Урок в 9- 11 классах Тема: «Система подготовки к гиа и егэ по математике: решение задач на смеси, растворы и сплавы» icon

Урок в 9- 11 классах Тема: «Система подготовки к гиа и егэ по математике: решение задач на смеси, растворы и сплавы»


4 чел. помогло.
Смотрите также:
Программа элективного курса по математике «Задачи на смеси, растворы и сплавы»...
Урок на тему: «Решение задач на растворы»...
План график по подготовке и проведению государственной (итоговой) аттестации в форме гиа и егэ...
Методическое сопровождение Выверка данных по егэ оу города, корректировка списка обучающихся...
Приказ №750 от «16» марта 2012г Опроведении пробного тестирования в формате егэ и гиа по всем...
Решение задач и выполнение заданий по математике...
Программа элективного курса по математике в рамках предпрофильной подготовки...
Н. П. Князева План методического сопровождения подготовки к егэ, гиа в 2011- 2012 учебном году...
Урок по математике в третьем классе. Тема : Сравнение, преобразование и решение задач...
Программа Элективный курс по математике 9 класс Решение задач основных тем курса математики...
Урок на тему: «Решение задач на растворы»...
Решение нестандартных задач по математике...



Загрузка...
скачать


Урок в 9- 11 классах

Тема: «Система подготовки к ГИА и ЕГЭ по математике:

решение задач на смеси, растворы и сплавы».

Тип урока: урок обобщения систематизации знаний.

Цели урока:

Обобщить решение задач на сплавы, растворы и смеси различными способами.

Воспитывать интерес к предмету через межпредметные связи с химией, обращая внимание на аккуратность, дисциплинированность и самостоятельность.

Развивать устную и письменную речь, внимание и логическое мышление.

Оборудование:

компьютер и проектор; тексты задач на смеси, растворы и сплавы для решения в классе и дома.

Подготовка к уроку: повторение способов решения задач на смеси и сплавы.

Комментарий к уроку: использование презентации Microsoft Power Point


^ План урока:


  • Оргмомент (сообщение необходимости решения задач на смеси и сплавы, связь темы урока с КИМами ЕГЭ по математике).

  • ^ Актуализация опорных знаний (повторение определения процента и концентрации).

Решение задач на смеси, растворы и сплавы.

Человеку часто приходится смешивать различные жидкости, порошки, газообразные или твердые вещества, или разбавлять что-либо водой. Текстовые задачи на смеси, сплавы и растворы входят в различные сборники заданий по математике ГИА и ЕГЭ. «Закон сохранения объема или массы»

Если два сплава (раствора) соединяют в один «новый» сплав (раствор), то V = V1 + V2 – сохраняется объем; m = m1+ m2 – сохраняется масса.

Примеры:

Если сплав содержит свинец и медь в отношении 4:7, то в этом сплаве 4/11 частей от массы сплава составляет масса свинца, а 7/11- масса меди.

Немного теории.

Абсолютное содержание вещества в смеси – это количество вещества, выраженное в единицах измерения (грамм, литр и др.)

Относительное содержание вещества в смеси – это отношение абсолютного содержания и общей массы (объему) смеси. Часто относительное содержание вещества в смеси называют концентрацией или процентным содержанием. Сумма концентраций всех компонентов смеси равна 1. Если имеется 40%-й раствор соли, то в этом растворе 0,4 объема занимает «чистая» соль. Значит, объемная концентрация соли в растворе равна 0,4.:

  • Закрепление материала (решение задач на смеси, растворы и сплавы разными способами).

Задача №1 (№ 615) Два литра шести процентного уксуса разбавили тремя литрами одно процентного уксуса. Каково процентное содержание уксуса в полученном растворе?

(Ответ: 3).

Задача №2 Имеются сплавы золота и серебра. В одном эти металлы находятся в отношении 2: 3, а в другом в отношении 3: 7. Сколько нужно взять от каждого сплава, чтобы получить 1 кг нового, в котором золото и серебро находились бы в отношении 5: 11?



По этой схеме уравнение х + у =1 показывает массу нового сплава.

Определяем массу золота в каждом сплаве и получаем уравнение



Аналогично массу серебра и получаем уравнение



Записываем одну из систем:





Решая ее, получаем х = 0,125 и у = 0,875

Ответ: 125 г и 875 г.

Задача № 3.

Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди





х = 140 и у = 60

Ответ: 140 г меди и 60 г свинца

Задача № 4

Смешали 30%-й раствор соляной кислоты с 10%-ым раствором и получили 600 г 15%-го раствора. Сколько граммов каждого раствора надо было взять?

Решение 1: Обозначим x массу первого раствора, тогда масса второго

(600 - x). Составим уравнение: 30x + 10* (600 - x) = 600 *15

x = 150



Решение 2: Приравнивание площадей равновеликих прямоугольников: 15x = 5 (600- x)

x =150

Ответ: 150 г 30% и 450 г 10% раствора

Задача № 5

Имеется лом стали двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого из этих сортов, чтобы получить140 т стали с содержанием 30% никеля?



С использованием графика:

(приравнивание площадей равновеликих прямоугольников)

10*х = 25*(140 – х)

х = 100

140 – 100 = 40

Ответ: 100 т и 40 т

Задача № 6.

Имеется два кислотных раствора: один 20%, другой 30%. Взяли 0,5 л первого и 1,5 л второго раствора и образовали новый раствор. Какова концентрация кислоты в новом растворе?

Так как первый раствор 20 % - й, то в нем 0,2 объема занимает «чистая» кислота. Так как объем первого раствора равен 0,5л, то в этом количестве содержится 0,2*0,5=0,1 л «чистой» кислоты.

Аналогично во втором растворе будет содержаться 0,3*1,5=0,45л «чистой» кислоты.

При смешивании обоих растворов получим 0,5+1,5=2л кислотного раствора, в котором 0,1+0,45=0,55л «чистой» кислоты.

Отсюда следует, что концентрация кислоты в новом растворе есть отношение 0,55:2=0,275, т.е.27,5%. Ответ: концентрация кислоты в новом растворе 27,5%

Задача № 7.

Имеется руда из двух пластов с содержанием меди 6% и 11%. Сколько «бедной» руды надо взять, чтобы получить при смешивании с «богатой» 20 т руды с содержанием меди 8%?

Аналитическая модель:

Переведем проценты в дроби: 6%=0,06; 11%=0,11; 8%=0,08

Пусть надо взять х т «бедной» руды, которая будет содержать 0,06х т меди, а «богатой» руды надо взять (20-х) т, которая будет содержать 0,11(20 - х) т меди.

Так как получившиеся 20 т руды будут содержать 20*0,08 т меди, то получим уравнение:

0,06х + 0,11(20 - х) = 20*0,08.

Решив уравнение, получим х = 12.

Ответ: 12т руды с 6% содержанием меди


Старинный способ решения задач на смешивание двух веществ

Задача № 8.

У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла ценою 7 гривен?



Из схемы делаем заключение, что дешевого масла нужно взять втрое больше, чем дорогого, т.е. для получения одного ведра ценою 7 гривен нужно взять дорогого масла 1/4 ведра, а дешевого масла 3/4.

^ Способ Л.Ф.Магницкого для трех веществ

Задача № 9.

Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти сорта, чтобы получить чай стоимостью 6 гривен за фунт?



Взять 6+2=8 частей чая ценой по 5 гривен и по одной части ценой 8 гривен и 12 гривен за один фунт. Возьмем 8/10 фунта чая ценой по 5 гривен за фунт и по1/10 фунта чая ценой 8 и 12 гривен за фунт, то получим 1 фунт чая ценой 8/10*5 + 1/10*8 + 1/10*12 = 6 гривен

^ Задача № 10.

Сплавили два слитка серебра: 75 г 600-й и 150 г 864-й пробы. Определить пробу сплава.

Пусть проба сплава равна х. Составим диагональную схему:



Получаем: (864 – х): (х – 600) = 75: 150

1728 – 2х = х – 600

х = 776.

Ответ: сплав 776-й пробы.

«Правило креста»

При решении задач на смешивание растворов разных концентраций используется «правило креста». В точке пересечения двух прямых обозначают концентрацию смеси. У концов этих прямых слева от точки пересечения указывают концентрации составных частей смеси, а справа – разности концентраций смеси и ее составных частей:



Например, для приготовления 30 г 80%-го раствора H3PO4 требуется взять 20 г 90%-го и 10 г 60%-го растворов кислоты.

^ Задача № 11.

От двух кусков сплава с массами 3 кг и 2 кг и с концентрацией меди 0,6 и 0,8 отрезали по куску равной массы. Каждый из отрезанных кусков сплавлен с остатком другого куска, после чего концентрация меди в обоих сплавах стала одинаковой. Какова масса каждого из отрезанных кусков?

Обозначим массу отрезанного куска х (кг). Так как в обоих сплавах концентрация меди после двух операция стала одинаковой, то массы сплавов и массы меди в этих сплавах пропорциональны. Первоначально массы меди в сплавах равны 0,6*3(кг) и 0,8*2(кг). После того, как отрезали куски массой х(кг), содержание меди стало 0,6(3-х) и 0,8(2-х), а после сплавления



0,6(3-х) + 0,8х и 0,8(2-х) +0,6х

х = 1,2

Ответ: 1,2 кг

^ Задача № 12.

Латунь – сплав меди и цинка. Кусок латуни содержит меди на 11 кг больше, чем цинка. Этот кусок латуни сплавили с 12 кг меди и получили латунь, в котором 75% меди. Сколько килограммов меди было в куске латуни первоначально?

Обозначим искомую величину за х. Тогда масса первоначального куска латуни 2х – 11, а его содержание меди составляет процентов. Поскольку «медность» куска меди 100%, то по правилу квадрата получаем:



Задача № 13.

В бидон налили 4л молока трехпроцентной жирности и 6л молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?

  • Итоги урока.

  • Домашнее задание.

(Демонстрационный вариант контрольных измерительных материалов для проведения в 2011 году единого государственного экзамена по МАТЕМАТИКЕ)

Задача 1. В сосуд, содержащий 5 литров 12-процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Задача 2. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 3. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 4. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Задача 5. Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 6. Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Задача 7. Виноград содержит 90% влаги, а изюм — 5%. Сколько килограммов винограда требуется для получения 20 килограммов изюма?

Задача 8. Имеется два сплава. Первый сплав содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Задача 9. Первый сплав содержит 10% меди, второй — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Задача 10. Смешав 30-процентный и 60-процентный растворы кислоты и добавив 10 кг чистой воды, получили 36-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 41-процентный раствор кислоты. Сколько килограммов 30-процентного раствора использовали для получения смеси?

Задача 11. Имеются два сосуда. Первый содержит 30 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Задача 12. Бригада маляров красит забор длиной 240 метров, ежедневно увеличивая норму покраски на одно и то же число метров. Известно, что за первый и последний день в сумме бригада покрасила 60 метров забора. Определите, сколько дней бригада маляров красила весь забор.

Задача 13. Рабочие прокладывают тоннель длиной 500 метров, ежедневно увеличивая норму прокладки на одно и то же число метров. Известно, что за первый день рабочие проложили 3 метра туннеля. Определите, сколько метров туннеля проложили рабочие в последний день, если вся работа была выполнена за 10 дней.

Задача 14. Васе надо решить 490 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за первый день Вася решил 5 задач. Определите, сколько задач решил Вася в последний день, если со всеми задачами он справился за 14 дней.




оставить комментарий
Дата22.09.2011
Размер84,8 Kb.
ТипУрок, Образовательные материалы
Добавить документ в свой блог или на сайт

плохо
  2
не очень плохо
  1
хорошо
  2
отлично
  13
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх