Iii. Практическое применение нанотехнологий icon

Iii. Практическое применение нанотехнологий


Смотрите также:
Курсовая работа...
«сверху вниз»
Практическое применение нанотехнологий для очистки питьевой воды (доклад)...
Реферат по курсу «Перспективные наукоемкие технологии» на тему : «Возможности применения...
Реферат по курсу «Перспективные наукоемкие технологии» на тему : «Возможности применения...
Овещании по развитию нанотехнологий...
«Практическое применение информационно компьютерных технологий на уроках биологии»...
2. Исследование нанотехнологического приборостроения в РФ. 5...
Доклад на тему: «Практическое применение теории бизнес-планирования на примере города Серпухова...
Принципы и практическое применение...
"Путешествие в страну Литературию "...
Принципы и практическое применение...



Загрузка...
скачать
Глава III. Практическое применение нанотехнологий

3.1. Компьютерная память на основе нанотехнологий

Небольшая компания Nantero сообщила создании нового экспериментального образца электронной памяти на базе углеродных нанотрубок. Инженерам удалось разместить на кремниевой пластине стандартного размера 10 млрд. ячеек памяти, каждая из которых состоит из нескольких нанотрубок[25].

Для производства памяти используется стандартный фотолитографический процесс: вначале на подложку из оксида кремния наносится множество нанотрубок, а в ходе дальнейшей обработки неправильно ориентированные трубки удаляются. Таким образом, разработчикам удалось преодолеть трудности, возникающие при попытке размещения однородно ориентированных в пространстве нанотрубок.

Схема памяти представляет собой две пластинки из оксида кремния, расположенные одна над другой на расстоянии около 100 нм. Нанотрубки как бы подвешены на верхней пластинке. При подаче на нижнюю пластинку тока трубки меняют свое положение, соединяя две пластинки. Это состояние соответствует наличию в ячейке бита со значением "1". Если же трубка не замыкает пластин, то в ячейке находится бит со значением "0" [10].

Положение нанотрубки определяется действием сил Ван-дер-Ваальса, которые действуют независимо от наличия электропитания. Электрический импульс нужен лишь для изменения положения трубок. При этом на переключение требуется около 0,5 нс против примерно 10 нс у современной оперативной памяти. Плотность записи информации в ячейки NRAM постоянно увеличивается и у лучших образцов уже сравнима с плотностью записи информации в микросхемах оперативной памяти. В перспективе, плотность записи данных может достичь триллиона бит на квадратный сантиметр, что в 1000 раз больше, чем у современной оперативной памяти.

Впрочем, до выхода новой памяти на рынок еще далеко. Углеродные нанотрубки являются все еще экзотическим и дорогостоящим материалом, а производство NRAM, хотя и базируется на традиционной фотолитографии, требует освоения в промышленности. Однако, в перспективе, NRAM может оказаться востребованным компьютерным рынком решением.

3.2. Нанотранзисторы

Датой рождения транзистора, полупроводникового устройства переключения электрических сигналов, считается 1947 г. (Дж. Бардин, У. Браттейн и У. Шокли из Bell Laboratories в США получили за эту работу Нобелевскую премию по физике в 1958 г.). Изобретение транзистора стало событием большой социальной значимости. Именно благодаря бурному развитию транзисторных полупроводниковых технологий человечество в конце ХХ века вступило в эпоху информатики.

Сегодня в практическую плоскость перешли разговоры о нанотранзисторах, появились их первые действующие прототипы. По нанометровым меркам первые выходцы из Bell Laboratories были гигантами — их величина измерялась сантиметрами. За полвека транзистор уменьшился примерно в сто тысяч раз по линейному размеру и в 1010 раз — по массе. За радикальными количественными превращениями кроется принципиальное изменение качества, так как устройства переключения электрических сигналов достигают минимально возможных размеров, обусловленных атомной структурой вещества. Да и свойства самих электрических сигналов в наномире оказываются существенно иными, нежели в микромире, не говоря уж о макромире.

Электрический ток теперь нельзя представлять в виде некоего подобия «электрической жидкости» или «электронного газа», протекающих через управляемый вентиль, поскольку квантованность электрического заряда выходит в наномире на первый план. Количество электрического заряда, которым можно манипулировать, кратно заряду электрона Q0. Как бы точно ни производилось измерение электрического тока, количество информации, которое можно передать с его помощью, строго ограничено и определено числом переданных элементарных зарядов [18].

Обычный постоянный электрический ток всегда флуктуирует случайным образом, так как появление в цепи каждого нового элементарного заряда не скоррелировано с появлением предыдущего. Такие флуктуации часто называют дробовым шумом и описывают пуассоновской статистикой. Если в идеальном случае источник поддерживает в цепи постоянный средний ток n0 зарядов в секунду, то в среднем за время t по цепи будет проходить N = n0t зарядов, а измеряемое значение этой величины будет флуктуировать со среднеквадратичным отклонением ΔN ~ (n0t) 1/2, или в относительной мере ΔN/N ~ (n0t)-1/2. Абсолютная мощность дробового шума растет с ростом мощности самого сигнала, однако относительная мощность — падает. Поэтому в макромире квантованием заряда обычно пренебрегают, поскольку для большого тока относительные флуктуации очень малы. Если же сигнал представлять числом электронов в зарядовом пакете, то количество классической информации, передаваемое током за время t, с учетом дробового шума, составит log2 (1+N/ΔN) = log2 [1+(n0t) 1/2] (Отсчеты, лежащие в пределах погрешности измерения, считаются неразличимыми).

Логические элементы, срабатывающие на определенную величину зарядового пакета, как, например, в случае КМОП-схем, будут слишком часто ошибаться, если пакет окажется недостаточно велик. Так, при кодировании логической единицы пакетом из десяти зарядов с порогом срабатывания в пять зарядов логический элемент будет неправильно срабатывать примерно в 3% случаев. Иначе говоря, согласно пуассоновской статистике, в трех случаях из ста мы обнаружим в зарядовом пакете менее пяти электронов. При этом существенно увеличить избыточный заряд, хранимый в структуре нанометрового размера, невозможно. Например, на сферическом кластере радиусом 2–3 нм можно разместить без проблем лишь несколько лишних электронов.

Кроме эффекта квантования электрического заряда, на малых расстояниях начинают сказываться волновые свойства частиц. Длина когерентности электронной волны в твердом теле при обычной температуре составляет величину порядка единиц нанометров. Поэтому на расстояниях, меньших 1 нм, начинают проявляться волновые свойства электронов. Выражается это в том, что когда вещество берется в малых количествах, его не всегда можно однозначно отнести к изоляторам, проводникам или полупроводникам. Например, некоторые химические элементы, взятые в количестве, допустим, 20, 50 и 100 атомов, будут последовательно проходить стадию изолятора, полупроводника и проводника соответственно.

Все сказанное иллюстрирует тот факт, что использование ресурсов вещества, пространства, времени, энергии и информации в наномире строго регламентируется особыми правилами, основывающимися на законах квантовой механики. Мало того что конструирование нанотранзисторов превращается в сложную квантовомеханическую задачу, овеществление квантовомеханических схем и «чертежей» требует разработки сложнейших технологических процессов.

Итак, нанотранзистор — это существенно квантовомеханический прибор. Однако он вовсе не обязан работать только с квантовой информацией. Доказано, что в базисе нанотранзисторов возможна реализация устройств обычной классической логики. Более того, разработка промышленных технологий создания нанометровых приборов классической логики — главная задача современной наноэлектроники. На ее решение брошены огромные финансовые ресурсы в крупнейших научных центрах мира.

Когда же будет достигнут предел миниатюризации обычной электроники? Уже сейчас микроэлектронной промышленностью в опытном порядке создаются транзисторы с размером рабочих элементов 20–30 нм. Они еще способны работать с обычными электрическими сигналами, однако при дальнейшем уменьшении размеров очень быстро нарастают проблемы, о которых говорилось выше. Область от 30 нм до 5 нм (так называемая область мезоструктур) следует считать переходной от классической твердотельной электроники к квантовой. Промышленность вплотную подошла к этой области и уже столкнулась с рядом трудностей, о которых журнал недавно рассказывал. В соответствии с законом Мура, полное освоение области мезоэлектроники ожидается примерно через десять лет. Таким образом, мезотранзисторы — это последний рубеж существования обычных транзисторов, за которым последует поколение нанотранзисторов.

^ Технологии нанотранзисторов. В Кембриджском университете и токийской Japan Science & Technology Corporation разработан одноэлектронный транзистор, функционирующий при комнатной температуре. Его устройство и схема включения показаны на рисунке.



Рис. 30. Одноэлектронный транзистор.

Проводящий канал транзистора (остров) отделен от стока и истока туннельными барьерами из тонких слоев изолятора. Чтобы транзистор мог работать при комнатной температуре, размеры острова не должны превышать 10 нм. Высота потенциального барьера равна 0,173 эВ. В более ранней (2001 г.) конструкции тех же разработчиков остров был крупнее, высота потенциального барьера была 0,04 эВ, и рабочая температура не превышала 60 °К. Материалом для острова служит отдельный кластер аморфного кремния, поверхность которого оксидирована при низкой температуре для создания тонкого барьерного слоя.

Одно из основных требований к технологии изготовления нанотранзисторов — высокая производительность их получения. Например, с помощью нанометровых роботов-манипуляторов, использующих технику туннельной сканирующей микроскопии, можно собирать нанотранзисторы буквально по одному атому, однако этот процесс очень медленный. Даже если укладывать атомы за одну операцию целыми кластерами, на сборку одного наночипа все равно потребуются десятки лет. Поэтому в настоящее время идут интенсивные поиски технологических процессов, которые бы позволили с помощью небольшого числа операций одновременно производить большое число нанотранзисторов.

Например, сотрудники IBM развивают кластерную технологию, работая с углеродными нанотрубками, открытыми сотрудником NEC. Такие трубки могут состоять лишь из нескольких атомных слоев и при этом быть в тысячу раз прочнее стали. В зависимости от размера и формы, углеродные нанотрубки могут обладать полупроводниковыми или металлическими свойствами. В настоящее время отработан метод получения углеродных кластеров путем создания электрического разряда между графитовыми электродами в специальных условиях. Таким путем создают не только нанотрубки, но и различные фуллерены — пустотелые шары и эллипсоиды нанометровых размеров (Фуллерены C60 открыли в 1985 г. H. W. Kroto из Университета Сассекса (University of Sussex) и James Heath, Sean O’Brien, R. E. Smalley и R. F. Curl из Университета Райса (Rice University). За это открытие Kroto, Curl и Smalley получили Нобелевскую премию в 1996 г).

Ученые IBM работают над технологией системной интеграции полупроводниковых и металлических углеродных трубок на одной подложке с целью создания в будущем полнофункциональных электронных наносхем. Технология еще далека от завершения, однако ряд технологических приемов уже опробован. На подложку — пластину из оксидированного полированного кремния — наносится композиция, состоящая из пучков слипшихся полупроводниковых и металлических нанотрубок углерода, которые трудно отделить друг от друга при массовом производстве. Поверх полученной пленки литографическим методами наносятся узкие полоски обычного металла. С помощью электрического сигнала можно переводить углеродные нанотрубки из полупроводникового состояния в состояние изолятора. Это дает возможность путем управляемого электрического пробоя разрушать нанотрубки металлического типа проводимости и получать большие регулярные массивы, состоящие из отрезков полупроводниковых углеродных нанотрубок. Каждый такой отрезок — основа будущего нанотранзистора [4].

В той же корпорации разработана методика «обточки» углеродных нанотруб путем электрически управляемого снятия с них лишних атомных слоев. Уже в 2001 году таким способом в IBM научились получать полевые транзисторы с требуемой шириной запрещенной зоны. Их назвали NT-FET (nanotube field-effect transistors). Все это позволяет надеяться, что закон Мура о росте числа логических вентилей на чипе будет действовать даже тогда, когда обычная кремниевая электроника дойдет до своего естественного предела, обусловленного атомной структурой кристалла.

Что касается углеродных кластеров, то здесь работы ведутся в нескольких направлениях — с однослойными нанотрубками SWNT (single-walled nanotube), многослойными нанотрубками MWNT (multi-walled nanotube) и различными фуллеренами (C60, C70 и др.) Кластеры такого типа являются средами с пониженной размерностью. Например, нанотрубка преимущественно одномерна, что роднит ее с одной из новых моделей квантовой механики, квантовой нитью. А вот фуллерены, своего рода пузыри нанометровых масштабов, — двумерны. В силу особых квантовых условий движения электронов в средах с пониженной размерностью они зачастую обладают уникальными свойствами. Например, металлические нанотрубки могут выдерживать очень большую плотность тока (в 100–1000 раз больше, чем обычные металлы). Полупроводниковые нанотрубки обладают способностью переключаться под действием внешнего электрического поля в состояние изолятора. При этом ширина запрещенной зоны обратно пропорциональна диаметру трубки: Eg~1/d. Фуллерены, допированные некоторыми металлами, являются к тому же высокотемпературными сверхпроводниками.

Длина углеродных нанотрубок может в тысячу и более раз превышать их диаметр. В принципе, это дает возможность использовать трубки как проводники для трехмерного монтажа наносхем.

В Lawrence Berkeley National Laboratory (США) в 1998 г. также сначала были созданы образцы нанотранзисторов на основе углеродных нанотрубок. В дальнейшем (2000 г.) были получены нанотранзисторы на основе фуллереновых кластеров C60. Нанотранзистор изготавливался следующим образом. Сначала с помощью электронно-лучевой литографической машины Nanowriter на кремниевой пластине создавалась решетка из узких золотых проводников шириной 200 нм и толщиной 10 нм. Пропуская по решетке электрический ток большой плотности, можно было вызывать электромиграцию атомов золота. В результате провода истончались до нанометровых размеров и разрывались в строго определенных местах, образуя зазоры шириной около 1 нм. Затем пластина покрывалась тонким слоем водного раствора фуллереновых кластеров. Далее растворитель испарялся, а кластеры C60 оказывались в зазоре между двумя электродами — истоком и стоком. Электрод затвора отделялся от остальных электродов изолирующим слоем двуокиси кремния.

С помощью нанотранзисторов на основе углеродных нанотрубок, сотрудники Технического университета Дельфта (Delft University of Technology) уже в 2001 г. реализовали логический элемент ИЛИ-НЕ (physicsweb.org). Благодаря своим необычайно малым размерам нанотранзисторные схемы данного типа способны работать при комнатной температуре. Углеродные нанокластеры изготавливались отдельно, а затем размещались на подложке. Теперь исследователи разрабатывают технологию выращивания нанотрубок непосредственно на чипе.

Таким образом, в конце ХХ — начале XXI веков были опробованы базовые идеи квантовомеханических и молекулярно-кластерных технологий в новой области — наноэлектронике. В настоящее время в исследовательских центрах идет проработка технологических процессов производства наноэлектронной техники. Прикладные работы, в силу их стратегической важности для экономики промышленно развитых стран, скрыты от глаз обозревателей, но уже сейчас ясно, что экономическую, социальную и военно-политическую значимость информационных нанотехнологий невозможно переоценить.

^ Первые прототипы нанотранзисторов. Первые экспериментальные образцы одноэлектронных нанотранзисторов (Sandia National Labs, конец 1990-х) были довольно большими, так как для их производства применялась 20-нм литография, и функционировали только при температуре жидкого гелия (4,2 °К). При комнатной температуре смогли заработать лишь транзисторы с размером рабочей области 1–2 нм, недоступным современной литографии. Получить рабочие элементы транзисторов столь малых размеров удалось с помощью молекулярно-кластерной технологии («КТ» #364), которая, в принципе, позволяла размещать 2500 и более рабочих элементов на одном квадратном микроне. Оказалось, что для создания нанотранзисторов можно пользоваться гораздо большим разнообразием строительных материалов, чем в обычной полупроводниковой электронике. Связано это с уже упоминавшимся свойством веществ менять свою электронную структуру в зависимости от того, в каком количестве вещество берется. Малый кластер может быть изолятором, а большой — проводником. Если сюда добавить возможность комбинировать различные химические элементы, создавая строительные блоки в виде гетероатомных кластеров, то количество разнообразных блоков квантового наноконструктора оказывается невообразимо большим! В настоящее время проводятся исследования кластеров самой разнообразной химической природы, дабы выбрать наиболее удобные для построения наноэлектронных схем[29].

^ Металлоэлектроника и молекулярная электроника. В обычной микроэлектронике для создания транзисторного эффекта необходим полупроводник. Почему? Потому что полупроводник позволяет создать среду с легко управляемой концентрацией заряженных частиц, ответственных за проводимость. Диэлектрики ток вообще не пропускают. Они пригодны лишь для создания изоляции между токоведущими частями[28]. В металлах же концентрация свободных заряженных частиц настолько высока, что внешнее электрическое поле, приложенное через изолирующий затвор, внутрь металла практически не проникает. Однако если тот же металл взять в количестве нескольких атомов, то электронные свойства такого образования, нанокластера, будут напоминать свойства полупроводника. Это позволяет сконструировать транзистор нанометровых размеров на основе атомов металла с использованием окисла в качестве изолятора.



Рис. 34.

И тут на первый план выходят проблемы надежности наноструктур и технологичности их изготовления. Оказалось, что время жизни слоя, толщина которого составляет всего лишь несколько атомов, чрезвычайно мало, в условиях нормальной эксплуатации. Это связано с тем, что плохо закрепленные атомы предпочитают перемещаться по наноструктуре или по подложке в поисках более крепкой связи, чему особенно способствует разогрев конструкции, а также электромиграция.

Впрочем, быстро выяснилось, что некоторые кластерные конфигурации обладают высокой устойчивостью, и все наружные атомы в них удерживаются очень прочно. Такие кластеры получили название магических, а числа входящих в них атомов — магических чисел. Например, для атомов щелочных металлов магические числа — 8, 20, 40, для атомов благородных металлов — 13, 55, 137, 255. Кстати, C60, C70 и другие фуллерены — тоже магические. Магическими же являются и углеродные нанотрубки. Это обстоятельство обусловило перспективность технологии предварительного создания магических наноструктур в специальных реакторах и последующего их использования при сборке нанотранзисторов.



Рис. 35.

Было обнаружено, что транзисторный эффект наблюдается также в молекулах, которые можно в массовом порядке синтезировать химическим путем.

Еще один неожиданный поворот — использование структур молекулярной биологии: молекул ДНК, белков и др. Причем не только в качестве рабочих элементов будущих транзисторов, но и для сборки элементов нанотранзисторных структур — на основе генетических технологий. Например, в американском Scripps Research Institute получена отдельная молекула ДНК в виде полой октаэдрической структуры диаметром 22 нм. Внутренняя полость способна вместить сферу диаметром 14 нм. Одна из целей ученых — использование трехмерных ДНК-структур для создания сложных трехмерных логических цепей в устройствах молекулярного масштаба.

Уже разработаны способы манипуляции атомами и нанокластерами некоторых металлов, магнетиков и полупроводников с использованием молекул ДНК.

Например, в Northwestern University (США) в 2004 году разработан метод присоединения кластеров золота, а также кластеров ферромагнетика (окись железа) к молекулам ДНК, несущим кодовые последовательности из цепочек нуклеотидов. Это позволило с помощью ДНК-реакций получать кластерные цепи, в которых кластеры золота чередуются в нужной последовательности с кластерами ферромагнетика.

3.3. Нанобатареи

Группа французских исследователей смогла с помощью нанотехнологий создать электроды для литий-ионных батарей, отличающиеся сверхмалыми размерами. При этом аккумуляторы на их основе будут хранить гораздо большее количество энергии, чем традиционные.

В традиционных аккумуляторных электродах ионы и электроны двигаются в активном материале (тем самым, обеспечивая быстрые заряд и разряд) лишь в случае, когда он нанесен тонким слоем. Однако, количество активного материала при этом сокращается, а значит, уменьшается и ёмкость батареи. Для высокоёмких устройств обычно увеличивают толщину активного слоя, жертвуя скоростью заряда и способностью быстро отдавать энергию в пользу энергоёмкости.



Рис. 36. Наностержни батарей.

Основой новой технологии является использование наностержней в качестве "якорей" для активного материала. Активный материал "обёртывается" вокруг наностержней тонкой плёнкой, на каждый квадратный сантиметр электродов (рис. 36) приходится 50 см2 площади тонкой плёнки. Благодаря этому удаётся достичь высокой ёмкости батареи при малых размерах. Это преимущество найдёт применение в первую очередь в источниках питания, используемых в кардиологии (искусственное сердце), различных автономных зондах и так далее[26].

Но разработчики думают и об аккумуляторах большого размера. В перспективе технология позволит создать батареи, пригодные даже для использования в электромобилях.

^ 3.4. Двигатели нанометровых размеров

В работе израильских физиков (M.Proto, M.Urbakh, J.Klafner, Phys.Rev.Lett.,84 (2000) 6058) была предложена новая и очень простая схема того, как сделать нанометровые двигатели легко управляемыми. Это предложение реализовано пока только на бумаге, то есть в виде принципиальной теоретической конструкции, однако авторы статьи считают, что конкретная экспериментальная реализация этой идеи не заставит себя долго ждать[30].

Итак, рассмотрим простейшую одномерную модель движущегося средства нанометрового масштаба.



Рис. 37.

Пусть у нас есть три наночастицы, находящиеся в периодическом внешнем поле рис. 37 (а). Это могут быть, например, атомные кластеры, лежащие на поверхности кристалла. Между ними есть связи, изображенные на рисунке пружинками. Предположим, что мы можем управлять свободной длиной этих "пружинок" (на роль таких пружинок годятся так называемые фотохромные молекулы, которые под действием внешнего света могут менять свою длину). Пусть изменение свободной длины i-той связи будет происходить периодически во времени, например, по закону



Пусть между двумя пружинками имеется определенный сдвиг по фазе, φ12, так что первая пружинка начинает удлиняться раньше второй. Результат - система начнет двигаться в сторону первой пружинки. На рис. 37 (b) показаны 10 "снимков" эволюции системы с течением времени.

Такая машина может не только ползать по горизонтальной поверхности, но и двигаться против внешней силы, например, ползти вверх по наклонной плоскости. Кроме того, она может тащить на себе определенный груз, составляющий до половины массы движущегося устройства. Очень важно и то, что изменяя закон, по которому меняется свободная длина пружинок, можно контролировать скорость и направление движения системы. В частности, в двумерном случае можно заставить систему двигаться в любом направлении. Наконец, интересно еще и то, что если три частицы объединить в кольцо, то получится нанометровый ротор.

Принцип, на основе которого передвигается такая система - совершенно общий, чисто механический, непосредственно следующий из уравнений классической механики. Поэтому в принципе применение этой идеи не ограничено наномашинами, а может оказаться полезным и в макромире.





Скачать 151,13 Kb.
оставить комментарий
Дата23.11.2011
Размер151,13 Kb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх