скачать Реферат В данной работе проведен обзор методов социально-экономического прогнозирования, наиболее часто применяемых в экономической практике. Выбраны четыре модели для прогнозирования потребления мяса на душу населения за год по РФ: метод наименьших квадратов (МНК), экспоненциальное сглаживание, модели Хольта, Бокса и Дженкинса. Выбранные модели дают довольно различные результаты, и лучшие результаты были получены при использовании полиномиальной модели метода наименьших квадратов и модели Хольта. Результаты вычислений представлены в таблицах. Рассчитана абсолютная ошибка прогноза и средняя относительная ошибка прогноза, коэффициент детерминации. Именно эти показатели рассматривались в качестве критерия для выбора модели, дающей наилучшее прогнозное значение интересующей нас переменной, т.е. потребления мяса на душу населения. Расчеты проводились с помощью программы Excel, которая позволила визуально представить результаты работы. В данной курсовой работе приведено подробное описание этого программного продукта. Содержание Стр.
ВведениеПрактически каждое предприятие, большое или маленькое, частное или государственное, явно или неявно пользуется прогнозами, потому что каждое предприятие должно планировать будущее, о котором оно пока ничего не знает. Прогнозы необходимы в финансировании, маркетинге, подборе кадров и различных производственных областях, в правительственных и коммерческих организациях, в маленьких социальных клубах и национальных политических партиях. Прогнозирование – это способ научного предвидения, в котором используется как накопленный в прошлом опыт, так и текущие допущения насчет будущего с целью его определения. Результатом является прогноз, то есть научно обоснованное суждение о возможных состояниях объекта в будущем, об альтернативных путях и сроках его существования. Прогнозирование определяет реальность и благоприятность для хозяйственной структуры поставленных перед ней целей. Целью данной курсовой работы является рассмотрение наиболее эффективных методов социально-экономических прогнозов и осуществление прогнозирования общего числа страховых организаций, так как российский рынок мяса и мясных продуктов является самым крупным сектором продовольственного рынка: за ним следует зерновой, затем молочный. Его роль определяется не только растущими объемами производства, спроса и потребления мясных продуктов, но и их значимостью как основного источника белка животного происхождения в рационе человека. В настоящее время по уровню потребления мясопродукции на душу населения Россия еще значительно отстает от развитых стран, однако этот показатель постепенно увеличивается, что говорит о росте благосостояния населения страны, вместе с которым будет неуклонно расти емкость мясного рынка. ^ До 1991 года СССР предпочитал закупать за рубежом не дорогое мясо, а зерно для производства кормов. Тем самым он экономил деньги и давал работу отечественному животноводству. Правда, мясо «дотировалось» два раза: сначала государство, закупив зерно в США, по льготным ценам отдавало его производителям кормов. Затем государство, покупая мясо у животноводов по 4 рубля за килограмм, затем реализовывало его в рознично торговле по 1,9 рубля. Правда, за счет высокого платежеспособного спроса мясо стало дефицитом: его быстро сметали с прилавков или торговали им «из-под полы». Государство в СССР так и не решилось отменить дотации на мясо и наполнить им магазины, повысив цены на него до 5-6 рублей. С 1991 года это система рухнула: мясоперерабатывающие заводы принялись закупать мясо прямо за границей. В постсоветский период импорт мяса увеличивался год от года. Началось массовое производство фальсифицированной низкокачественной мясопродукции. Этот факт обычно сопровождается идеологически окрашенными комментариями, сводящимися к констатации отрицательной динамики отрасли в 1990-е годы. Действительно, производство и потребление мяса в России неуклонно сокращалось на протяжении 1990-х годов и стало расти в 2000-е. Одной из основных тенденций развития мирового рынка мяса на сегодняшний день является недостаточный для обеспечения нужд потребителей уровень производства. Производители мяса сталкиваются с проблемой ограниченности кормовой базы для животноводства, которая является актуальной и для России. Недостаточное производство мясного сырья в свою очередь создает проблемы для развития пищевой промышленности. В настоящее время Россия не в состоянии полностью обеспечить себя мясом отечественного производства. Соответственно переход мясоперерабатывающей индустрии на отечественное сырье в ближайшее время невозможен. В связи с этим можно сделать вывод, что в ближайшем будущем импортные поставки будут играть определяющую роль в обеспечении отечественных предприятий сырьем. Несмотря на это высокий потенциал российского мясной отрасли и программы правительства, направленные на развитие и поддержку отечественного производителя, позволяют надеяться на позитивные изменения в данном секторе экономики. В ближайшей перспективе у отечественных животноводов появляется шанс укрепить свои позиции, как на российском, так и международном рынках. Быстрее всех будет развиваться птицеводство, которое характеризуется самой высокой оборачиваемостью капитала и коротким сроком окупаемости. Период окупаемости свиноводческих хозяйств составляет пять лет, производство говядины окупается лишь за десять. Исходя из тенденций последних лет, рынок свинины можно охарактеризовать как насыщенный и близкий к стабильности, в то время как на рынке говядины наблюдается явный дефицит предложения. Рост производства свинины обусловлен появлением ряда крупных инвестиционных проектов. В то же время инвестиционные проекты по выращиванию КРС просто отсутствуют. На рынке говядины наблюдается увеличение доли импорта, рост цен, обусловленный недостаточным предложением на внутреннем рынке, снижение потребительского спроса на мясо в связи с низким уровнем реальных денежных доходов населения. Потребление мяса в России стабильно увеличивается. Поскольку отечественные производители мяса не могут в полной мере удовлетворить спрос, актуальным остается импорт мяса. Отечественные производители мяса наращивают объемы производства свинины и мяса птицы. Производство КРС находится в упадке. Следовательно, наиболее выгодным является импорт говядины (более низкие пошлины, по сравнению с пошлинами на свинину и мясо птицы, отсутствие конкуренции со стороны отечественных производителей). Основным экспортером говядины является Бразилия. В 2006 году экспорт говядины из Бразилии был закрыт по причине карантина. В связи с этим, импортеры существенно увеличили объем вывоза говядины из Аргентины. После чего, президент Аргентины ввел запрет на экспорт из страны говядины сроком на полгода. Причина - слишком большой вывоз этой продукции из страны, повлекший рост цен на мясо на местном рынке Аргентины. Экспорт говядины из Уругвая, Парагвая и стран ЕС в полной мере не мог покрыть образовавшийся спрос (недостаточные объемы производства говядины) и цены на мясо из этих стран значительно выше цен на мясо из Бразилии и Аргентины. Таким образом, вследствие принятой Аргентиной защитной меры образовался дефицит говядины в России и рост цен на нее. В этой ситуации в выигрыше оказались компании-трейдеры, имеющие запасы на складах. После того, как запрет на экспорт из Бразилии был снят, и угроза образования дефицита говядины пропала, в России последовало снижение цен на говядину. В целом, рынок мясной продукции обладает высокой емкостью и характеризуется стабильным спросом, высокой инвестиционной привлекательностью и жестким уровнем конкуренции местных и зарубежных игроков. Если проанализировать потребление мяса и мясопродуктов в регионах России, то можно отметить отчетливую биполярность. Максимумы потребления этих продуктов приходятся на столичные центры (Москва и С-Петербург) и на северные регионы страны, где значительную часть составляет промыслово-скотоводческое население. ![]() Помимо политически традиционной поддержки столичных центров на высоком уровне потребления мяса, здесь сказывается еще один серьезный фактор - высокая концентрация наиболее трудоспособного и экономически активного населения. Физиологическая потребность в мясных продуктах у взрослых мужчин выше средней на 10%, а у молодых и того выше - на 38%. Кроме этого в условиях лучшей адаптации к кризису и более высоких заработков население столичных центров располагало и более высокой покупательной способностью. ^ при проведении расчетов 2.1 Метод наименьших квадратов (МНК) Метод наименьших квадратов позволяет относительно просто определить аналитическую зависимость одного показателя от другого: y=φ(x). Имея такую функциональную зависимость, легко определить значение Y при любом значении x, т.е. получить прогнозное значение Y при заданном значении х. Вывод формул МНК. Пусть имеем статистические данные о параметре y в зависимости от х. Эти данные представим в таблице ниже:
Метод наименьших квадратов позволяет при заданном типе зависимости y=φ(x) так выбрать ее числовые параметры, чтобы кривая y=φ(x) наилучшим образом отображала экспериментальные данные по заданному критерию. Рассмотрим обоснование с точки зрения теории вероятностей для математического определения параметров, входящих в φ(x). Предположим, что истинная зависимость y от х в точности выражается формулой y=φ(x). Рассмотрим какое-нибудь значение аргумента хi. Результат опыта есть случайная величина yi,распределенная по нормальному закону с математическим ожиданием φ(xi) и со средним квадратическим отклонением σi, характеризующим ошибку измерения. Пусть точность измерения во всех точках х=(х1, х2, …, хn) одинакова, т.е. σ1=σ2=…=σn=σ. Тогда нормальный закон распределения Yi имеет вид: ![]() В результате ряда измерений произошло следующее событие: случайные величины (y1*, y2*, …, yn*). Поставим следующую задачу. Задача МНК. Подобрать математические ожидания φ(x1), φ(x2), …, φ(xn) так, чтобы вероятность этого события была максимальной. Так как величины Yi непрерывны, то говорят не о вероятностях событий Yi=yi*, а о вероятностях того, что Yi примут значения из интервала (yi*,yi*+dyi*), т.е. ![]() Вероятность P того, что система случайных величин (y1, y2, …, yn) примет совокупность значений, лежащих в пределах (yi*,yi*+dyi*), i=1, 2, …, n, с учетом того, что измерения проводятся независимо друг от друга, равна произведению вероятностей Fi(yi)*dyi* для всех значений i: ![]() Где k – коэффициент, не зависящий от φ(xi). Требуется выбрать математические ожидания φ(x1), φ(x2), …, φ(xn) так, чтобы выражение (2) достигало максимума. Это возможно, когда выполнено условие ![]() Отсюда получаем требование метода наименьших квадратов: для того чтобы данная совокупность наблюдаемых значений (y1*, y2*, …, yn*) была наивероятнейшей, нужно выбрать функцию φ(x) так, чтобы сумма квадратов отклонений наблюдаемых значений yi* от φ(xi) была наименьшей. При решении практических задач зависимость y=φ(x) задается в виде y=φ(x,a1, a2, …, am), где a1, a2, …, am – числовые параметры, которые необходимо определить. Учитывая соотношение (3), получим ![]() Продифференцируем выражение (4) по a1, a2, …, am и прировняем полученные производные нулю. Получим следующую систему уравнений: ![]() ![]() … … … … … … … … … … ; (5) ![]() ![]() где ![]() Отметим, что в общем случае систему (5) решить нельзя, так как неизвестен вид функции φ(x,a1, a2, …, am). При решении практических задач зависимость y от x ищут в виде линейной комбинации известных функций с коэффициентами a1, a2, …, am, а именно: ![]() Рассмотрим один из частных случаев МНК: пусть зависимость y от х выражается линейной функцией y=a1+a2x. Тогда значения коэффициентов a1 и a2 находятся по следующим формулам: ![]() ![]() ^ Экспоненциальное сглаживание – один из простейших и распространенных приемов выравнивания ряда. В его основе лежит расчет экспоненциальных средних. При исследовании временного ряда xt экспоненциальное сглаживание проводится по формуле: ![]() где хt – текущий член временного ряда в момент времени t; St – значение экспоненциальной средней в момент времени t; α – параметр адаптации (параметр сглаживания), 0< α<1, β=1-α. В качестве начальных условий для применения экспоненциального сглаживания рекомендуется выбирать следующие значения: - среднее арифметическое всех имеющихся значений (или части значений) временного ряда; - среднее геометрическое всех имеющихся значений временного ряда; - значения, выбранные из статистики, полученной при наблюдении за аналогами изучаемого явления. Величина St оказывается взвешенной суммой всех членов ряда. Причем веса падают экспоненциально в зависимости от давности наблюдения. Экспоненциальная средняя St имеет то же математическое ожидание, что и ряд х, но меньшую дисперсию. Чем меньше α, тем в большей степени сокращается дисперсия экспоненциальной средней. ^ При исследовании численности населения используется двухпараметрическая модель Хольта. Простейшая модификация двухпараметрической модели Хольта выглядит следующим образом: ![]() где: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ^ Модель Бокса и Дженкинса является одним из вариантов “усовершенствованной” модели Хольта за счет включения в расчетные формулы разности ошибок прогнозов: ![]() ![]() ![]() ![]() где ![]() Обобщенная модель Бокса и Дженкинса может применяться для прогнозирования нестационарных временных рядов, так как содержит не только операцию сглаживания скользящим средним, но и элементы авторегрессии. Модель основывается на гипотезе, что изучаемый процесс является выходом линейного фильтра, на вход которого подан процесс белого шума, т.е. что член ряда ![]() Если последовательность предыдущих значений конечна или бесконечна, но сходится, то фильтр называется устойчивым, а процесс ![]()
|