скачать![]() «УТВЕРЖДАЮ» Ректор университета _________________А.В. Лагерев «________»_____________2009 г. Информационные технологии Проектирование систем с использованием SADT-методологии. Методические указания к выполнению курсовой работы для студентов всех форм обучения специальности 230201 – «Информационные системы и технологии» Брянск 2009 г. УДК 004.43 Проектирование систем с использованием SADT-методологии. Методические указания к выполнению курсовой работы для студентов дневной формы обучения специальности 230201 – «Информационные системы и технологии».– Брянск: БГТУ, 2009. – 20 с. Разработали: Ю.М. Казаков, к.т.н., доцент Р.А. Филиппов, асс Рекомендовано кафедрой «Компьютерные технологии и системы» БГТУ (протокол №__ от ___.___.09 г.) Научный редактор Ю.М.Рытов Редактор издательства Т.И.Королева Компьютерный набор Ю.М.Казаков Темплан 2009 г., п. ![]() Подписано в печать Формат 60 х 84 1/16. Бумага офсетная. Офсетная печать. Усл. печ. л. 5,98. Уч. – изд. л. 5,23. Тираж 100 экз. Заказ. Бесплатно ![]() Брянский государственный технический университет 241035, Брянск, бульвар 50-летия Октября, 7, тел. 54-90-49 Лаборатория оперативной полиграфии БГТУ, ул. Институтская, 16 ВВЕДЕНИЕНа современном этапе развития народного хозяйства Европы, Азии и Америки вводятся новые правила стандартизации производства и продукции. Для экспортирования какой-либо продукции из России в зарубежные страны теперь необходимо сертификация всего производства на основе стандартов ISO9000, ISO14000, ISO15000. Эти стандарты определяют порядок сертификации производства, выполнения определенных правил и требований к выпуску, эксплуатации и обслуживания изготовленной продукции. Требования и правила описания функционирования производства и систем, производственных процессов, распределения ресурсов строятся на использовании нотаций IDEF0, IDEF1x, IDEF3, DPD, IDEF5 на основе методологии структурного анализа SADT. Использование структурного анализа к разработке функциональных моделей различных процессов и объектов позволяет более качественно не только оформить, но и воспринять декомпозицию системы. Декомпозиция системы заключается в ее разбивании на функциональные подсистемы, которые делятся на подфункции, подразделяемые на задачи и так далее до конкретных процедур или элементарных составляющих системы (функции). В описании этих моделей, процессов и объектов используют следующие методологии: IDEF0 (функциональное моделирование систем), IDEF1х (концептуальное моделирование баз данных), IDEF3х (построение систем оценки качества работы объекта; графическое описание потока процессов, взаимодействия процессов и объектов, которые изменяются этими процессами), которые в совокупности реализуют диаграммы SADT (модели и соответствующие функциональные диаграммы), DFD (диаграммы потоков данных), ERD (диаграммы «сущность-связь»). Одним из этапов сертификации производства является разработка математических моделей технологических, технических или организационных процессов изготовления изделий. Необходимость постоянного сокращения сроков разработки информационных систем и повышения качества в общем цикле разработки информационных ставит задачу поиска путей решения рассматриваемой проблемы. Одним из таких путей является разработка и широкомасштабное использование CASE-технологий. Курсовая работа позволит студентам более полно и качественно изучить дисциплину "Информационные технологии" и с особенностями построения систем на основе нотаций IDEF0, IDEF3, DPD. ^ Целью работы является изучение принципов разработки и формализации предметной области в виде комплексной модели (IDEF0, IDEF3, DFD) для построения информационных управляющих систем. В курсовой работе студенты специальности «Информационные технологии и системы» на основе знаний по уже изученным дисциплинам должны построить комплексную модель функционирования системы на основе нотаций IDEF0, IDEF3, DPD. Результаты, полученные при выполнении работы, могут быть использованы студентами в курсовом и дипломном проектировании. ^ Нотация IDEF0 (более известная как методология SADT-Structure Analysis and Design Technique) предназначена для представления функций системы и анализа требований к системам. В терминах IDEF0 система представляется в виде комбинации блоков и дуг. Блоки используются для представления функций системы и сопровождаются текстами на естественном языке. Кроме функциональных блоков другим ключевым элементом методологии является дуга. Дуги представляют множества объектов (как физических, так и информационных) или действия, которые образуют связи между функциональными блоками. Место соединения дуги с блоком определяет тип интерфейса. Управляющие выполнением функции данные входят в блок сверху, в то время как информация, которая подвергается воздействию функции, показана с левой стороны блока; результаты выхода показаны с правой стороны. Механизм (человек или автоматизированная система), который осуществляет функцию, представляется дугой, входящей в блок снизу (рис. 1). ![]() Рис. 1. Функциональная модель процесса В основе методологии IDEF0 лежат следующие правила:
Нотация DFD – моделирование потоков данных (процессов) – основа методологии Gane/Sarson, в соответствии с которой модель системы определяется как иерархия диаграмм потоков данных (ДПД или DFD), описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи объекту или субъекту. Контекстные диаграммы иерархии определяют основные процессы или подсистемы системы с внешними входами и выходами. Они детализируются при помощи диаграмм-потомков. Декомпозиция ведется до тех пор, пока не будет достигнут такой уровень декомпозиции, на котором процессы становятся элементарными и детализировать их далее невозможно. Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те в свою очередь преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации. Внешняя сущность представляет собой объект или субъект и является источником или приемником информации. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой системы. Внешняя сущность обозначается квадратом (рис. 2). ![]() Рис. 2. Внешняя сущность При построении модели системы она может быть представлена одной контекстной диаграммой в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем. Подсистема (или система) изображается следующим образом (рис. 3). Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями. ![]() Рис. 3. Подсистема Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Процесс на диаграмме потоков данных изображается, как показано на рис. 4. ![]() Рис. 4. Процесс Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже (например: ввести сведения о программе, выдать отчет о работе электронной сети, проверить работоспособность компьютера). Информация в поле физической реализации указывается, какой объект или субъект выполняет данный процесс. Накопитель данных представляет собой абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Накопитель данных может быть реализован физически в виде ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных показан на рис.5. Накопитель данных идентифицируется буквой "D" и/или произвольным числом. Описание хранящихся в нем данных должно быть увязано с информационной моделью. ![]() Рис. 5. Накопитель данных Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Поток данных на диаграмме изображается линией со стрелкой, которая показывает направление потока (рис. 6). Каждый поток данных имеет имя, отражающее его содержание. ![]() Рис. 6. Поток данных Стандарт IDEF3 это методология описания процессов, рассматривающая последовательность выполнения и причинно-следственные связи между ситуациями и событиями для структурного представления знаний о системе, и описания изменения состояний объектов, являющихся составной частью описываемых процессов. Нотация IDEF3 использует категорию Сценариев (Scenario) для упрощения структуры описаний сложного многоэтапного процесса. IDEF3 осуществляет реализацию информации о процессе:
Существует два типа диаграмм в стандарте IDEF3: диаграммы описания последовательности этапов процесса (PFDD), диаграммы состояния объекта и его изменений в процессе (OSTN). На рис. 7 изображена диаграмма PFDD, показывающая процессы создания программного обеспечения. Прямоугольники на диаграмме PFDD называются функциональными элементами или элементами поведения (UOB) и обозначают событие, стадию процесса или принятие решения (рис. 8). Каждый UOB имеет конкретное имя (функция, процесс, действие, акт, событие, сценарий, процедура, операция, решение), отображаемое в глагольном наклонении и уникальный номер. В правом нижнем углу UOB элемента (рис. 8) располагается ссылка, которая используется на какие-либо элементы функциональной модели IDEF0 или на указания отделы, конкретных исполнителей, выполняющие конкретный процесс. ![]() Рис. 7. PFDD диаграмма создания электронной программы ![]() Рис. 8. Функциональный элемент (UOB) Стрелки или линии являются отображением хода выполнения операций между UOB-блоками в ходе процесса (рис. 9). ![]() а) б) в) Рис. 9. Стрелки для отображения хода выполнения операции Линии в нотации IDEF3 бывают следующих видов:
Связи старшинства устанавливают временные отношения между элементами диаграммы. При этом первый элемент должен завершиться до того, как начнется выполняться следующий (рис. 10, а). Использование связи отношения (рис. 10, б) обозначает, что между взаимодействующими элементами диаграммы описания процесса существуют отношения неопределенного вида. Связи потоков объектов (рис. 10, в) указывают, что между UOB элементами происходит передача объекта (ов), при этом первый элемент UOB (А) должен завершиться перед выполнением операции следующим элементом (В). ![]() а) б) в) Рис. 10. Семантика связей Объект, обозначенный J1 (рис. 7) - называется перекрестком (Junction) со своим определенным идентификационным номером. Перекрестки используются для представления логики взаимодействия стрелок (потоков) при слиянии и разветвлении или для отображения множества событий, которые могут или должны быть завершены перед началом следующей работы. Различают перекрестки для слияния (Fan-in Junction) и разветвления (Fan-out Junction) стрелок. Перекресток не может использоваться одновременно для слияния и для разветвления. При вводе перекрестка в диаграмму необходимо указать тип перекрестка. Типы перекрестков представлены в таблице. Таблица Описание типов перекрестков
Сценарий, отображаемый на диаграмме (рис. 7), можно описать в следующем виде. Программный код, подготовленный к компиляции, компилируется в компиляторе программ. В процессе компиляции создается исполнительный файл программы. После этого, производится тестирование программы, после которой начинается этап проверки программного продукта. Если тест подтверждает недостаточное качество программы, то она заново пропускается через этап создания программного кода. Если программа успешно проходит контроль качества, то она отправляется пользователю. Каждый функциональный блок UOB может иметь последовательность декомпозиций. Номера UOB дочерних диаграмм имеют сквозную нумерацию, т.е., если родительский UOB имеет номер "1", то блоки UOB на его декомпозиции будут соответственно иметь номера "1.1", "1.2" и т.д. Если диаграммы PFDD технологический процесс "С точки зрения наблюдателя", то другой класс диаграмм IDEF3 OSTN позволяет рассматривать тот же самый процесс "С точки зрения объекта". На рис. 10 представлено отображение процесса окраски с точки зрения OSTN диаграммы. Состояния объекта (в нашем случае детали) и изменение состояния являются ключевыми понятиями OSTN диаграммы. Состояния объекта отображаются окружностями, а их изменения направленными линиями. Каждая линия имеет ссылку на соответствующий функциональный блок UOB, в результате которого произошло отображаемое ей изменение состояния объекта. ![]() Рис. 11. Пример OSTN диаграммы ^ Работа должна включать:
Задание на курсовую работу выдается на бланке (прил. 2). ^ Курсовая работа выполняется в следующей последовательности:
^ Отчет по курсовой работе представляется в виде пояснительной записки объемом 20-30 страниц и 2-3 листов графического материала, иллюстрирующего комплексную модель функционирования системы. Пояснительная записка должна содержать следующие пункты:
Отчеты по диаграммам должны содержать свойства; диаграмм; связей; данных. Список используемой литературы должен содержать не только учебные пособия и учебники, но и современную периодическую литературу – технические журналы. Ссылки на используемую литературу заключаются в квадратные скобки и записывается в алфавитном порядке. Список литературы оформляется в следующем порядке: номер по пункту, фамилия и инициалы автора, название литературного источника, место и название издательства, год издания и число страниц. Таблица Примерные задания на курсовую работу
^
Приложение 1Министерство образования и науки РФ Брянский государственный технический университет Кафедра «Компьютерные технологии и системы» Тема курсовой работы: Документы текстовые Всего листов Руководитель « » 200 г. Студент « » 200 г. Брянск 2009 Приложение 2Задание на курсовую работу по дисциплине «Информационные технологии» Студент Группа Тема курсовой работы: Дата выдачи задания « » 200 г. График выполнения курсовой работы
начало « » 200 окончание « » 200 г.
начало « » 200 окончание « » 200 г.
начало « » 200 окончание « » 200 г.
начало « » 200 окончание « » 200 г. Дата сдачи задания « » 200 г. Заведующий кафедрой «Компьютерные технологии и системы» д.т.н., профессор В.И. Аверченков (подпись) Руководитель курсовой работы (подпись) Оглавление ВВЕДЕНИЕ 3 1. ЦЕЛЬ РАБОТЫ 4 2. Основные теоретические положения 4 3. Тематика курсовой работы 13 4. Последовательность выполнения работы 14 5. Содержание и объем работы 14 Список рекомендуемой литературы 18 Приложение 1 19 Приложение 2 20
|