скачать На правах рукописи ГОЛУНОВ Валерий Алексеевич ВЛИЯНИЕ НИСХОДЯЩЕГО ИЗЛУЧЕНИЯ АТМОСФЕРЫ НА РАДИОТЕПЛОВЫЕ ИЗОБРАЖЕНИЯ И КОНТРАСТЫ ЗЕМНЫХ ПОКРОВОВ В ДИАПАЗОНЕ МИЛЛИМЕТРОВЫХ ВОЛН Специальность 01.04.03 - радиофизика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Фрязино – 2010 Работа выполнена в Учреждении Российской Академии наук ИНСТИТУТЕ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ им. В. А. Котельникова РАН, Фрязинский филиал. ^ доктор технических наук, профессор Официальные оппоненты: Чухланцев Александр Алексеевич доктор физико-математических наук ^ кандидат физико-математических наук Ведущая организация: Институт прикладной физики РАН (Нижний Новгород) Защита диссертации состоится «15» октября 2010 г. в 10-00 на заседании диссертационного совета Д002.231.02 при Учреждении Российской академии наук Институте радиотехники и электроники им В. А. Котельникова РАН по адресу: 125009, Москва, ул. Моховая, д.11, к.7. С диссертацией можно ознакомиться в библиотеке ИРЭ им В.А.Котельникова РАН. Автореферат разослан « 14 » сентября 2010 г. Ученый секретарь диссертационного совета, доктор физ.-мат. наук А. А. Потапов ^ Основой радиотеплолокации (или пассивной радиолокации) является прием крайне слабого теплового излучения окружающей среды. К настоящему времени сформировались следующие основные области применения средств радиотеплолокации: дистанционный мониторинг окружающей среды, навигация, обнаружение и идентификация объектов. При пассивной радиолокации в натурных условиях радиометры наряду с собственным излучением объектов и покровов принимают отраженное ими излучение атмосферы. Вследствие изменчивости метеопараметров атмосферы интенсивность ее нисходящего излучения со временем изменяется, что, в свою очередь, приводит к вариациям радиояркостных характеристик покровов. В диапазоне миллиметровых (ММ) волн вследствие молекулярного поглощения в атмосферных газах интенсивность нисходящего излучения атмосферы даже в «окнах прозрачности» может быть соизмерима с интенсивностью собственного излучения покровов. Это обстоятельство предопределяет существенную роль излучения атмосферы и необходимость всестороннего исследования основных закономерностей его влияния на формирование радиотепловых изображений и контрастов земных покровов. ^ Широкие перспективы для решения задач навигации, обнаружения объектов и их идентификации открываются в связи с бурным прогрессом в технологии создания приемных устройств диапазона ММ волн, наблюдающемся в последние 15 – 20 лет. Новые технологии позволили изготавливать компактные двумерные приемные матрицы, содержащие более тысячи приемных каналов, и на их основе создавать действующие в реальном времени средства пассивного радиовидения, подобные традиционным системам тепловидения диапазона инфракрасных (ИК) волн. Известно, что в отличие от волн видимого и ИК диапазонов ММ волны существенно меньше затухают в облаках, туманах, дымах и пыли, что предопределяет перспективность практического применения ММ средств пассивного радиовидения В целях развития метода пассивного радиовидения актуальными являются исследования, связанные с расширением его возможностей за счет использования поляризационного приема, и разработка методов идентификации земных покровов в диапазоне ММ волн. Пространство идентификационных признаков могут составлять поляризационные коэффициенты излучения или их комбинации. Общепринятая процедура определения коэффициента излучения покровов в натурных условиях основана на абсолютных измерениях их термодинамической температуры, суммарной (кажущейся) температуры излучения и ее атмосферной составляющей. Разработка новых методов относительных измерений характеристик собственного излучения земных покровов в натурных условиях исключает необходимость проведения абсолютных измерений. Особое значение для решения задач пассивной радиолокации имеют прогнозирование радиотепловых контрастов объектов и земных покровов, необходимое для выбора оптимальных условий наблюдения и для разработки требований к приемной аппаратуре. В свете этого практический интерес представляет обобщенный анализ энергетики и устойчивости радиотепловых контрастов земных покровов к вариациям интенсивности нисходящего излучения атмосферы. Участки земной поверхности могут отличаться индикатрисами рассеяния вследствие неровностей их поверхности и (или) объемных неоднородностей. Поскольку вклад нисходящего излучения атмосферы в интенсивность принимаемого излучения покровов зависит от их индикатрис рассеяния, то возникает необходимость исследования зависимости контрастов от формы этих индикатрис рассеяния. ^
^
Исследования, выполненные в рамках данной работы, соответствуют специальности 01.04.03 - «радиофизика», раздел 7 «Разработка теоретических и технических основ новых методов и систем связи, навигационных, активных и пассивных локационных систем, основанных на использовании излучения и приема волновых полей различной физической природы и освоении новых частотных диапазонов». ^
^ обоснована использованием адекватных радиофизических моделей отражения и излучения рассмотренных сред, апробированных методов экспериментального исследования, сопоставлением расчетных и экспериментальных данных. ^
^ полученных результатов состоит в том, что в «окнах прозрачности» диапазона ММ волн они
^ Все теоретические исследования и разработки, представленные в диссертации, выполнены автором самостоятельно. Исключение составляют расчет температуры подсвечивающего излучения атмосферы для статистически неровных поверхностей с гауссовым распределением тангенса угла наклонов неровностей, которые выполнены совместно с к.т.н. А.Г. Павельевым и к.т.н. А.Ю. Зражевским. ^ Результаты, представленные в диссертации, обсуждались и докладывались на научных семинарах Фрязинского филиала Института радиотехники и электроники им. В.А.Котельникова РАН, советско-финском семинаре (1988 г., г. Москва), 17-ти отечественных и 4-х международных научно-технических конференциях. Кроме того, была прочитана лекция на 4-ой Всесоюзной школе по распространению ММ и СБММ волн в атмосфере (Н. Новгород, 1991). Публикации. По теме диссертации опубликованы 44 работы, в числе которых 3 коллективные монографии, 5 статей в журналах, рекомендованных для публикации ВАК РФ, 1 статья в сборнике научных трудов издательства «Наука», 1 препринт, 29 трудов и тезисов докладов отечественных и международных конференций, 5 авторских свидетельств. Список основных работ, опубликованных по теме диссертации, приведен ниже. ^ Диссертация состоит из введения, пяти глав, заключения и списка литературы. Объем работы составляет 157 страниц текста, включая 64 рисунка, 5 таблиц и список из 153 цитируемых литературных источников. ^ В первой главе приводится обзор результатов исследования радиотепловых контрастов земных покровов в диапазоне ММ волн и обосновывается необходимость решения поставленных задач. Глава 2 посвящена теоретическому анализу влияния атмосферы на радиотепловые контрасты земных покровов. Рассчитаны ошибки яркостной температуры, вычисленной в приближении Релея-Джинса. Показано, что в случае слабоизлучающих сред (коэффициент излучения ![]() ![]() ![]() Рассмотрена схема источников возникновения вариаций радиотепловых контрастов земных покровов, разработанная на основе выделения двух основных групп факторов, приводящих к вариациям. К первой группе относятся факторы, влияющие на величину собственного яркостного контраста покровов, а именно: термодинамический контраст, объемные плотность и влажность, объемные неоднородности и неровности поверхности. Вторая группа факторов ответственна за изменение температуры подсвечивающего излучения атмосферы. Помимо объемного и поверхностного рассеяния, видоизменяющих формы индикатрис рассеяния покровов, эта группа включает в себя природные факторы, относящиеся только к атмосфере: интегральное содержание водяного пара, облачность и осадки. В диссертации рассматривается влияние каждого из вышеперечисленных факторов. Отмечается, что изменение интенсивности нисходящего излучения атмосферы влечет за собой изменение одновременно всех контрастов земной поверхности. В приближении Релея-Джинса с использованием фотометрического подхода получено основное соотношение, связывающее температуру излучения Т однородного изотермичного покрова при термодинамической температуре Тп и угловой яркостный спектр ![]() ![]() где æ – коэффициент излучения, а ![]() - интегральный коэффициент (альбедо) отражения покрова ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() В целях количественного описания изменчивости контрастов между покровами, вызванной вариациями интенсивности нисходящего излучения атмосферы, введена новая величина - коэффициент устойчивости qк контраста ![]() ![]() г ![]() ![]() ![]() ![]() ![]() ![]() ![]() В главе 3 описываются измерительные комплексы и методики, с помощью которых выполнены экспериментальные исследования излучательных свойств земных покровов и влияния атмосферы на их радиотепловые контрасты на длинах волн 2,15 мм, 3,2 и 8 мм. Практически все абсолютные радиометрические измерения выполнены автором с помощью известного метода «искусственной» Луны, основанного на выполнении следующих двух условий: неизменная ориентация антенны в пространстве и равенство угловых размеров эталонов и исследуемого образца. Рассматриваются результаты измерений годового цикла яркостной температуры чистой атмосферы, поляризационные индикатрисы излучения травяного покрова, песчаного и глинистого грунтов, бетонной поверхности, искусственного водоема и поверхности Киевского водохранилища. Экспериментально изучены эффекты влияния объемной плотности и влажности грунтов, высоты речного волнения и суточный ход вариаций контрастов. Моделирование и исследование экспериментальных зависимостей коэффициентов пропускания и отражения от структуры и толщины слоя сухого снежного покрова показали, что при укрупнении кристаллов температура излучения полубесконечного слоя снега стремится к некоторому предельному (экстремальному) значению. Помимо таких величин, как термодинамическая температура снега и ![]() ![]() ^ d.
оценки толщины эффективно излучающего слоя снега с различной структурой на длинах волн 2,15; 3,2 и 8 мм, определенной из уравнения: R(h ![]() Установлено, что спектры R0(1/λ) самосформировавшегося снежного покрова в диапазоне ММ волн существенно определяются структурой снега, причем в случае крупнозернистого снега R0 слабо зависит от длины волны. Это означает, что диапазон ММ волн является областью экстремального рассеяния в крупнозернистом снеге. Отмечено также, что изменение объемной плотности сухого зернистого снега в интервале 0,2...0,4 при сохранении характерных размеров его кристаллов не оказывает заметного влияния на его излучательные характеристики. Показано, что существует взаимосвязь между поляризационными характеристиками собственного излучения сухого и тающего снега. При размерах кристаллов снега, соизмеримых с длиной волны, излучение сухого снега становится практически, неполяризованным, по крайней мере, на интервале вертикальных углов приема до 700. Анализируются экспериментальные данные по устойчивости контрастов в условиях чистой и облачной атмосферы. Устойчивость контрастов плоских поверхностей оценивалась экспериментально для волн 2,15; 3,2 и 8 мм в условиях разрывной кучевой, кучево-дождевой и сплошной облачности, включавшей случай многоярусных облаков. Установлено, что устойчивость контрастов плоских поверхностей при λ = 8 мм в 3 – 4 раза выше, чем при λ = 2,15 мм и λ = 3,2 мм. Кроме того, при облачной атмосфере выполнены синхронные измерения текущего коэффициента устойчивости плоских и сильно рассеивающих поверхностей. Из них следует, что контрасты между сильно рассеивающими поверхностями значительно более устойчивы, чем в случае плоских поверхностей. На длинах волн 2,15 и 8 мм получены синхронные диаграммы изменения температуры излучения ряда покровов и металлического листа при прохождении зоны дождя различной интенсивности. Установлено, что выпадение дождя может приводить к полному исчезновению (с точностью не хуже 1 – 2 К) радиотепловых контрастов, при этом на λ = 2,15 мм контрасты исчезают при интенсивности дождя I 5 мм/ч, а на λ = 8 мм - при 15 мм/ч. Разработан новый способ измерения температуры подсвечивающего излучения атмосферы и коэффициента излучения покровов с неизвестными индикатрисами рассеяния. Суть способа в том, что, по крайней мере, при двух значениях полного вертикального поглощения безоблачной атмосферы измеряют температуру излучения и термодинамическую температуру исследуемого естественного покрова, и по результатам измерений определяют эквивалентный угол атмосферы и искомый коэффициент излучения. Эквивалентный угол атмосферы - это зенитный угол, при котором яркостная температура атмосферы численно равна температуре ее излучения, подсвечивающего исследуемый покров. В результате реализации разработанного способа измерена температура ![]() ^ посвящена развитию метода пассивного поляризационного радиовидения и результатам исследования влияния атмосферы на поляризационные радиотепловые изображения покровов и объектов. Из проведенного физического обоснования метода поляризационного пассивного радиовидения следует, что разностно-поляризационные изображения содержат информацию о диэлектрических свойствах и геометрических особенностях поверхности объекта. Экспериментально показано, что, например, только поляризационное радиотепловидение позволяет обнаруживать асфальто-бетонную дорогу при угле приема 750 как в летних, так и в зимних условиях. В качестве подтверждения этого на рис. 2 – 3 показаны фотографии (а), радиоизображения при горизонтальной (б) и вертикальной (в) поляризациях ![]() ![]() ![]() а) б) в) Рис. 2. ![]() а) б) в) г) Рис. 3. и разностно-поляризационное изображение (г) участка местности в летних и зимних условиях. Расширенные возможности поляризационного радиотепловидения продемонстрированы также на примере автотракторной техники с металлическими, брезентовыми и деревянными элементами кузовов и бортовой обшивки. Качество изображения объектов может оцениваться количественно посредством вероятности их правильного опознавания, которая, в свою очередь, определяется количеством разрешаемых строк на критический размер объектов и отношением сигнал/шум. Количество разрешаемых строк на критический размер объектов определяется соотношением реализуемого углового разрешения системы радиовидения и угловым размером объектов. Отношение сигнал/шум зависит как от чувствительности приемной системы, так и от условий наблюдения. Показано, что качество радиоизображений при λ = 3мм существенно снижается только в условиях мощной сплошной облачности ( с водозапасом не меньше 2,5 кг м-2), и, особенно, в дождях. В результате выполненного теоретического и экспериментального изучения возможностей тепловидения в диапазонах ММ и ИК волн установлено, что на ММ волнах яркостная структура собственного излучения различных тел формируется, главным образом, за счет структурных контрастов их коэффициента излучения (отражения). В диапазоне ИК волн на яркостную структуру объектов существенное влияние оказывают термодинамические контрасты. Подтверждено экспериментальными данными, что вследствие этого тепловые изображения объектов на длине волны 3 мм имеют более высокое сходство с их черно-белыми фотографиями, чем ИК тепловые изображения в диапазоне длин волн 8...10 мкм. При сплошной мощной облачности, в условиях отсутствия структурных термодинамических контрастов между излучающими объектами и фоном ИК тепловые изображения объектов практически не имеют выраженной яркостной структуры, вследствие чего объекты не обнаруживаются. В тех же условиях тепловые изображения в ММ диапазоне имеют достаточно устойчивую яркостную структуру. В пятой главе описываются разработанные методы измерений параметров собственного излучения земной поверхности, исключающие необходимость абсолютных радиометрических измерений, и анализируются возможности идентификации земных покровов в диапазоне ММ волн. Метод измерения коэффициента излучения æ исследуемых образцов основан на регистрации выходного напряжения радиометра и при последовательном приеме излучения исследуемого образца и двух эталонов с известными коэффициентами излучения æ1 и æ2, при этом эталоны и образец должны находиться во взаимном термодинамическом равновесии и иметь равные угловые размеры и ![]() ![]() где и1, и2 – выходные напряжения радиометра, соответствующие интенсивностям излучения первого и второго эталонов. При одновременном приеме излучения на двух ортогональных поляризациях появляются возможности относительных измерений с использованием только одного эталона. В качестве такого эталона можно использовать, например, сектор атмосферы в зеркальном направлении в плоскости падения (зондирования) с яркостной температурой, численно равной температуре подсвечивающего покров излучения ![]() ![]() где индексы «h» и «v» относятся соответственно к горизонтальной и вертикальной поляризациям излучения покрова, «ЧТ» и «а» – соответственно к излучению ЧТ и атмосферы. Разработанные методы реализованы как при наземных исследованиях, так и при обработке результатов поляризационных измерений с борта самолета. Из выполненного анализа диэлектрических свойств различных сред следует возможность идентификации бетонных взлетно-посадочных полос (ВПП) и водных поверхностей на фоне открытой и заснеженной земной поверхности при использовании разработанных методов измерения характеристик их собственного излучения в «окнах прозрачности» диапазона ММ волн. Разработана методика идентификации бетонных ВПП и водных поверхностей средствами пассивной радиолокации с борта низколетящего самолета, которая сводится к совокупности следующих операций: - одновременно принимаются и регистрируются калиброванным радиометром интенсивности теплового излучения земной поверхности на вертикальной и горизонтальной поляризациях и атмосферы на произвольной поляризации при угле наблюдения 550; - осуществляется обнаружение и разделение излучения, соответствующего, с одной стороны, подстилающей фоновой поверхности (растительности, почво-грунтам, снежному покрову и т.п.), с другой стороны, ВПП и водным поверхностям. В качестве критерия используются следующие условия: 1) если Ра >0,75, то излучение фоновое, 2) если Ра < 0,75, то излучение относится к бетону или водной поверхности. - обрабатываются и анализируются текущие реализации откликов (выходных напряжений) радиометра на интенсивность теплового излучения фоновой поверхности на вертикальной поляризации. Цель: выделение однородных реализаций на отрезке времени Δt > Δt0 (интервалу времени Δt0 соответствует пространственный масштаб от 100 м), вычисление средних значений <uv>,<Тv> и нахождение опорных максимальных значений <uv мах>,<Тv мах>; - обрабатывается и анализируется текущая реализация отклика радиометра на интенсивность теплового излучения атмосферы. Цель: на основе временной зависимости яркостной температуры определить состояние атмосферы (ясно, облачно), что необходимо для принятия правильного решения; - в зависимости от состояния фоновой поверхности идентификация ВПП и водных поверхностей осуществляется либо в плоскости ( ![]() В качестве примера реализации методики разработан соответствующий алгоритм для λ = 3 мм, который демонстрирует возможность автоматической идентификации ВПП и водных поверхностей средствами пассивной радиолокации в условиях чистой атмосферы. Предложенный алгоритм исключает идентификацию при неблагоприятных метеоусловиях в виде облачности и дождей. В Заключении сформулированы следующие основные результаты работы, полученные для атмосферных «окон прозрачности» в диапазоне ММ волн:
^
|