Давид Гильберт был одним из истинно великих математиков своего времени. Его труды и его вдохновляющая личность ученого оказали глубокое влияние на развитие мате icon

Давид Гильберт был одним из истинно великих математиков своего времени. Его труды и его вдохновляющая личность ученого оказали глубокое влияние на развитие мате



Смотрите также:
Давид Гильберт был одним из истинно великих математиков своего времени...
С. О. Макаров С. О. Макаров родился 27 декабря 1848 г в г. Николаеве, в семье прапорщика...
Реферат по теме: ` Философская система Спинозы наиболее близка к системе Декарта...
Пособие рассчитано на широкий круг читателей и предназначено в первую очередь преподавателям...
Пособие рассчитано на широкий круг читателей и предназначено в первую очередь преподавателям...
Литература и философия...
Коран, основополагающий текст ислама, является первой Арабской Книгой. Его стиль...
Сочинение скачано с сайта...
На одной из своих лекций Давид Гильберт сказал: Каждый человек имеет некоторый определенный...
Н. А. Бердяева и поныне считают одним из властителей дум XX века...
Тема: («Мировой финансовый кризис и его влияние на экономическое развитие Республики Беларусь»)...
«Давид Юм. Критические концепции понимания бытия. Агностицизм Д. Юма»...



скачать
Давид Гильберт


Давид Гильберт был одним из истинно великих математиков своего времени. Его труды и его вдохновляющая личность ученого оказали глубокое влияние на развитие математических наук в первой половине двадцатого века. Давид Гильберт был универсальным математиком, широта его научных исследований поражает: теория инвариантов, теория алгебраических числовых полей, основания геометрии и математики в

целом, интегральные уравнения, физика. Но та роль, которую сыграл Гильберт в развитии математики, заключается даже не в его трудах, а в том влиянии, которое он оказывал на своих современников, в той математической школе, которую он создал. Работы многих математиков вплоть до нашего времени несут отпечаток его мышления, во всех математических достижениях нашего времени есть немалая заслуга Давида Гильберта.

^ Детство и юность


Давид Гильберт родился 23 января 1862 года ровно в час дня в городке Велау вблизи Кенигсберга. Автобиография и семейная хроника, оставленные основателем кенигсбергской ветви семьи Гильбертов, знакомят нас с родословной Давида по отцовской линии. Уже в семнадцатом веке Гильберты были известны в Саксонии. В начале восемнадцатого столетия некто Иоганн Христиан Гильберт, начав с медика, стал

преуспевающим оптовым торговцем кружевами. К несчастью, он умер, оставив своих детей совсем маленькими, а его наследство было промотано опекунами. Нужда заставила его сына, Христиана Давида Гильберта, пойти в ученики к цирюльнику. Служба военным цирюльником забросила его в Кенигсберг. Один из многочисленных детей Христиана Давида – Давид Фюрхтготт Леберехт был дедом Давида. Он был судьей. Его сын, Отто, занимал к моменту рождения Давида должность окружного судьи.

Немного известно о родословной Давида по материнской линии. Карл Эрдтман был купцом из Кенигсберга, его дочь Мария Тереза стала матерью Давида. Это была необычайная женщина – «оригинал» в немецком понимании этого слова. Она интересовалась философией, астрономией и была очарована простыми числами.

Благодаря отцу, раннее обучение Давида носило отпечаток прусских черт пунктуальности, бережливости, преданности долгу, усердия, дисциплины и уважения к закону. Должность судьи в Пруссии досталась продвижением по гражданской службе. Это была удобная и надежная карьера для консервативного человека. По рассказам, судья Гильберт был довольно ограниченным человеком, со строгими взглядами на

добропорядочное поведение.

Давид начал ходить в школу с восьми лет. Обычным возрастом для поступления в школу было шесть лет, и опоздание на два года указывает, что, по-видимому, первые уроки Давид получил дома, скорее всего от своей матери. Она была уже почти инвалидом и, как говорят, большую часть времени проводила в постели.

В подготовительной школе королевского Фридрихс коллега Давид получил первые уроки, необходимые для гуманитарной гимназии. В нее он должен был поступить, если бы пожелал получить специальность, духовный сан или стать университетским профессором. Эти уроки включали чтение и письмо на латинском и греческом алфавитах, правописание, части речи, анализ простых предложений, важные библейские

истории и простую арифметику, включавшую сложение, вычитание, умножение и деление небольших чисел.

Упоминаний о том, что в это время на кого-нибудь произвели впечатления способности Гильберта нет. Позже он вспоминал себя как тупого и глупого в юности. Наверное, это было преувеличением, ибо, как позже заметил один из его друзей “за всем, что ни говорил Гильберт, как бы парадоксально это ни звучало, всегда чувствовалось его страстное и трогательное стремление к истине”.

Гимназия, которую выбрали для Давила его родители, считалась лучшей в Кенигсберге – старинная частная школа, основанная в начале семнадцатого столетия и имевшая в числе своих выпускников самого Канта. Тем не менее, этот выбор был весьма неудачным. В то время в Кенигсберге было редкостное сосредоточение будущих научных талантов. Альштадскую гимназию одновременно посещали Макс и Вилли Вины, Арнольд Зоммерфельд и Герман Минковский. Однако Давиду, посещавшему Фридрихсколлег, не пришлось в свои школьные годы познакомиться ни с одним из этих мальчиков.

^ Учеба в университете


Осенью 1880 года Гильберт поступил в университет. Большой удачей для него было то, что университет его родного города, хотя и отдаленный от основного центра событий в Берлине, по своим научным традициям являлся одним из самых выдающихся в Германии. Якоби преподавал в Кенигсберге тогда, когда во времена Гаусса он считался вторым математиком в Европе. Его приемнику Ришело принадлежит заслуга открытия гения Вейерштрасса в работах неизвестного учителя гимназии. Разносторонний Франц Нейман организовал в Кенигсберге первый институт теоретической физики при германском университете и ввел семинарскую форму занятий.

Гильберт почувствовал себя в университете настолько же свободным, насколько стесненным он чувствовал себя в гимназии. Преподаватели факультета сами выбирали предметы, которым они хотели учить, а студенты выбирали те предметы, которые они хотели изучать. Не было никаких особых требований, минимальных количеств баллов, перекличек, никаких экзаменов до тех пор, пока не наступала пора получать степень. Естественно, что на такую неожиданную свободу многие реагировали тем, что проводили первые университетские годы в традиционных занятиях – попойках и дуэлях. Однако для 18-летнего Гильберта университет представлял нечто более привлекательное –

долгожданную свободу сконцентрироваться на математике. Никаких сомнений по поводу своих будущих занятий у Гильберта не было. Вопреки желаниям отца он записался не на юридический, а на математический курс.

^ Первые научные шаги.


Вскоре после сдачи экзамена Гильберт отправляется в свое первое научное путешествие в Лейпциг к Феликсу Клейну. Гильберт посещает лекции Клейна и принимал участие в его семинаре. Личность Клейна не могла не произвести на него впечатление. Это был красивый человек с темными волосами и черной бородой, с светящимися глазами. Его лекции по математике почитались всеми и распространились даже в Америке. Что касается реакции Клейна на молодого доктора из Кенигсберга, то он заботливо хранил его доклад, с которым Гильберт выступал на семинаре, и позже писал: “Когда я услышал его доклад, я сразу же понял, что у этого человека большое будущее в математике” . В Лейбциге Гильберт вскоре познакомился с рядом других математиков. Одним из них был Георг Пик, а другим Эдуард Штуди, основным интересом которого, как и у Гильберта, была теория инвариантов.

В Лейпциге было значительно больше людей, интересующихся теорией инвариантов; однако Клейн направил все свои усилия, чтобы уговорить Штуди и Гильберта ехать на юг в Эрланге навестить своего друга Пауля Гордона, который в то время был известен как “король инвариантов” .

Летом 1886 года Гильберт совершает поездку в Париж, где знакомится с крупными французскими математиками: Пуанкаре, Жорданом, Эрмитом и другими. Возвращаясь обратно, Гильберт впервые посещает Геттинген – маленький уютный городок, в котором уму будет суждено жить и работать большую часть своей жизни. Вернувшись в Кенигсберг, он серьезно занялся хабилитацией. Работа, которую он готовил, была также посвящена теории инвариантов, однако ставила перед собой более серьезные цели, чем обычные докторские диссертации. Кроме своей работы, соискатель хабилитации должен был также прочитать лекцию на одну из выбранных им тем, которая была одобрена факультетом. Гильберт предложил две темы: “Самые общие периодические функции” и “Понятие группы” . Факультет выбрал первую из них, что больше устраивало и Гильберта. Этой лекцией остались довольны все; также успешно прошел и устный экзамен. 8 июля 1886 года Гильберт получил хабилитацию.

Гильберт решил, что, став доцентом, он будет читать лекции на разные темы, не повторяясь, как это делали многие другие, и тем самым будет образовывать не только своих студентов, но и себя самого. В первом семестре Гильберт подготовил лекции по теории инвариантов, определителям и гидродинамике.

^ Основания геометрии.


Новым увлечением Гильберта стала геометрия. Начав читать курс лекций по геометрии, Гильберт предложил положить в основания геометрии простой и полный список независимых аксиом, позволяющий доказать давно известные теоремы классической геометрии Евклида. Его подход – оригинальное сочетание абстрактной точки зрения и конкретного традиционного языка – был особенно эффективным. Выбрав систему аксиом евклидовой геометрии, немногим отличавшуюся по духу от аксиом самого Евклида, Гильберт смог менее формально и с большей убедительностью и ясностью, чем Пеано или Паш, продемонстрировать существо аксиоматического метода.

Одно дело – построить геометрию на прочном основании, и совсем другое – исследовать логическую структуру построенного сооружения. Гильберт систематически изучает взаимную независимость своих аксиом и устанавливает независимость некоторых из самых фундаментальных геометрических теорем от той или иной ограниченной группы аксиом. Его метод основан на построении моделей: показывается, что модель противоречит одной из аксиом и удовлетворяет требованиям всех остальных аксиом, из чего следует, что первая не может быть следствием остальных. Вопрос о непротиворечивости тесно связан с вопросом о независимости. Относящиеся сюда общие идеи кажутся нам теперь почти банальными, настолько радикальным оказалось их влияние на наше математическое мышление. В 1899 году публикуется классическая книга Гильберта – “Основания геометрии”, в которой он систематически излагает все полученные им результаты.

^ Основания математики.


Вновь вернуться к математике Гильберта заставил глубокий кризис, возникший в ее основаниях. Излюбленный Гильбертом аксиоматический подход начал давать сбои. Первыми предвестниками такого кризиса были парадоксы, открытые в теории множеств. Эти парадоксы были настолько глубокими и затрагивавшими самую суть теории, что среди математиков нашлись те, которые предлагали вообще отказаться от прежнего образа математического мышления. Среди таковых был молодой голландец Брауер. В трех статьях, вместе не занимавших 17 страниц, Брауер высказал сомнение в том, что законы классической логики имеют абсолютную истинность, не зависящую от того, к чему они применяются, и предложил решительную программу, призванную покончить с “кризисом оснований” . Для Брауера ни язык, ни логика не были неотъемлемо связаны с математикой, в основании которой, по его мнению, лежала интуиция, делавшая ее выводы и понятия непосредственно ясными. Брауер, например, отказался принимать логический принцип исключения третьего, т.е. Что для любого утверждения A существует только две возможности – либо A, либо не A. В частности Брауер не принимал принцип исключения третьего для бесконечных множеств, поскольку не существует никакой реальной процедуры, чтобы проверить утверждение за конечное число шагов. Подход Брауера к принципам математики получил название интуиционизм. Для Гильберта программа интуиционизма представляла абсолютно определенную и реальную угрозу математике. Многие из теорем классической математики можно было установить и интуиционистскими методами, более сложным и длинным путем, чем обычно. От многого же, включая теоремы существования, основную часть анализа, канторовскую теорию бесконечных множеств, пришлось бы отказаться. Гильберт отказывался принять такое “увечье” математике. Ему казалось, что он видел путь, на котором он смог бы восстановить элементарную математическую объективность, к которой стремился Брауер, не теряя при этом большую часть самой математики. Это была, по существу, “теория доказательства” . Гильберт предложил превратить математику в формализированную систему, объекты которой – математические теоремы и их доказательства – выражаются на языке символической логики в виде предложений, имеющих только символическую, а не смысловую структуру. Эти объекты должны быть выбраны так, чтобы адекватно представлять данную математическую теорию, т.е. охватывать совокупность всех ее теорем. Непротиворечивость этой формальной системы – т.е. математики – будет доказываться с помощью методов, которые Гильберт назвал финитными. Под “финитностью” понималось то, что “рассматриваемые рассуждения, утверждения или определения должны находиться в рамках непосредственного общения с объектом, отличаться явной практичностью используемых методов и, в соответствии с этим, их можно было бы эффективно контролировать” . Таким образом можно было бы преодолеть кризис оснований математики и избавиться от него раз и навсегда.

К сожалению, планам Гильберта не суждено было сбыться. В 1930 году Курт Гедель, 25-летний специалист по математической логики, опубликовал статью, в которой был сделан вывод, нанесший смертельный удар по планам Гильберта. В своей статье Геделю удалось доказать – со всей строгостью, на которую способна математика, - неполноту формализованной теории чисел. Он также доказал теорему, из которой следует, что не существует финитного доказательства непротиворечивости формальной системы, достаточно полной, чтобы формализовать все финитные рассуждения. Тем не менее, подход Гильберта значительно обогатил и поднял на совершенно иной уровень всю математическую логику.

Давид Гильберт умер 14 февраля 1943 года в возрасте 81 года. С его смертью математика потеряла одного из своих великих мастеров. Работы Гильберта немало послужили той счастливой гармонии, в которой развивается математика по сей день.







Скачать 84,33 Kb.
оставить комментарий
Дата07.12.2011
Размер84,33 Kb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх