1 Системы с интеллектуальным интерфейсом icon

1 Системы с интеллектуальным интерфейсом


Смотрите также:
Уровни рассмотрения ос....
«Пояснение»
«Ярославский государственный университет им. П. Г.   Демидова»...
1. Лекция: Интеллектуальные системы...
Для студентов, преподавателей, аспирантов экономических вузов...
Программа элективного курса по черчению для 9 класса Рецензия №1346, от 30. 10. 06...
I  Международная молодежная конференция по интеллектуальным технологиям и системам...
Авторское выполнение научных работ любой сложности грамотно и в срок...
27-29 июля 2012г столица солнечной Аджарии, г...
Программатор MemProg2 специализированный программатор с usb интерфейсом для микросхем всех типов...
«Основных направлениях государственной политики по развитию сферы культуры и массовых...
Международный конгресс по интеллектуальным системам и информационным технологиям...



Загрузка...
страницы:   1   2   3
скачать
1.2. Системы с интеллектуальным интерфейсом

Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных. Примерами таких запросов могут быть следующие:

- “Вывести список товаров, цена которых выше среднеотраслевой”,

- “Вывести список товаров-заменителей некоторой продукции”,

- “Вывести список потенциальных покупателей некоторого товара” и т.д.

Для выполнения первого типа запроса необходимо сначала проведение статистического расчета среднеотраслевой цены по всей базе данных, а уже после этого собственно отбор данных. Для выполнения второго типа запроса необходимо вывести значения характерных признаков объекта, а затем поиск по ним аналогичных объектов. Для третьего типа запроса требуется сначала определить список посредников-продавцов, выполняющих продажу данного товара, а затем провести поиск связанных с ними покупателей.

Во всех перечисленных типах запросов требуется осуществить поиск по условию, которое должно быть доопределено в ходе решения задачи. Интеллектуальная система без помощи пользователя по структуре базы данных сама строит путь доступа к файлам данных. Формулирование запроса осуществляется в диалоге с пользователем, последовательность шагов которого выполняется в максимально удобной для пользователя форме. Запрос к базе данных может формулироваться и с помощью естественно-языкового интерфейса.

^ Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль - разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ - установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковый интерфейс используется для:

  • доступа к интеллектуальным базам данных;

  • контекстного поиска документальной текстовой информации;

  • голосового ввода команд в системах управления;

  • машинного перевода c иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей помимо текстовой и цифровой информации графические, аудио и видео- образы.

^ Системы контекстной помощи можно рассматривать, как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

^ Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации.

Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.


^ 1.3. Экспертные системы

Назначение экспертных систем заключается в решении достаточно трудных для экспертов задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области. Достоинство применения экспертных систем заключается в возможности принятия решений в уникальных ситуациях, для которых алгоритм заранее не известен и формируется по исходным данным в виде цепочки рассуждений (правил принятия решений) из базы знаний. Причем решение задач предполагается осуществлять в условиях неполноты, недостоверности, многозначности исходной информации и качественных оценок процессов.

Экспертная система является инструментом, усиливающим интеллектуальные способности эксперта, и может выполнять следующие роли:

  • консультанта для неопытных или непрофессиональных пользователей;

  • ассистента в связи с необходимостью анализа экспертом различных вариантов принятия решений;

  • партнера эксперта по вопросам, относящимся к источникам знаний из смежных областей деятельности.

Экспертные системы используются во многих областях, среди которых лидирует сегмент приложений в бизнесе. Также ЭС интенсивно используются в сфере производства и медицине. Меньше всего ЭС в науке.

^ Архитектура экспертной системы (рис.1.3) включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса. Причем центральным компонентом экспертной системы является база знаний, которая выступает по отношению к другим компонентам как содержательная подсистема, составляющая основную ценность. Содержимое базы знаний хорошей экспертной системы оценивается в сотни тысяч долларов, в то время как программный инструментарий - в тысячи или десятки тысяч долларов.

База знаний - это совокупность единиц знаний, которые представляют собой формализованное с помощью некоторого метода представления знаний отражение объектов проблемной области и их взаимосвязей, действий над объектами и, возможно, неопределенностей, с которыми эти действия осуществляются.



Рис.1.3 Архитектура экспертной системы


В качестве методов представления знаний чаще всего используются правила, которые представляют собой конструкции:

Если < условие >

То <заключение> CF (Фактор определенности) <значение>

В качестве факторов определенности (CF), как правило, выступают либо условные вероятности байесовского подхода (от 0 до 1), либо коэффициенты уверенности нечеткой логики (от 0 до 100). Примеры правил имеют следующий вид:

Правило 1: Если Коэффициент рентабельности > 0.2

То Рентабельность = "удовл." CF 100

Правило 2: Если Задолженность = "нет" и Рентабельность = "удовл."

То Финансовое_сост. = "удовл." CF 80

Правило 3: Если Финансовое_сост. = "удовл." и Репутация="удовл."

То Надежность предприятия = "удовл." CF 90


^ Интеллектуальный интерфейс. Обмен данными между конечным пользователем и ЭС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения пользователя и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат пользователя и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога пользователя с ЭС является естественность, которая не означает буквально формулирование потребностей пользователя предложениями естественного языка, хотя это и не исключается в ряде случаев. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям пользователя и велась в профессиональных терминах.

^ Механизм вывода. Этот программный инструмент получает от интеллектуального интерфейса преобразованный во внутреннее представление запрос, формирует из базы знаний конкретный алгоритм решения задачи, выполняет алгоритм, а полученный результат предоставляется интеллектуальному интерфейсу для выдачи ответа на запрос пользователя.

В основе использования любого механизма вывода лежит процесс нахождения в соответствии с поставленной целью и описанием конкретной ситуации (исходных данных) относящихся к решению единиц знаний (правил, объектов, прецедентов и т.д.) и связыванию их при необходимости в цепочку рассуждений, приводящую к определенному результату. Для представления знаний в форме правил это может быть прямая (рис. 1.5) или обратная (рис. 1.6) цепочка рассуждений.



Рис. 1.5. Прямая цепочка рассуждений



Рис. 1.6. Обратная цепочка рассуждений


Механизм объяснения. В процессе или по результатам решения задачи пользователь может запросить объяснение или обоснование хода решения. С этой целью ЭС должна предоставить соответствующий механизм объяснения. Объяснительные способности ЭС определяются возможностью механизма вывода запоминать путь решения задачи. Тогда на вопросы пользователя "Как?" и "Почему?" получено решение или запрошены те или иные данные система всегда может выдать цепочку рассуждений до требуемой контрольной точки, сопровождая выдачу объяснения заранее подготовленными комментариями. В случае отсутствия решения задач объяснение должно выдаваться пользователю автоматически. Полезно иметь возможность и гипотетического объяснения решения задачи, когда система отвечает на вопросы, что будет в том или ином случае.

Однако, не всегда пользователя может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний пользователя. Для этого в базе знаний необходимо поддерживать модель знаний и намерений пользователя. Если же пользователь продолжает не понимать полученный ответ, то система должна быть способна в диалоге на основе поддерживаемой модели проблемных знаний обучать пользователя тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.

^ Механизм приобретения знаний. База знаний отражает знания экспертов (специалистов) в данной проблемной области о действиях в различных ситуациях или процессах решения характерных задач. Выявлением подобных знаний и последующим их представлением в базе знаний занимаются специалисты, называемые инженерами знаний. Для ввода знаний в базу и их последующего обновления ЭС должна обладать механизмом приобретения знаний. В простейшем случае это интеллектуальный редактор, который позволяет вводить единицы знаний в базу и проводить их синтаксический и семантический контроль, например, на непротиворечивость, в более сложных случаях извлекать знания путем специальных сценариев интервьюирования экспертов, или из вводимых примеров реальных ситуаций, как в случае индуктивного вывода, или из текстов, или из опыта работы самой интеллектуальной системы.

^ Классы экспертных систем. По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

  • По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы - генерацию неизвестных решений (формирование объектов).

  • ^ По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

  • ^ По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

  • ^ По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).

В соответствии с перечисленными признаками классификации, как правило, выделяются следующие четыре основные класса экспертных систем (рис. 1.7)





Анализ

Синтез




^ Детерминирован-ность знаний

Классифици-рующие

Трансформи-рующие

Один источник

знаний

^ Неопределенность знаний

Доопределя-ющие

Многоагент-ные

Множество источн. знаний




Статика

Динамика




Рис. 1.7. Классы экспертных систем

^ Классифицирующие экспертные системы. К аналитическим задачам прежде всего относятся задачи распознавания различных ситуаций, когда по набору заданных признаков (факторов) выявляется сущность некоторой ситуации, в зависимости от которой выбирается определенная последовательность действий. Таким образом, в соответствии с исходными условиями среди альтернативных решений находится одно, наилучшим образом удовлетворяющее поставленной цели и ограничениям.

Экспертные системы, решающие задачи распознавания ситуаций, называются классифицирующими, поскольку определяют принадлежность анализируемой ситуации к некоторому классу. В качестве основного метода формирования решений используется метод логического дедуктивного вывода от общего к частному, когда путем подстановки исходных данных в некоторую совокупность взаимосвязанных общих утверждений получается частное заключение.

^ Доопределяющие экспертные системы. Более сложный тип аналитических задач представляют задачи, которые решаются на основе неопределенных исходных данных и применяемых знаний. В этом случае экспертная система должна как бы доопределять недостающие знания, а в пространстве решений может получаться несколько возможных решений с различной вероятностью или уверенностью в необходимости их выполнения. В качестве методов работы с неопределенностями могут использоваться байесовский вероятностный подход, коэффициенты уверенности, нечеткая логика. Доопределяющие экспертные системы могут использовать для формирования решения несколько источников знаний. В этом случае могут использоваться эвристические приемы выбора единиц знаний из их конфликтного набора, например, на основе использования приоритетов важности, или получаемой степени определенности результата, или значений функций предпочтений и т.д.

Для аналитических задач классифицирующего и доопределяющего типов характерны следующие проблемные области:

  • ^ Интерпретация данных - выбор решения из фиксированного множества альтернатив на базе введенной информации о текущей ситуации. Основное назначение - определение сущности рассматриваемой ситуации, выбор гипотез, исходя их фактов. Типичным примером является экспертная система анализа финансового состояния предприятия.

  • Диагностика - выявление причин, приведших к возникновению ситуации. Требуется предварительная интерпретация ситуации с последующей проверкой дополнительных фактов, например, выявление факторов снижения эффективности производства.

  • Коррекция - диагностика, дополненная возможностью оценки и рекомендации действий по исправлению отклонений от нормального состояния рассматриваемых ситуаций.

^ Трансформирующие экспертные системы. В отличие от аналитических статических экспертных систем синтезирующие динамические экспертные системы предполагают повторяющееся преобразование знаний в процессе решения задач, что связано с характером результата, который нельзя заранее предопределить, а также с динамичностью самой проблемной области.

В качестве методов решения задач в трансформирующих экспертных системах используются разновидности гипотетического вывода:

  • генерации и тестирования, когда по исходным данным осуществляется генерация гипотез, а затем проверка сформулированных гипотез на подтверждение поступающими фактами;

  • предположений и умолчаний, когда по неполным данным подбираются знания об аналогичных классах объектов, которые в дальнейшем динамически адаптируются к конкретной ситуации в зависимости от ее развития;

  • использование общих закономерностей (метауправления) в случае неизвестных ситуаций, позволяющих генерировать недостающее знание.

^ Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе, например, через "доску объявлений" (рис. 1.8).



Рис. 1.8. “Доска объявлений”

Для многоагентных систем характерны следующие особенности:

  • Проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;

  • Распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;

  • Применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;

  • Обработка больших массивов данных, содержащихся в базе данных;

  • Использование различных математических моделей и внешних процедур, хранимых в базе моделей;

  • Способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.

Для синтезирующих динамических экспертных систем наиболее применимы следующие проблемные области:

  • Проектирование - определение конфигурации объектов с точки зрения достижения заданных критериев эффективности и ограничений, например, проектирование бюджета предприятия или портфеля инвестиций.

  • Прогнозирование - предсказание последствий развития текущих ситуаций на основе математического и эвристического моделирования, например, прогнозирование трендов на биржевых торгах.

  • Диспетчирование - распределение работ во времени, составление расписаний, например, планирование графика освоения капиталовложений.

  • Планирование - выбор последовательности действий пользователей по достижению поставленной цели, например, планирование процессов поставки продукции.

  • Мониторинг - слежение за текущей ситуацией с возможной последующей коррекцией. Для этого выполняется диагностика, прогнозирование, а в случае необходимости планирование и коррекция действий пользователей, например, мониторинг сбыта готовой продукции.

  • Управление - мониторинг, дополненный реализацией действий в автоматических системах, например, принятие решений на биржевых торгах.

Наиболее «обеспечены» экспертными системами такие проблемные области как «Диагностика», «Интерпретация» и «Рекомендация». А наименее – «Выбор», «Моделирование» и «Прогнозирование».


^ 1.4. Самообучающиеся системы

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики (обучения на примерах). Примеры реальных ситуаций накапливаются за некоторый исторический период и составляют обучающую выборку. Эти примеры описываются множеством признаков классификации. Причем обучающая выборка может быть:

  • с учителем”, когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);

  • без учителя”, когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.

В результате обучения системы автоматически строятся обобщенные правила или функции, определяющие принадлежность ситуаций классам, которыми обученная система пользуется при интерпретации новых возникающих ситуаций. Таким образом, автоматически формируется база знаний, используемая при решении задач классификации и прогнозирования. Эта база знаний периодически автоматически корректируется по мере накопления опыта реальных ситуаций, что позволяет сократить затраты на ее создание и обновление.

Общие недостатки, свойственные всем самообучающимся системам, заключаются в следующем:

  • возможна неполнота и/или зашумленность (избыточность) обучающей выборки и, как следствие, относительная адекватность базы знаний возникающим проблемам;

  • возникают проблемы, связанные с плохой смысловой ясностью зависимостей признаков и, как следствие, неспособность объяснения пользователям получаемых результатов;

  • ограничения в размерности признакового пространства вызывают неглубокое описание проблемной области и узкую направленность применения.

^ Индуктивные системы. Обобщение примеров по принципу от частного к общему сводится к выявлению подмножеств примеров, относящихся к одним и тем же подклассам, и определению для них значимых признаков.

Процесс классификации примеров осуществляется следующим образом:

  1. Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например, в соответствии с максимальным числом получаемых подмножеств примеров);

  2. По значению выбранного признака множество примеров разбивается на подмножества;

  3. Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу;

  4. Если какое-то подмножество примеров принадлежит одному подклассу, т.е. у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчивается (при этом остальные признаки классификации не рассматриваются);

  5. Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается, начиная с пункта 1. (Каждое подмножество примеров становится классифицируемым множеством).

Процесс классификации может быть представлен в виде дерева решений, в котором в промежуточных узлах находятся значения признаков последовательной классификации, а в конечных узлах - значения признака принадлежности определенному классу. Пример построения дерева решений на основе фрагмента таблицы примеров (таблица 1.1) показан на рис. 1.10.

Таблица 1.1

Классообр.

признак




Признаки

классификации




Цена

Спрос

Конкуренция

Издержки

Качество

низкая

низкий

маленькая

маленькие

низкое

высокая

низкий

маленькая

большие

высокое

высокая

высокий

маленькая

большие

низкое

высокая

высокий

маленькая

маленькие

высокое

высокая

высокий

маленькая

маленькие

низкое

высокая

высокий

маленькая

большие

высокое



Рис. 1.10. Фрагмент дерева решений

Анализ новой ситуации сводится к выбору ветви дерева, которая полностью определяет эту ситуацию. Поиск решения осуществляется в результате последовательной проверки признаков классификации. Каждая ветвь дерева соответствует одному правилу решения:

Если Спрос=“низкий” и Издержки=“маленькие”

То Цена=“низкая”


^ Нейронные сети. В результате обучения на примерах строятся математические решающие функции (передаточные функции или функции активации), которые определяют зависимости между входными (Xi) и выходными (Yj) признаками (сигналами) (рис. 1.11).



Рис.1.11. Решающая функция - “нейрон”

Каждая такая функция, называемая по аналогии с элементарной единицей человеческого мозга - нейроном, отображает зависимость значения выходного признака (Y) от взвешенной суммы (U) значений входных признаков (Xi), в которой вес входного признака (Wi) показывает степень влияния входного признака на выходной:



Решающие функции используются в задачах классификации на основе сопоставления их значений при различных комбинациях значений входных признаков с некоторым пороговым значением. В случае превышения заданного порога считается, что нейрон сработал и таким образом распознал некоторый класс ситуаций. Нейроны используются и в задачах прогнозирования, когда по значениям входных признаков после их подстановки в выражение решающей функции получается прогнозное значение выходного признака.

Функциональная зависимость может быть линейной, но, как правило, используется сигмоидальная форма, которая позволяет вычленять более сложные пространства значений выходных признаков. Такая функция называется логистической (рис.1.12).



Рис.1.12. Логистическая (сигмоидальная) функция

Нейроны могут быть связаны между собой, когда выход одного нейрона является входом другого. Таким образом, строится нейронная сеть (рис. 1.13), в которой нейроны, находящиеся на одном уровне, образуют слои.



Рис.1.13. Нейронная сеть

Обучение нейронной сети сводится к определению связей (синапсов) между нейронами и установлению силы этих связей (весовых коэффициентов). Алгоритмы обучения нейронной сети упрощенно сводятся к определению зависимости весового коэффициента связи двух нейронов от числа примеров, подтверждающих эту зависимость.

Наиболее распространенным алгоритмом обучения нейронной сети является алгоритм обратного распространения ошибки. Целевая функция по этому алгоритму должна обеспечить минимизацию квадрата ошибки в обучении по всем примерам:

, где

Ti - заданное значение выходного признака по i - му примеру;

Yi - вычисленное значение выходного признака по i - му примеру.

Сущность алгоритма обратного распространения ошибки сводится к следующему:

  1. Задать произвольно небольшие начальные значения весов связей нейронов.

  2. Для всех обучающих пар “значения входных признаков - значение выходного признака” (примеров из обучающей выборки) вычислить выход сети (Y).

  3. Выполнить рекурсивный алгоритм, начиная с выходных узлов по направлению к первому скрытому слою, пока не будет достигнут минимальный уровень ошибки.

Вычислить веса на (t+1) шаге по формуле:

, где

- вес связи от скрытого i -го нейрона или от входа к j-му нейрону на шаге t;

- выходное значение i -го нейрона;

- коэффициент скорости обучения;

- ошибка для j-го нейрона.

Если j-й нейрон - выходной, то



Если j-й нейрон находится в скрытом внутреннем слое, то

, где

к - индекс всех нейронов в слое, расположенном вслед за слоем с j-м нейроном.

Выполнить шаг 2.

Достоинство нейронных сетей перед индуктивным выводом заключается в решении не только классифицирующих, но и прогнозных задач. Возможность нелинейного характера функциональной зависимости выходных и входных признаков позволяет строить более точные классификации.

Сам процесс решения задач в силу проведения матричных преобразований проводится очень быстро. Фактически имитируется параллельный процесс прохода по нейронной сети в отличие от последовательного в индуктивных системах. Нейронные сети могут быть реализованы и аппаратно в виде нейрокомпьютеров с ассоциативной памятью.

Последнее время нейронные сети получили стремительное развитие и очень активно используются в финансовой области. В качестве примеров внедрения нейронных сетей можно назвать:

  • "Система прогнозирования динамики биржевых курсов для Chemical Bank" (фирма Logica);

  • "Система прогнозирования для Лондонской фондовой биржи" (фирма SearchSpace);

  • "Управление инвестициями для Mellon Bank" (фирма NeuralWare) и др.

^ Системы, основанные на прецедентах (Case-based reasoning). В этих системах база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты. Тогда поиск решения проблемы сводится к поиску по аналогии (абдуктивному выводу от частного к частному):

  1. Получение подробной информации о текущей проблеме;

  2. Сопоставление полученной информации со значениями признаков прецедентов из базы знаний;

  3. Выбор прецедента из базы знаний, наиболее близкого к рассматриваемой проблеме;

  4. В случае необходимости выполняется адаптация выбранного прецедента к текущей проблеме;

  5. Проверка корректности каждого полученного решения;

  6. Занесение детальной информации о полученном решении в базу знаний.

Так же как и для индуктивных систем прецеденты описываются множеством признаков, по которым строятся индексы быстрого поиска. Но в отличие от индуктивных систем допускается нечеткий поиск с получением множества допустимых альтернатив, каждая из которых оценивается некоторым коэффициентом уверенности. Далее наиболее подходящие решения адаптируются по специальным алгоритмам к реальным ситуациям. Обучение системы сводится к запоминанию каждой новой обработанной ситуации с принятыми решениями в базе прецедентов.

Системы, основанные на прецедентах, применяются как системы распространения знаний с расширенными возможностями или как в системах контекстной помощи (рис. 1.14.).

^ Описание ситуации (проблемы)

Не печатает принтер

Вопросы

Включено ли питание? да

Прошло ли тестирование? да

Замята ли бумага? да

Подключен ли драйвер? не знаю

Действия

Освободите бумагу уверенность 80

Загрузите драйвер уверенность 50

Вызовите тех. персонал уверенность 10

Рис. 1.14. Пример диалога с CBR-системой

В качестве примера инструментального средства поддержки баз знаний прецедентов, распространяемого в России, можно назвать систему CBR-Express (Inference, дистрибьютор фирма Метатехнология).

^ Информационные хранилища (Data Warehouse). В отличие от интеллектуальной базы данных информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного анализа данных (реализации OLAP - технологии). Извлечение знаний из баз данных осуществляется регулярно, например, ежедневно.

Типичными задачами оперативного ситуационного анализа являются:

  • Определение профиля потребителей конкретного товара;

  • Предсказание изменений ситуации на рынке;

  • Анализ зависимостей признаков ситуаций (корреляционный анализ) и др.

Для извлечения значимой информации из баз данных используются специальные методы (Data Mining или Knowledge Discovery), основанные или на применении многомерных статистических таблиц, или индуктивных методов построения деревьев решений, или нейронных сетей. Формулирование запроса осуществляется в результате применения интеллектуального интерфейса, позволяющего в диалоге гибко определять значимые признаки анализа.

Применение информационных хранилищ на практике все в большей степени демонстрирует необходимость интеграции интеллектуальных и традиционных информационных технологий, комбинированное использование различных методов представления и вывода знаний, усложнение архитектуры информационных систем.


^ Что следует запомнить

Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

^ Важнейшие признаки классификации ИИС: развитые коммуникативные способности, сложность (плохая формализуемость алгоритма), способность к самообучению, адаптивность.

^ Основные подклассы ИИС: интеллектуальные базы данных, в т.ч. с интерфейсами, использующими естественный язык, гипертекст и мультимедиа, когнитивную графику; статические и динамические экспертные системы; самообучающиеся системы на принципах индуктивного вывода, нейронных систем, поиска прецедентов, организации информационных хранилищ; адаптивные информационные системы на основе использования CASE-технологий и/или компонентных технологий.

^ Система с интеллектуальным интерфейсом - это ИИС, предназначенная для поиска неявной информации в базе данных или тексте для произвольных запросов, составляемых, как правило, на ограниченном естественном языке.

^ Экспертная система (ЭС) - это ИИС, предназначенная для решения слабоформализуемых задач на основе накапливаемого в базе знаний опыта работы экспертов в проблемной области.

^ Участники процесса разработки и эксплуатации ЭС: эксперты, инженеры по знаниям, пользователи.

Эксперт - специалист, знания которого помещаются в базу знаний.

Инженер по знаниям - специалист, который занимается извлечением знаний и их формализацией в базе знаний.

Пользователь - специалист, интеллектуальные способности которого расширяются благодаря использованию в практической деятельности ЭС.

^ Основные составные части архитектуры ЭС: база знаний, механизмы вывода, объяснения, приобретения знаний, интеллектуальный интерфейс.

База знаний - это центральный компонент ЭС, который определяет ценность ЭС и с которым связаны основные затраты на разработку.

^ База знаний - это хранилище единиц знаний, описывающих атрибуты и действия, связанные с объектами проблемной области, а также возможные при этом неопределенности.

^ Единица знаний - это элементарная структурная единица, (описание одного объекта, одного действия), которая имеет законченный смысл. В качестве единиц знаний обычно используются правила и/или объекты.

Неопределенность знаний - это или неполнота, или недостоверность, или многозначность, или качественная (вместо количественной) оценка единицы знаний.

^ Механизм вывода - это обобщенная процедура поиска решения задачи, которая на основе базы знаний и в соответствии с информационной потребностью пользователя строит цепочку рассуждений (логически связанных единиц знаний), приводящую к конкретному результату.

^ Дедуктивный вывод (от общего к частному)- вывод частных утверждений путем подстановки в общие утверждения других известных частных утверждений. Различают прямую (от данных к цели) и обратную (от цели к данным) цепочки рассуждений (аргументации).

Индуктивный вывод (от частного к общему) - вывод (обобщение) на основе множества частных утверждений общих утверждений (из примеров реальной практики правил).

^ Абдуктивный вывод (от частного к частному) - вывод частных утверждений на основе поиска других аналогичных утверждений (прецедентов).

Механизм приобретения знаний - это процедура накопления знаний в базе знаний, включающая ввод, контроль полноты и непротиворечивости единиц знаний и, возможно, автоматический вывод новых единиц знаний из вводимой информации.

^ Механизм объяснения - это процедура, выполняющая обоснование полученного механизмом вывода результата.

Интеллектуальный интерфейс - это процедура, выполняющая интерпретацию запроса пользователя к базе знаний и формирующая ответ в удобной для него форме.

^ Назначение экспертной системы: консультирование и обучение неопытных пользователей, ассистирование экспертам в решении задач, советы экспертам по вопросам из смежных областей знаний (интеграция источников знаний).

^ Статическая экспертная система - это ЭС, решающая задачи в условиях не изменяющихся во времени исходных данных и знаний.

Динамическая экспертная система - это ЭС, решающая задачи в условиях изменяющихся во времени исходных данных и знаний.

^ Аналитическая экспертная система - это ЭС, осуществляющая оценку вариантов решений (проверку гипотез).

Синтетическая экспертная система - это ЭС, осуществляющая генерацию вариантов решений (формирование гипотез).

^ Классы решаемых задач в экспертной системе: интерпретация, диагностика, прогнозирование, проектирование, планирование, мониторинг, коррекция, управление.

^ Самообучающаяся система - это ИИС, которая на основе примеров реальной практики автоматически формирует единицы знаний.

Система с индуктивным выводом - это самообучающаяся ИИС, которая на основе обучения по примерам реальной практики строит деревья решений.

^ Нейронная сеть - это самообучающаяся ИИС, которая на основе обучения по примерам реальной практики строит ассоциативную сеть понятий (нейронов) для параллельного поиска на ней решений.

^ Система, основанная на прецедентах, - это самообучающаяся ИИС, которая в качестве единиц знаний хранит собственно прецеденты решений (примеры) и позволяет по запросу подбирать и адаптировать наиболее похожие прецеденты.

^ Информационное хранилище (Data Warehouse) - это самообучающаяся ИИС, которая позволяет извлекать знания из баз данных и создавать специально-организованные базы знаний.





Скачать 0,57 Mb.
оставить комментарий
страница1/3
Дата28.09.2011
Размер0,57 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх