скачать 81.2 Англ – 92 № 3789 М545 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ![]() Computer Engineering(English for Special Purposes) МЕТОДИЧЕСКАЯ РАЗРАБОТКАпо формированию иноязычной профессиональной компетенции студентов-бакалавров технических специальностей(английский язык)Таганрог 2005 ББК 81.2 Англ – 92 + 74.580я73 Составитель А. С. Андриенко Под общей редакцией к.п.н., доц. Г. А. Краснощековой Computer Engineering (English for Special Purposes): Методическая разработка. - Таганрог: Изд-во ТРТУ, 2005. -112с. Данная методическая разработка предназначена для студентов дневного отделения технических специальностей факультетов автоматики и вычислительной техники, информационной безопасности и радиотехнического факультета, окончивших первый (базовый) образовательный уровень и продолжающих изучение английского языка на втором образовательном уровне (бакалавриат) в V и VI семестрах. Разработка включает в себя аутентичный текстовый материал общенаучного и технического характера для аудиторной и самостоятельной работы с целью формирования иноязычной профессиональной компетенции студентов-бакалавров. Рецензенты: Е. А. Макарова, канд. пед. наук, доцент каф. иностранных языков и русской словесности ТИУиЭ; О. Г. Мельник, канд. фил. наук, доцент каф. иностранных языков ТРТУ; В. Т. Олехнович, ст. преподаватель каф. иностранных языков ТРТУ. Contents Введение 8 PART I 14 TEXT 1 14 What is Engineering? 14 TEXT 2 15 Modern Engineering Trends 16 TEXT 3 17 Fields of Engineering 18 TEXT 4 31 Automation 31 Automation in Industry 33 TEXT 5 34 Types of Automation 35 TEXT 6 37 Robots in Manufacturing 38 TEXT 7 40 Computers 40 TEXT 8 42 What is a Computer? 42 TEXT 9 45 Hardware 46 TEXT 10 51 Types of Software 52 TEXT 11 55 Operating Systems 56 PART II 60 TEXT 1 60 What is the Internet? 60 TEXT 2 64 What Is It? 64 TEXT 3 65 Services and Resources of the Internet 65 TEXT 4 66 Newsgroups 67 TEXT 5 67 File Sharing and Topic Searching 67 TEXT 6 68 The World Wide Web 68 TEXT 7 68 Surfing the Net 69 TEXT 8 69 What Is "Chat"? 69 TEXT 9 70 Security — Is Your Privacy Protected? 70 Part III 71 TEXT 1 71 Science 71 TEXT 2 72 Science and Technology 73 TEXT 3 74 Miniature Radios and computers 74 Pocket Radios 74 Pocket-size TV Camera 74 Molecular Computer 75 Miniature Computer is size of Bread Loaf 75 TEXT 4 75 What is a Microprocessor? 76 Part I 76 TEXT 5 77 What is a Microprocessor? 78 Part II 78 TEXT 6 80 Classification of Microprocessors 80 TEXT 7 82 Uses and Applications of Microprocessors 82 TEXT 8 84 The Types of Memory 84 TEXT 9 85 The Storage Medium 86 TEXT 10 87 Disk Buffers 87 TEXT 11 88 Static Memory Devices: Organization and Characteristics 88 Part IV. Supplementary Reading Section 89 TEXT 1 89 A will to Learn 90 TEXT 2 91 Argument 92 TEXT 3 93 Preparation for a Discussion 93 TEXT 4 94 Round-table Discussion 95 TEXT 5 95 How to Read in English 96 Part V. Phrases for Scientific Communication 96 Thinking about your Presentation 97 I. Introductory Paper Speech Patterns 97 II. List of Phrases to Write an Introduction. 97 III. Speech Patterns for the Body of the Paper 99 IV. Closing Paper Speech Patterns 99 V. Formulas for Scientific Communication. 100 Part VI. Supplementary Terminology Section 101 Введение Основной целью данной разработки является совершенствование навыков профессионального общения с опорой на предложенный текстовый материал научно-технической тематики. Степень сложности включенных в пособие текстов предполагает наличие базового образовательного уровня сформированности коммуникативной компетенции студентов, что позволит использовать различные виды чтения: от информационно-поискового до углубленного, адекватно предложенным заданиям. Методическая разработка рассчитана на 50 академических часов: по 25 часов в V и VI семестрах. Общий объем учебной нагрузки составляет 18 часов аудиторных занятий в семестре (1 час в две недели). В связи с этим возрастает объем самостоятельной работы студентов, которую необходимо планировать под контролем и при непосредственном участии преподавателя в этом процессе: составить ряд методических указаний для конкретной группы, дать рекомендации для работы с текстовым материалом, учебными пособиями, грамматическими справочниками, техническими словарями, различными источниками информации. На III курсе необходимый уровень иноязычной профессиональной коммуникативной компетенции студентов формируется на занятиях по специальным техническим дисциплинам, поэтому следует находить такие формы работы, которые были бы адекватны профессионально значимым действиям и на занятиях по иностранному языку. Важным является отбор предложенного текстового материала преподавателем по направлению технической специальности группы и составление плана работы по соответствующей тематике, подбор материала для написания рефератов, докладов, проведения творческих обсуждений «круглого стола», диспутов, ролевых игр, банка творческих заданий с использованием различных информационных источников по соответствующим специальностям с учетом межпредметных связей, так как базовые учебные дисциплины изучаются параллельно. Так, исходя из уровня сформированности базовых компетенций для групп факультета автоматики и вычислительной техники, тексты из тематического блока “What is Engineering” могут быть отобраны по усмотрению преподавателя, например: чтение и обсуждение текстов “What is Engineering”, “Modern Engineering Trends”, “Fields of Engineering” и текста, соответствующего направлению специальности “Electronics” или “Computers”. В данном случае можно спланировать углубленное обсуждение текста по специальности с использованием всех видов и форм групповой, парной и индивидуальной работы в аудитории и дополнительного домашнего задания: выступление с докладами, написание рефератов, дополнительных сообщений. В пособие включены аутентичные текстовые материалы из газет, журналов, сети Интернет. Общенаучная тематика текстов отражает профессиональные интересы студентов. Содержание текстов учебного пособия имеет целью активизировать иноязычную деятельность студентов в процессе формирования профессиональной компетенции. Методическая разработка состоит из шести частей. В первой части даны тексты следующей тематики: блок текстов “What is Engineering”, два текста по проблеме “Automation” и тексты по теме “Computers”. Данные тексты предлагаются для обсуждения в V семестре. Во второй части текстовый материал подобран по проблеме “What is Internet?”. С проблематикой данных текстов студенты знакомятся в VI семестре. В третьей части даны тексты для дополнительного обсуждения студентами в аудитории или для самостоятельной работы по усмотрению преподавателя в зависимости от уровня сформированности коммуникативной компетенции группы. Тексты из тематических блоков “Fields of Engineering”, “Computers”, “Internet” могут быть использованы преподавателем для чтения и обсуждения в аудитории и предложены студентам для подготовки устных сообщений по обсуждаемой проблеме, докладов, диспутов «круглого стола». Каждый тематический текстовый раздел первых двух частей состоит из текста, словаря к тексту, вопросов на проверку понимания прочитанного, предтекстовых и послетекстовых заданий коммуникативной направленности. После текстов третьей части даны пояснения и дефиниции на английском языке. В четвертой части “Supplementary Reading Section” предложены тексты для дополнительного чтения следующей тематики: “How to Read in English”, “Preparation for a Group Discussion”, “Argument”, “Formulas for Scientific Communication” и др. с целью совершенствования навыков работы с общенаучным текстовым материалом. В пятой части «Phrases for Scientific Communication» и в шестой части «Supplementary Terminology Section» вниманию студентов представлена специальная терминология: название кафедр, специальностей и подразделений технического вуза на английском языке и дано объяснение понятий и сокращений, связанных с научной и учебной работой. После знакомства с текстами студентам сначала предлагается проконтролировать понимание прочитанного, ответив на вопросы, а затем передать основную идею текста в письменной форме или устно. Для самостоятельной работы студентам могут быть предложены задания следующего типа: написать сочинение, выразить свое мнение по обсуждаемой проблеме, подготовить выступление, небольшой по объему доклад. Повышению уровня мотивации студентов способствуют задания, активизирующие обсуждение проблемы в аудитории, позволяющие студенту выразить свое мнение по проблеме с опорой на фоновые знания и характеризующие общую компетенцию студента (эмпирические и академические знания), экзистенциальную компетенцию (личностные характеристики и взгляды) и уровень сформированности коммуникативной компетенции (языковой, речевой, социокультурной). Тематическая направленность всех частей пособия, содержащих тексты различной степени сложности, позволяет преподавателю систематизировать предложенный текстовый материал в структуре модульной программы курса в соответствии с уровнем сформированности базовых компетенций студентов, составить общий методический план и наметить индивидуальные образовательные траектории студентов. Студенту-бакалавру может быть предоставлена возможность проектировать свой «план действий» по изучению модульной программы курса в целом в соответствии с уровнем сформированности компетенций. В рамках модульной программы оценивание степени сформированности иноязычной профессиональной коммуникативной компетенции в соответствии с интегральной рейтинговой системой вуза определяется тремя уровнями владения языком:
Под уровнем владения языком понимается степень сформированности указанных компетенций, которые оцениваются с точки зрения эффективности процесса речевого общения, реализации способности осуществлять коммуникацию в различных ситуациях с учетом беглости речи, её гибкости, уместности использования языковых средств и речевого материала. Определение границ балльной оценки дается в соответствии с вышеуказанными уровнями сформированности коммуникативной и профессиональной компетенций студента на основе чтения текстов общенаучной тематики. Критерии и параметры оценивания: 1. Творческий уровень(свободное владение). 8 баллов: понимает практически любое устное или письменное сообщение, может составить связный текст, опираясь на несколько устных и письменных источников, излагает свой взгляд на основную проблему, анализирует преимущества и недостатки различных мнений. Говорит спонтанно с высоким темпом и высокой степенью точности. Может свободно участвовать в любом разговоре или дискуссии, логически построить и перефразировать свое высказывание, свободно и аргументировано излагать свою точку зрения, используя соответствующие языковые средства. 7 баллов: понимает объемные сложные тексты на различную тематику, говорит спонтанно в достаточно быстром темпе, почти не испытывая затруднений с подбором слов и выражений, гибко и эффективно использует язык при общении. Практически без усилий может создать логически выстроенное сообщение на предложенную тематику, демонстрируя достаточное владение моделями организации текста. Речь может быть замедлена только в случае сложной, малознакомой темы. ^ 6 баллов: понимает общее содержание текстов общенаучной тематики, говорит достаточно быстро и спонтанно с незначительными затруднениями в общении. Может демонстрировать колебания при отборе выражений или языковых конструкций, но продолжительных пауз в речи немного. Может делать четкие, подробные сообщения, подготовленные заранее, но не всегда может участвовать в беседе без предварительной подготовки. Может выражать мысли понятно, несмотря на то, что заметны паузы для поиска грамматических и лексических средств, особенно в высказываниях значительной протяженности. 5 баллов: понимает основные идеи текста, может составить не всегда связное сообщение, а также изложить и обосновать свое мнение с помощью словаря. Не может без предварительной подготовки участвовать в обсуждении. Речь относительно медленна, делает много пауз для поиска подходящего выражения, вариантов произношения менее знакомых слов, исправления ошибок. Может поддерживать краткий разговор, но понимает недостаточно, чтобы самостоятельно вести беседу. ^ Низкий уровень (Элементарное владение). 4 балла: понимает отдельные предложения, часто встречающиеся в тексте, очень короткие, простые тексты, может употребить в речи заученные конструкции. Обладает очень ограниченным запасом слов и словосочетаний. Может участвовать в несложном разговоре, если собеседник говорит медленно и отчетливо. Правильно употребляет некоторые простые структуры, но систематически делает элементарные ошибки. Может понятно выразить свою мысль очень короткими предложениями, иногда с предварительной подготовкой. Может с трудом поддерживать предельно краткий разговор. 3 балла: понимает и может употребить в речи знакомые и очень простые фразы и выражения в медленно и четко звучащей речи, испытывает существенные затруднения при определении основной идеи текста. Не может принимать участие в беседе, задавать простые вопросы по предложенной теме и отвечать на них. Обладает очень ограниченным запасом слов и словосочетаний, делает много пауз для поиска подходящего выражения. В заключение следует отметить, что понимание прочитанного материала – сложный, многоуровневый процесс, включающий анализ и систематизацию информативных сигналов. Высшим уровнем понимания научно-технического текста является осознание проблемы, её места в системе научно-технических проблем, связи с современностью, логическое применение фоновых знаний, определение индивидуально-личностного отношения и его реализация на уровне общения с использованием элементов научно-делового стиля. Использование проблемных и творческих заданий предопределяет не механическое запоминание научно-технической информации, а ее творческое осознание, что способствует повышению мотивации студентов в процессе изучения и практического использования иностранного языка на уровне профессионально-ориентированного общения. PART I TEXT 1 Pre-reading task
What is Engineering? Engineering is a term applied1 to the profession in which knowledge of the mathematical and natural sciences, gained2 by study, experience3, and practice, is applied to the efficient4 use of the materials and forces of nature. The term engineer properly denotes a person who has received professional training in pure and applied science, but is often loosely5 used to describe the operator of an engine, as in the terms locomotive engineer, marine engineer, or stationary engineer. In modern terminology these latter6 occupations are known as crafts or trades. Between the professional engineer and the craftsperson or tradesperson, however, are those individuals known as subprofessionals or paraprofessionals, who apply scientific and engineering skills to technical problems; typical of these are engineering aides7, technicians, inspectors, draftsmen8, and the like. Before the middle of the 18th century, large-scale9 construction work was usually placed in the hands of military engineers. Military engineering involved10 such work as the preparation of topographical maps, the location, design, and construction of roads and bridges; and the building efforts and docks; see Military Engineering below. In the 18th century, however, the term civil engineering came into use to describe engineering work that was performed by civilians for nonmilitary purposes. With the increasing-use of machinery in the 19th century, mechanical engineering was recognized as a separate branch of engineering, and later mining engineering was similarly recognized. The technical advances of the 19th century greatly broadened the field of engineering and introduced a large number of engineering specialties, and the rapidly changing demands of the socioeconomic environment in the 20th century have widened the scope11 even further. Vocabulary:
TEXT 2 Pre-reading task
Modern Engineering Trends Scientific methods of engineering are applied in several fields not connected directly to manufacture and construction. Modern engineering is characterized by the broad application of what is known as systems engineering principles. The systems approach is a methodology of decision-making in design, operation, or construction that adopts1 the formal process included in what is known as the scientific method; an interdisciplinary, or team, approach2, using specialists from not only the various engineering disciplines, but from legal3, social, aesthetic, and behavioral4 fields as well; a formal sequence5 of procedure employing the principles of operations research. Engineers in industry work not only with machines but also with people, to determine6, for example, how machines can be operated most efficiently by the workers. A small change in the location of the controls of a machine or of its position with relation to other machines or equipment, or a change in the muscular movements of the operator, often results in greatly increased production. This type of engineering work is called time-study engineering. Among various recent trends in the engineering profession, licensing and computerization are the most widespread7. Today, many engineers, like doctors and lawyers, are licensed, by the state. The trend8 in modern engineering offices is overwhelmingly toward computerization. Computers are increasingly used for solving complex problems as well as for handling, storing, and generating the enormous9 volume of data modern engineers must work with. The National Academy of Engineering, founded in 1964 as a private organization, sponsors engineering programs aimed at meeting national needs, encourages10 new research, and is concerned with the relationship of engineering to society. Vocabulary:
TEXT 3 Pre-reading task
Fields of Engineering The main branches of engineering are Aeronautical and Aerospace Engineering, Chemical Engineering, Civil Engineering, Electrical and Electronics Engineering, Electric Power and Machinery, Electronics, Communications and Control, Computers, Geological and Mining Engineering, Industrial or Management Engineering, Mechanical Engineering, Military Engineering, Naval or Marine Engineering, Nuclear Engineering, Safety Engineering, Sanitary Engineering, Modern Engineering Trends, the engineer who works in any of these fields usually requires a basic knowledge of the other engineering fields, because most engineering problems are complex and interrelated1. Thus a chemical engineer designing a plant for the electrolytic refining2 of metal ores3 must deal with the design of structures, machinery, and electrical devices, as well as with purely4 chemical problems. Besides the principal branches discussed below, engineering includes many more specialties than can be described here, such as acoustical engineering, architectural engineering automotive engineering, ceramic engineering, transportation engineering, and textile engineering. Vocabulary:
1) Aeronautical and Aerospace Engineering
Aeronautics deals with the whole field of design, manufacture, maintenance1, testing, and use of aircraft for both civilian2 and military purposes3. It involves the knowledge of structural design, propulsion4 engines, navigation, communication, and other related areas. Aerospace engineering is closely allied5 to aeronautics, but is concerned6 with the flight of vehicles in space, beyond7 the earth's atmosphere, and includes the study and development of rocket engines, artificial satellites, and spacecraft for the exploration of outer space. Vocabulary:
2) Chemical Engineering
This branch of engineering is concerned with the design, construction and management1 of factories in which the essential2 processes consist of chemical reactions. Because of the diversity3 of the materials dealt with4, the practice, for more than 50 years, has been to analyze chemical engineering problems in terms of fundamental unit operations or unit processes such as the grinding5 or pulverizing6 of solids7. It is the task of the chemical engineer to select and specify the design that will best meet the particular requirements of production and the most appropriate8 equipment for the new applications. Vocabulary:
3) Civil Engineering
Civil engineering is perhaps the broadest of the engineering fields, for it deals with the creation, improvement, and protection of the communal environment, providing1 facilities for living, industry and transportation, including large buildings, roads, bridges, canals, railroad lines, airports, water-supply systems, dams, irrigation, harbors2, docks, aqueducts3, tunnels, and other engineered constructions. The civil engineer must have a thorough knowledge4 of all types of surveying5, of the properties and mechanics of construction materials, the mechanics of structures and soils, and of hydraulics and fluid6 mechanics. Among the important subdivisions of the field are construction engineering, irrigation engineering, transportation engineering, soils and foundation engineering, geodetic engineering, hydraulic engineering, and coastal7 and ocean engineering. Vocabulary:
4) Electrical and Electronics Engineering
Electrical and electronics engineering is the largest and most diverse1 field of engineering. It is concerned with the development and design, application, and manufacture of systems and devices that use electric power and signals. Among the most important subjects in the field in the late 1980s are electric power and machinery, electronic circuits, control systems, computer design, superconductors, solid-state electronics, medical imaging systems, robotics, lasers, radar, consumer2 electronics, and fiber optics3. Despite4 its diversity, electrical engineering can be divided into four main branches: electric power and machinery, electronics, communications and control, and computers. Vocabulary:
5) Electric Power and Machinery
The field of electric power is concerned with the design and operation of systems for generating, transmitting, and distributing electric power. Engineers in this field have brought about several important developments since the late 1970s. One of these is the ability to transmit power at extremely high voltages2 in both the direct current3 (DC) and alternating current4 (AC) modes, reducing5 power losses6 proportionately. Another is the real-time control of power generation, transmission, and distribution, using computers to analyze the data fed back from the power system to a central station and thereby optimizing the efficiency of the system while it is in operation. A significant7 advance8 in the engineering of electric machinery has been the introduction of electronic controls that enable AC motors to run at variable speeds by adjusting9 the frequency of the current fed into them. DC motors have also been made to run more efficiently this way. Vocabulary:
6) Electronics
Electronic engineering deals with the research, design, integration, and application of circuits1 and devices used in the transmission and processing of information. Information is now generated, transmitted, received, and stored electronically on a scale2 unprecedented in history, and there is every indication that the explosive3 rate of growth in this field will continue unabated4. Electronic engineers design circuits to perform specific tasks, such as amplifying electronic signals, adding binary numbers, and demodulating radio signals to recover the information they carry. Circuits are also used to generate waveforms useful for synchronization and timing, as in television, and for correcting errors in digital information, as in telecommunications. Prior to5 the 1960s, circuits consisted of separate electronic devices—resistors, capacitors6, inductors, and vacuum tubes— assembled7 on a chassis8 and connected by wires to form a bulky package9. Since then, there has been a revolutionary trend toward integrating electronic devices on a single tiny chip of silicon or some other semiconductive material. The complex task of manufacturing these chips uses the most advanced technology; including computers, electron-beam lithography, micro-manipulators, ion-beam implantation, and ultra clean environments. Much of the research in electronics is directed toward creating even smaller chips, faster switching of components, and three-dimensional integrated circuits. Vocabulary:
7) Communications and Control
Engineers in this field are concerned with all aspects of electrical communications, from fundamental questions such as "What is information?" to the highly practical, such as design of telephone systems. In designing communication systems, engineers rely heavily on various branches of advanced mathematics, such as Fourier analysis, linear systems theory, linear algebra, complex variables, differential equations1, and probability2 theory. Control systems are used extensively in aircraft and ships, in military fire-control systems, in power transmission and distribution3, in automated manufacturing, and in robotics. Engineers have been working to bring about two revolutionary changes in the field of communications and control. Digital systems are replacing analog ones at the same time that fiber optics is superseding4 copper cables5. Digital systems offer far greater immunity6 to electrical noise. Fiber optics is likewise7 immune to interference8; they also have tremendous carrying capacity, and are extremely light and inexpensive to manufacture. Vocabulary:
8) Computers
Virtually unknown just a few decades ago, computer engineering is now among the most rapidly growing fields. The electronics of computers involve engineers in design and manufacture of memory systems, of central processing units, and of peripheral devices. Foremost1 among the avenues now being pursued2 is the design of Very Large Scale Integration (VLSI) and new computer architectures. The field of computer science is closely related to computer engineering; however, the task of making computers more "intelligent", through creation of sophisticated programs or development of higher level machine languages or other means, is generally regarded3 as being in the realm4 of computer science. One current trend in computer engineering is microminiaturization. Using VLSI, engineers continue to work to squeeze greater and greater numbers of circuit elements onto smaller and smaller chips. Another trend is toward increasing the speed of computer operations through use of parallel processors, superconducting materials, and the like. Vocabulary:
9) Geological and Mining Engineering
This branch of engineering includes activities related to the discovery and exploration of mineral deposits and the financing, construction, development, operation, recovery1, processing, purification2, and marketing of crude3 minerals and mineral products. The mining engineer is trained in historical geology, mineralogy, paleontology, and geophysics, and employs such tools as the seismograph and the magnetometer for the location of ore or petroleum deposits beneath4 the surface of the earth. The surveying and drawing of geological maps and sections is an important part of the work of the engineering geologist, who is also responsible for determining whether the geological structure of a given location is suitable for the building of such large structures as dams. Vocabulary:
10) Industrial or Management Engineering What does a modern engineer of this field deal with? This field deals with the efficient use of machinery, labor, and raw materials in industrial production. It is particularly important from the viewpoint of costs and economics of production and safety of human operators. 11) Mechanical Engineering
Engineers in this field design, test, build, and operate machinery of all types; they also work on a variety of manufactured goods and certain kinds of structures. The field is divided into machinery, mechanisms, materials, hydraulics, and pneumatics; and heat as applied to engines, work and energy, heating, ventilating, and air conditioning. The mechanical engineer, therefore, must be trained in mechanics, hydraulics, and thermodynamics and must be fully grounded in such subjects as metallurgy and machine design. Some mechanical engineers specialize in particular types of machines such as pumps or steam turbines. A mechanical engineer designs not only the machines that make products but the products themselves, and must design for both economy and efficiency. A typical example of the complexity of modern mechanical engineering is the design of an automobile, which entails1 not only the design of the engine that drives the car but also all its attendant2 accessories such as the steering3 and braking systems, the lighting system, the gearing4 by which the engine's power is delivered to the wheels, the controls, and the body, including such details as the door latches5 and the type of seat upholstery6. Vocabulary:
12) Military Engineering
This branch is concerned with the application of the engineering sciences to military purposes. It is generally divided into permanent land defense and field engineering. In war, army engineer battalions have been used to construct ports, harbors, depots1, and airfields. Military engineers also construct some public works, national monuments, and dams. Military engineering has become an increasingly specialized science, resulting in separate engineering subdisciplines such as ordnance2, which applies mechanical engineering to the development of guns and chemical engineering to the development of propellants, and electrical engineering to all problems of telegraph, telephone, radio, and other communication. Vocabulary:
13) Naval or Marine Engineering
Engineers who have the overall responsibility for designing and supervising1 construction of ships are called naval architects. The ships they design range in size from ocean-going supertankers as much as 1300 feet long to small tugboats2 that operate in rivers and bays. Regardless of size, ships must be designed and 'built so that they are safe, stable, strong, and fast enough to perform the type of work intended3 for them. To accomplish this, a naval architect must be familiar with the variety of techniques of modern shipbuilding, and must have a thorough grounding4 in applied sciences and mechanics that bear directly on how ships move through water. Marine engineering is a specialized branch of mechanical engineering devoted to the design and operation of systems, both mechanical and electrical, needed to propel a ship. In helping the naval architect design ships, the marine engineer must choose a propulsion unit, such as a diesel engine or geared steam turbine, that provides enough power to move the ship at the speed required, the engineer must take into consideration5 how much the engine and fuel bunkers will weigh and how much space they will occupy, as well as the projected costs of fuel and maintenance. Vocabulary:
14) Nuclear Engineering
This branch of engineering is concerned with the design and construction of nuclear reactors and devices, and the in which nuclear fission1 may find practical applications, such as the production of commercial power from the energy generated by nuclear reactions and the use of nuclear reactors for propulsion and of nuclear radiation to induce2 chemical and biological changes. In addition to designing nuclear reactors to yield3 specified amounts of power, nuclear engineers develop the special materials necessary to withstand4 the high temperatures and concentrated bombardment of nuclear particles that accompany nuclear fission and fusion5. Nuclear engineers also develop methods to shield people from the harmful radiation produced by nuclear reactions and to ensure6 safe storage and disposal7 of fissionable materials. Vocabulary:
15) Safety Engineering
This field of engineering has as its object the prevention of accidents. In recent years safety engineering has become a specialty adopted by individuals trained in other branches of engineering. Safety engineers develop methods and procedures to safeguard workers in hazardous1 occupations. They also assist in designing machinery, factories, ships, and roads, suggesting alterations and improvements to reduce the amount of accidents. In the design of machinery, for example, the safety engineer seeks to cover all moving parts or keep them from accidental contact with the operator, to put cutoff switches within reach of the operator, and to eliminate2 dangerous projecting parts. In designing roads the safety engineer seeks to avoid such hazards as sharp turns and blind intersections, known to result in traffic accidents. Many large industrial and construction firms, and insurance3 companies engaged in4 the field of workers compensation, today maintain safety engineering departments. Vocabulary:
16) Sanitary Engineering
This is a branch of civil engineering, but because of its great importance for a healthy environment, especially in dense urban population areas1, it has acquired the importance of a specialized field. It chiefly deals with problems involving water supply, treatment, and distribution; disposal of community wastes and reclamation2 of useful components of such wastes; control of pollution of surface waterways, groundwater's, and soils; milk and food sanitation3; housing and institutional sanitation; rural4 sanitation; insect and vermin5 control; control of atmospheric pollution; industrial hygiene, including control of light, noise, vibration, and toxic materials in work areas; and other fields concerned with the control of environmental factors affecting health. The methods used for supplying communities with pure water and for the disposal of sewage and other wastes are described separately. Vocabulary:
1. Are the following statements true or false?
2. Complete the following sentences with the appropriate words: civil engineering, aeronautics, diverse, circuits, chips, copper cable.
TEXT 4 Pre-reading task
Automation Automation1 is the system of manufacture performing certain tasks, previously2 done by people, by machines only. The sequences3 of operations are controlled automatically. The most familiar example of a highly automated system is an assembly plant4 for automobiles or other complex products. The term automation is also used to describe nonmanufacturing5 systems in which automatic devices6 can operate independently of human control. Such devices as automatic pilots, automatic telephone equipment and automated control systems are used to perform various operations much faster and better than could be done by people. Automated manufacturing had several steps in its development. Mechanization was the first step necessary in the development of automation. The simplification of work made it possible to design and build machines that resembled7 the motions of the worker. These specialized machines were motorized and they had better production efficiency8. Industrial robots, originally designed only to perform simple tasks in environments dangerous to human workers, are now widely used to transfer, manipulate, and position both light and heavy work pieces performing all the functions of a transfer machine. In the 1920s the automobile industry for the first time used an integrated system of production. This method of production was adopted by most car manufacturers and became known as Detroit automation. The feedback principle is used in all automatic-control mechanisms when machines have ability to correct themselves. The feedback principle has been used for centuries. An outstanding early example is the flyball governor9, invented in 1788 by James Watt to control the speed of the steam engine10. The common household thermostat11 is another example of a feedback device. Using feedback devices, machines can start, stop, speed up, slow down, count, inspect, test, compare, and measure. These operations are commonly applied to a wide variety of production operations. Computers have greatly facilitated12 the use of feedback in manufacturing processes. Computers gave rise to the development of numerically controlled machines. The motions of these machines are controlled by punched13 paper or magnetic tapes. In numerically controlled machining centres machine tools can perform several different machining operations. More recently, the introduction of microprocessors and computers have made possible the development of computer-aided14 design and computer-aided manufacture (CAD and CAM) technologies. When using these systems a designer draws a part and indicates its dimensions15 with the help of a mouse, light pen, or other input device. After the drawing has been completed the computer automatically gives the instructions that direct a machining centre to machine the part. Another development using automation are the flexible manufacturing systems (FMS). A computer in FMS can be used to monitor and control the operation of the whole factory. Automation has also had an influence on the areas of the economy other than manufacturing. Small computers are used in systems called word processors, which are rapidly becoming a standard part of the modern office. They are used to edit texts, to type letters and so on. Automation in Industry Many industries are highly automated or use automation technology in some part of their operation. In communications and especially in the telephone industry dialing and transmission are all done automatically. Railways are also controlled by automatic signaling devices, which have sensors that detect carriages passing a particular point. In this way the movement and location of trains can be monitored. Not all industries require the same degree of automation. Sales, agriculture, and some service industries are difficult to automate, though agriculture industry may become more mechanized, especially in the processing and packaging of foods. The automation technology in manufacturing and assembly is widely used in car and other consumer product industries. Nevertheless, each industry has its own concept of automation that answers its particular production needs. Vocabulary:
TEXT 5 Pre-reading task
Types of Automation Manufacturing is one of the most important application areas for automation technology. There are several types of automation in manufacturing. The examples of automated systems used in manufacturing are described below. 1. Fixed automation, sometimes called «hard automation» refers to automated machines in which the equipment1 configuration allows fixed sequence2 of processing operations. These machines are programmed by their design to make only certain processing operations. They are not easily changed over from one product style to another. This form of automation needs high initial3 investments4 and high production rates5. That is why it is suitable for products that are made in large volumes. Examples of fixed automation are machining transfer lines found in the automobile industry, automatic assembly machines6 and certain chemical processes. 2. ^ is a form of automation for producing products in large quantities7, ranging from several dozen to several thousand units at a time. For each new product the production equipment must be re-programmed and changed over. This reprogramming and changeover take a period of non-productive8 time. Production rates in programmable automation are generally lower than in fixed automation, because the equipment is designed to facilitate9 product changeover10 rather than for product specialization. A numerical-control machine-tool is a good example of programmable automation. The program is coded in computer memory for each different product style and the machine-tool is controlled by the computer program. 3. ^ is a kind of programmable automation. Programmable automation requires time to re-program and change over the production equipment for each series of new product. This is lost production time, which is expensive. In flexible automation the number of products is limited so that the changeover of the equipment can be done very quickly and automatically. The reprogramming of the equipment in flexible automation is done at a computer terminal without using the production equipment itself. Flexible automation allows a mixture of different products to be produced one right after another. Vocabulary:
TEXT 6 Pre-reading task
Robots in Manufacturing Today most robots are used in manufacturing operations. The applications of robots can be divided into three categories:
Material-handling is the transfer2 of material and loading and unloading of machines. Material-transfer applications require the robot to move materials or work parts from one to another. Many of these tasks are relatively simple: robots pick up3 parts from one conveyor and place them on another. Other transfer operations are more complex, such as placing parts in an arrangement4 that can be calculated by the robot. Machine loading and unloading operations utilize5 a robot to load and unload parts. This requires the robot to be equipped with a gripper6 that can grasp7 parts. Usually the gripper must be designed specifically for the particular part geometry. In robotic processing operations, the robot manipulates a tool to perform a process on the work part. Examples of such applications include spot welding8, continuous9 arc welding10 and spray painting11. Spot welding of automobile bodies is one of the most common applications of industrial robots. The robot positions a spot welder against the automobile panels and frames12 to join them. Arc welding is a continuous process in which robot moves the welding rod along the welding seam. Spray painting is the manipulation of a spray-painting gun13 over the surface of the object to be coated. Other operations in this category include grinding14 and polishing15 in which a rotating spindle16 serves as the robot's tool. The third application area of industrial robots is assembly and inspection. The use of robots in assembly is expected to increase because of the high cost of manual17 labor18. But the design of the product is an important aspect of robotic assembly. Assembly methods that are satisfactory for humans are not always suitable for robots. Screws and nuts are widely used for fastening in manual assembly, but the same operations are extremely difficult for a one-armed robot. Inspection is another area of factory operations in which the utilization of robots is growing. In a typical inspection job, the robot positions a sensor with respect to the work part and determines whether the part answers the quality specifications. In nearly all industrial robotic applications, the robot provides a substitute for human labor. There are certain characteristics of industrial jobs performed by humans that can be done by robots:
|