скачать
РАБОЧАЯ ПРОГРАММА учебного предмета (учебного курса, учебной дисциплины, учебного модуля) ^ Гимназия» г. Мензелинска Республики Татарстан наименование ОУ Шайдуллина Р.К., учитель I квалификационной категории Ф. И. О., категория по физике, 11 класс предмет, класс и т.п.
2010 - 2011 учебный год Пояснительная записка Рабочая программа по физике в 11 классе составлена на основе - федерального компонента государственного стандарта среднего (полного) общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), -примерной программы среднего (полного) общего образования по физике(базовый уровень) (составители: Э.Д.Днепров, А.Г.Аркадьев; М., Дрофа, 2007), -программы общеобразовательных учреждений. Физика. 10-11 классы(авторы: П.Г.Саенко, В.С.Данюшенков, О.В.Коршунова и др. Москва «Просвещение»,2007), где включена программа авторов В. С. Данюшенкова, О. В. Коршуновой к линии учебников Г. Я. Мякишева, 10-11 классы, базовый уровень, -Письма МО и Н РТ «Об особенностях преподавания учебного предмета «Физика» в условиях введения федерального компонента государственного стандарта общего образования» №1292/ 9 от 02.03.09; -федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2010-2011 учебный год (Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни/ Г. Я. Мякишев, Б. Б. Буховцев, В. М. Чаругин- М.:Просвещение, 2009.); - с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования; -базисного учебного плана 2010-2011 года. Рабочая программа конкретизирует содержание предметных тем образовательного стандарта на базовом уровне; дает конкретное распределение учебных часов по разделам курса и рекомендуемую последовательность изучения разделов физики с учетом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся; определяет минимальное количество лабораторных работ, выполняемых учащимися. Цели и задачи изучения физики на базовом уровне в 11 классе:
Место предмета в учебном плане МОУ «Гимназия» Согласно Федеральному базисному учебному плану на изучение физики в 11 классе отводится 2 ч в неделю. ^ В год -70 часов (2 часа в неделю) В том числе: контрольных работ -5, лабораторных работ -7 , зачетов -2. Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ, зачетов. Итоговая аттестация предусмотрена в виде административной итоговой контрольной работы в форме ЕГЭ. Уровень обучения – базовый. Срок реализации рабочей учебной программы – один учебный год. В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный, репродуктивный, частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ. Краткая характеристика сформированных общеучебных умений, навыков на начало учебного года учащихся 11 класса: знают - смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, атом, атомное ядро, ионизирующие излучения; - смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд; - смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики; - вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики; умеют - описывать и объяснять физические явления и свойства тел: движение искусственных спутников Земли; свойства газов, жидкостей и твердых тел; - отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления; - приводить примеры практического использования физических знаний: законов механики, термодинамики в энергетике; - воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: - обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов; - оценки влияния на организм человека и другие организмы загрязнения окружающей среды; ![]() ![]() ![]() ![]() Основное содержание 1. Электродинамика (продолжение) (11 ч) Магнитное поле. Плазма. Взаимодействие токов. Индукция магнитного поля. Сила Ампера. Сила Лоренца. Явление электромагнитной индукции. Правило Ленца. Магнитный поток. Закон электромагнитной индукции. Взаимосвязь электрического и магнитного полей. Вихревое электрическое поле. Самоиндукция. Индуктивность. Энергия магнитного поля. Электромагнитное поле. Фронтальные лабораторные работы 1. Наблюдение действия магнитного поля на ток. 2. Изучение явления электромагнитной индукции. ^ Электрические колебания. Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Производство, передача и потребление электрической энергии. Генерирование энергии. Трансформатор. Передача электрической энергии. Интерференция волн. Принцип Гюйгенса. Дифракция волн. Электромагнитные волны. Излучение электромагнитных волн. Свойства электромагнитных волн. Принцип радиосвязи. Телевидение. Фронтальная лабораторная работа 3.Определение ускорения свободного падения с помощью маятника. ^ Световые лучи. Закон преломления света. Полное внутреннее отражение. Призма. Формула тонкой линзы. Получение изображения с помощью линзы. Оптические приборы. Светоэлектромагнитные волны. Скорость света и методы ее измерения. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн. Фронтальные лабораторные работы 4.Измерение показателя преломления стекла. 5.Определение оптической силы и фокусного расстояния собирающей линзы. 6.Измерение длины световой волны. ^ Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Релятивистская динамика. Связь массы и энергии. ^ Световые кванты. Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Опыты Лебедева и Вавилова. Атомная физика. Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Соотношение неопределенностей Гейзенберга. Корпускулярно-волновой дуализм. Дифракция электронов. Лазеры. ^ Физика атомного ядра. Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада и его статистический характер. Протонно-нейтронная модель строения атомного ядра. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Физика элементарных частиц. Статистический характер процессов в микромире. Античастицы. Фронтальная лабораторная работа 7.Наблюдение сплошного и линейчатого спектров. ^ Строение Солнечной системы. Система Земля—Луна. Солнце — ближайшая к нам звезда. Звезды и источники их энергии. Современные представления о происхождении и эволюции Солнца, звезд, галактик. Применимость законов физики для объяснения природы космических объектов. Пространственные масштабы наблюдаемой Вселенной. ^ Единая физическая картина мира. Фундаментальные взаимодействия. Физика и научно-техническая революция. Физика и культура. ^ 10. Резервные уроки –(2ч) ![]() знать/понимать
уметь
• приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров; • воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
^ по физике
|