1/3 территории которой когда-то была дном моря. Сегодня в Нидерландах изучаются и ре­ализуются возможности строительства новых островов в Север­ном море для размещения аэродромов, причалов для погрузки и разгрузки супертанкеров, а также мусоросжигательных станций и заводов по переработке отходов производства и быта.

В Японии значительная часть эстакады монорельсовой дороги, связывающей центр Токио с аэропортом, проходит не над бере­гом, а непосредственно над морем вдоль берега. Там же созданы искусственные острова. Токио и Осака частично стоят на земле, отвоеванной у моря. Голландский метод осушения территории с помощью дамб был использован в США при сооружении аэро­дрома в Чикаго на берегу озера Мичиган, а также в Великобрита­нии на ряде островов.

Все виды транспорта в той или иной степени вызывают загряз­нение водного бассейна. Наиболее распространенными загрязни­телями, которые вводятся транспортом в гидросферу, являются нефть и нефтепродукты. Эти загрязнения усиливаются из-за ава-

рий танкеров, перевозящих нефть. К 70-м годам XX в. многие круп­ные реки и озера оказались в той или иной степени загрязненны­ми. Загрязнена нефтью вода многих морей, особенно в бассейне Средиземного моря, в частности в районах Неаполя, Венеции, Генуи, Марселя. Нефтяная пленка задерживает на 35 — 40% ульт­рафиолетовое излучение и тем самым снижает фотосинтез и образо­вание биомассы в океане. Она же затрудняет обмен кислородом меж­ду гидросферой и атмосферой, а находящаяся в воде 1 т нефти по­глощает почти весь кислород, растворенный в 400 тыс. т воды. Нефть не только плавает, но и тонет, отравляя глубинные массы воды. Уже сегодня ущерб по объему морепродуктов, которыми пользуется че­ловек, оценивается в 20 млн т в год, или около 25%.

Транспорт вместе с промышленностью являются в настоящее время главными источниками загрязнения воздушного бассейна. Особую ответственность несет автомобильный транспорт. По аме­риканским данным, в 1960 г. на его долю приходилось более 55 % общей массы загрязнителей, при этом особенно много выбрасы­вается окиси углерода (81 %). Иными словами, транспорт выделя­ет значительную часть загрязнителей, приходящихся на энергети­ку, промышленность и прочие сферы экономики.

Современный автомобиль для сгорания 1 кг бензина расходует около 200 л кислорода. Это больше объема кислорода, вдыхаемого человеком на протяжении суток. В среднем при пробеге 15 тыс. км за год автомобиль сжигает 1,5 — 2 т топлива и 20 — 30 т кислорода. Реактивный пассажирский самолет при перелете из Парижа в Нью-Йорк тратит 35 т кислорода.





Скачать 3,27 Mb.
оставить комментарий
страница9/13
Дата30.09.2011
Размер3,27 Mb.
ТипКонспект, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   ...   5   6   7   8   9   10   11   12   13
плохо
  2
средне
  3
хорошо
  1
отлично
  6
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх