Экономическое и экологическое значение систем водоотведения icon

Экономическое и экологическое значение систем водоотведения


7 чел. помогло.
Смотрите также:
Развитие систем водоснабжения и водоотведения санкт-петербурга...
«О мерах по повышению надежности и экологической безопасности действующих канализационных...
Доклад об экологической ситуации...
Доклад об осуществлении государственного лесного контроля (надзора)...
Состояние биоразнообразия природных экосистем России Авторы: Под ред.: В. А. Орлова и А. А...
Инвестиционная программа по развитию муниципальных систем водоснабжения и водоотведения города...
Инвестиционная программа по развитию муниципальных систем водоснабжения и водоотведения города...
«инновационные, ресурсосберегающие технологии...
Региональные программы и распределение средств 48 Механизмы обеспечения согласованности и...
Зао аудиторская компания «рост» подготовлено специально для ООО «Городские Теплосети» города...
Кафедре «водоснабжения и водоотведения» ргсу- 50 лет...
Подготовка кадров для систем водоснабжения и водоотведения...



Загрузка...
страницы: 1   2   3   4   5   6   7   8   9   ...   15
вернуться в начало
скачать
^

Сплав по водоотводящим сетям нечистот, снега и измельченного мусора


Сплав нечистот

Норма водоотведения бытовых сточных вод в неканализованных районах принимается равной 25 л/сут на человека за счет сброса стоков в канализацию сливными станциями и коммунально-бытовыми предприятиями (т.е. банями, прачечными, столовыми и др).

Для приема жидких отбросов устраивают сливные станции, которые состоят из приемного отделения, мест хранения и мойки баков, решеток и песколовок. Жидкие отбросы доставляют ассенизационным транспортом, сливаются через приемный люк, проходят очистку от крупных загрязнений на решетках. Затем жидкие отбросы проходят через песколовки, где задерживаются минеральные нерастворимые примеси и далее спускаются в водоотводящую сеть.

^ Сплав снега

Удаление снега с территории населенных мест и промышленных предприятий осуществляется или с помощью вывоза его автотранспортом или же ликвидацией снега передвижными или стационарными снеготаялками. Альтернативным методом является сбрасывание собранного снега в водоотводящую сеть.

Разрешается сплав чистого снега по дождевым сетям при наличии в них условно-чистых производственных стоков. По общесплавной и бытовой сетям сплав снега допустим в том случае, если он не оказывает существенного влияния на ход биологической очистки. Воды от стационарных снеготаялок допускается сбрасывать в любую водоотводящую сеть, но только после пропуска через песколовки.

Имеются ряд правил, которые необходимо соблюдать при сплаве снега, например, лучше всего снег сплавлять по трубам диаметром более 300 мм.

Снег сбрасывается в сеть через специальные снеговые шахты, а при их отсутствии – через смотровые колодцы. Наибольшее количество снега, сбрасываемого в сеть, вычисляется по формуле:

,

где ^ Q – расход сточных вод,
ρ - плотность стоков,
tн и tк – соответственно начальная температура и минимально возможная температура сточных вод,
tсн – температура снега,
ссн и св – теплоемкость снега и воды,
Kсн – скрытая теплота плавления снега.

При механической очистке допускается снижение температуры сточных вод до 3-4оС, при биологической – не менее 6оС.

^ Сплав измельченного домового мусора

Домовой мусор представляет собой механическую смесь пищевых отходов, квартирного сора и утиля. Пищевые отходы, как известно, могут собираться в специальную тару, перерабатываться и затем использоваться вновь.

Гидравлический способ удаления мусора из зданий с санитарной точки зрения является совершенным. В этом случае мусор измельчается дробилкой под кухонной раковиной и смывается в канализацию.

Однако без предварительной сортировки бытового мусора и отделения отходов, содержащих токсичные и ядовитые вещества, этот способ не является безопасным с природоохранной точки зрения. До сих пор в нашей стране гидравлический способ удаления мусора не нашел достаточного распространения.

При сплаве измельченного мусора по водоотводящим сетям при раздельном методе сбора его норму принимают 70 г/сут на человека, а при общем сборе мусора – до 100 г/сут на человека.
^

Основные исходные данные для проектирования водоотводящих сетей


Для разработки проекта водоотводящей сети населенного пункта основным и исходным материалом служит проект планировки, для промышленного предприятия – генплан.

Кроме этого, для проектирования необходимы данные топографических, геологических и гидрогеологических изысканий. Нормативные допущения для проектирования водоотводящих сетей находятся в СНиП 2.04.03-85 и различных инструкциях.

Предпроектные разработки включают:

  1. Технико-экономическое обоснование строительства и проектирования объектов, т.е.: общие данные, основные решения и т.д.

  2. Схемы комплексного использования и охраны водных ресурсов.

  3. Схемы и проекты районной планировки.

Кроме этого, должны быть собраны следующие исходные данные:

  • сведения о существующих схемах водоснабжения и водоотведения объекта

  • данные по объекту:

а. Число жителей

б. Плотность населения и системы благоустройства

в. Пропускная способность общественных зданий и коммунальных предприятий

г. Виды промышленных предприятий, характеристики производства, количественный и качественный состав стоков

д. Гидрологические, геологические и метеорологические данные

е. Гидрология по водоемам

ж. Топографические материалы по объекту
^

Стадии проектирования


Разработка проектно-сметной документации может выполняться в одну стадию – рабочий проект или в две стадии – проект и рабочая документация.

Стадийность проектирования определяется в технико-экономическом обосновании (ТЭО) или технико-экономических расчетах (ТЭР), исходя из того, что проектирование технически несложных объектов и объектов технического перевооружения выполняется в 1 стадию. Двухстадийное проектирование обычно применяется при строительстве крупных и сложных объектов.

Перед началом проектирования заказчиком проекта составляется задание на проектирование.В проектах (рабочих проектах) осуществляется необходимая доработка и детализация проектных решений, принятых в ТЭО (ТЭР) и уточняются основные технико-экономические показатели. Стоимость проектных работ определяется на основе “Сборника цен на проектные и изыскательские работы” с повышающим коэффициентом.
^

Системы водоотведения малонаселенных мест и отдельно расположенных объектов


К таким системам относятся сети и сооружения, предназначенные для отведения и очистки бытовых и близких к ним производственных сточных вод в количестве до 1400 м3/сутки. Малым населенным пунктом считается объект с населением до 5000 человек. К таким населенным пунктам относятся, например, дома отдыха, детские оздоровительные учреждения, индивидуальные коттеджи, фермерские хозяйства, дачи и т.п. объекты. Норма водоотведения бытовых стоков в малых населенных пунктах не превышает 200 л/сутки на одного жителя.

Проектирование систем водоотведения таких объектов производится по требованиям, изложенным в СНиП 2.04.03-85. Канализация малых населенных пунктов предусматривается, как правило, по неполной раздельной системе. Кроме этого, рекомендуется использовать централизованную схему водоотведения для одного или нескольких населенных пунктов, отдельных групп зданий и производственных зон.

Децентрализованные схемы допускается предусматривать:

  • если нет опасности загрязнения водоносных горизонтов,

  • если нет централизованной канализации в пунктах или объектах,

  • при необходимости канализования групп или отдельных зданий.

С учетом изложенных требований для решения вопросов канализования малонаселенных мест применяют индивидуальные, локальные и групповые системы

Индивидуальные системы водоотведения проектируют, как правило, для объектов, не имеющих централизованного водоснабжения (фермерские хозяйства, коттеджи, мелкие населенные пункты и т.д) – см. рис. Количество сточных вод от таких объектов невелико, поскольку снабжение водой происходит от водозаборных скважин или колодцев с насосами.



Сеть состоит из коротких самотечных участков труб, заканчивающихся на индивидуальных очистных сооружениях – септиках, фильтрующих колодцах, биопрудах и т.д. Индивидуальные системы могут в каждом конкретном случае существовать в течение неограниченного срока или служить первым шагом к созданию локальных систем водоотведения.

^ Локальные системы предусматривают централизованное водоотведение всего населенного пункта или ряда расположенных близко друг к другу объектов. Переход к локальным системам в ранее сложившихся населенных местах чаще всего обусловлен строительством многоэтажных домов с централизованным водоснабжением. Иногда такая система может применяться и для вновь строящихся населенных пунктов, если это оправдано экономически или продиктовано гидрогеологическими условиями.

Следующим этапом является организация групповых систем водоотведения. Условием устройства таких систем является большая плотность населения. В этом случае одной водоотводящей сетью обслуживаются несколько расположенных близко друг к другу объектов, что позволяет осуществлять очистку стоков на единых очистных сооружениях (см. рис). Это значительно облегчает организацию контроля за качеством очистки и уменьшает затраты.



Основной сложностью при эксплуатации водоотводящих сетей малых населенных пунктов и объектов являются частые засоры сети, что обусловлено малыми расходами и отсутствием самоочищающих скоростей в коллекторах (менее 0,7 м/с). В связи с этим рекомендуется проектировать начальные участки сети с уклоном не менее 0,008 и предусматривать устройства для периодической промывки сети. Наименьший диаметр труб – 150 мм. Материал труб – такой же, как и в городских условиях.

При необходимости подкачки сточной воды используются насосные станции, оборудованные центробежными или шнековыми насосами. 
^

Общие принципы использования ЭВМ при проектировании систем водоотведения


ЭВМ (компьютер) – в общем случае, это устройство для обработки поступающей информации. Обработка информации (или вводимых данных) происходит по программам. В данном случае программа – это последовательность операций, которую должна проделать ЭВМ. Все промежуточные результаты обработки информации (например, вычислений) хранятся в т.н. оперативном запоминающем устройстве (ОЗУ), причем ОЗУ сохраняет данные только при включенном компьютере. Для постоянного хранения и записи программ, данных к ним и результатов используются специальные устройства – например, накопители на магнитных дисках.

Сам процесс обработки информации происходит в микропроцессорах – миниатюрных электронных схемах, которые способны производить вычисления по введенным в ОЗУ программам. В персональных компьютерах (т.е. ЭВМ, предназначенных для одного пользователя), существует один центральный процессор, в больших компьютерах – от одного до нескольких десятков. Скорость современных процессоров достигает сотен миллионов операций в секунду.

Результаты обработки введенных данных визуально отображаются на мониторе (дисплее), и могут быть перенесены на бумагу при помощи принтеров и плоттеров (графопостроителей). Взаимодействие пользователя с ЭВМ происходит, как правило, в форме запросов компьютера о данных и т.п., которые выводятся на экран, и ответных действий пользователя, которые тот производит с помощью клавиатуры и ручного манипулятора мышь.

Поскольку сам компьютер является практически универсальным устройством, то определяющим фактором его применения является загруженная программа. Поэтому использование ЭВМ, в частности, для проектирования систем водоотведения, требует прежде всего наличия определенного набора программных средств. Рассмотрим более конкретно применение некоторых программ на основных этапах проектирования.

I этапразбивка на бассейны, выбор места для очистных сооружений и насосных станций, трассировка сети. На этой стадии возможно использование геоинформационных систем (ГИС) (например, MapInfo, ArcView, ГеоГраф и др.), которые обеспечивают сбор, хранение, обработку и отображение на дисплее географически привязанной информации. Однако, например, полномасштабную автоматизированную трассировку сети произвести пока еще невозможно. Это обусловлено отсутствием четкой последовательности выбора трассы сети, или, говорят, что эта задача плохо алгоритмизируется. Т.е. требует обязательного участия человека (прорисовка трассы вручную).

II этапразбивка на площади стока, определение удельного расхода, сосредоточенных и путевых расходов, наконец, расчетных расходов. На этой стадии можно воспользоваться неспециализированными программами – электронными таблицами. Такие программы предназначены для обработки больших таблиц чисел, в нашем случае, например, длин участков, площадей и расходов. Среди наиболее распространенных – Microsoft Excel, Quattro Pro, SuperCalc и др.

III этапгидравлический расчет, высотное проектирование сети, расчет сооружений на сети. На этом этапе требуется применение узкоспециализированных программ. Например, на кафедре водоснабжения и водоотведения ВоГТУ для гидравлического расчета бытовой сети разработана программа SEWERAGE. В некоторых случаях возможно, однако, использование и более универсальных программных средств общематематического назначения, например, пакетов MathCad или Mathematica.

IV этапконструирование сети, построение профилей, разработка строительной, конструкторской документации и смет. На этом этапе возможно использование т.н. систем автоматизированного проектирования (САПР). Они позволяют осуществить конструирование, черчение и подготовку документации для строительства. Среди этих систем лидером является AutoCAD.

Кроме того, на всех этапах проектирования возможно использовать ЭВМ для набора и правки текста в пояснительную часть проекта с помощью т.н. текстовых редакторов (например, Microsoft Word, PageMaker и др). Эти программы используются очень широко и применяются в самых различных областях, где требуется набор текстовых документов.

Итак, в настоящее время не существует единого комплекса программ, специально предназначенных для проектирования систем водоотведения. Чтобы попытаться найти необходимые программы или информацию, следует использовать ЭВМ как средство связи, то есть воспользоваться услугами глобальных компьютерных информационных сетей. Из них самой распространенной является Internet. В этой сети существуют мощные средства поиска необходимой информации (программ, данных, литературы и т.д.).

Если же рассматривать только те стороны проектирования, которые связаны с расчетной частью, то в этом случае, при необходимости, пользователь может и сам программировать.
^

Принципы расчета бытовой сети на ЭВМ (по программе SEWERAGE)


Эта программа предназначена для гидравлического расчета наружной водоотводящей самотечной сети. Для проведения расчета необходимо ввести данные об участках: отметки начала и конца, длина, расход, тип наполнения, уклон, вид труб, тип сопряжения, номер сопряженного участка и начальную глубину заложения. Имеется возможность автоматического ввода уклона, вида труб, типа сопряжения, номера сопряженного участка и начальной глубины.

В результатах расчета приводятся рассчитанные диаметры, наполнения, скорости и отметки. По полученным результатам строится продольный профиль коллектора.
^

Общие принципы расчета сети в целом


Прежде всего для каждого участка составляется список предыдущих примыкающих к его началу участков (т.е. участков, конечный номер которых совпадает с начальным номером текущего). Затем происходит расчет всех участков сети в определенной последовательности их номеров. Принцип расположения номеров участков для расчета следующий: все участки перебираются и рассчитываются только те из них, которые, во-первых, не имеют примыкающих участков, или, во-вторых, если все участки, входящие в список примыкающих, уже рассчитаны.
^

Общие принципы расчета отдельного участка (при автоматическом выборе основных параметров)


1. Расчет начальной глубины:

Рассчитывается минимальное значение глубины Hmin, которое выбирается как наибольшее из двух величин:

H1 = D + 0,7 и H2 = Hпром – а,

где D - диаметр трубопровода, м,
Hпром - нормативная глубина промерзания, м,
a – параметр (0,3 или 0,5 м).

Из всех участков, примыкающих к текущему, в качестве сопряженного выбирается тот участок, у которого будет наименьшая конечная отметка шелыги, воды или дна трубы (смотря по типу сопряжения). Если текущий участок – верховой, то начальная глубина принимается равной минимальной Hmin.

Если конечная глубина текущего участка после его расчета будет больше максимальной, то начальная глубина принимается равной минимальной и участок пересчитывается вновь. В этом случае в начале участка предусматривается насосная станция.

Тип сопряжения выбирается в зависимости от соотношения диаметров на сопряженном и текущем участках: при одинаковых диаметрах выбирается сопряжение "по уровням воды", при разных - "по шелыгам".

2. Расчет скорости и наполнения производится по уравнению Н.Н.Павловского (или Н.Ф.Федорова) с приближенным решением уравнения по методу секущих, точность расчета наполнения при этом составляет 0,001.

3. Выбор диаметра и уклона производится при соблюдении следующих правил: – диаметр должен быть не меньше минимального;
– скорость должна быть не меньше минимальной по СНиП 2.04.03-85;
– наполнение должно быть не больше расчетного по СНиП 2.04.03-85;
– заглубление в конце участка должно быть не меньше минимального, рассчитываемого с учетом глубины промерзания и диаметра трубы;
– при выбранном пользователем учете скоростей в боковых присоединениях уклон текущего участка подбирается таким, чтобы скорость на участке была не меньше наибольшей скорости во всех примыкающих;
– уклон при диаметре меньше 150 мм принимается не менее 0,008, а при 200 мм – не менее 0,007;
– если расход на участке меньше минимального заданного расхода, участок считается нерасчетным: наполнение и скорость не рассчитываются, а диаметр принимается равным минимальному.
^

Системы водоотведения промышленных предприятий


Системы водоотведения промышленных предприятий подразделяются на общесплавные и раздельные. Особенностью водоотведения для предприятий является то, что на отдельных из них могут образовываться до 5–10 различных видов стоков, отличающихся по расходу, составу и свойствам загрязнений.

При выборе системы водоотведения необходимо учитывать следующие возможности:

  • совместной и раздельной очистки отдельных видов стоков;

  • извлечения и повторного использования ценных веществ в стоках;

  • повторного использования производственных сточных вод в системе оборотного водоснабжения;

  • использования очищенных бытовых и дождевых сточных вод;

  • использования производственных вод для орошения сельскохозяйственных культур.

Кроме того, необходимо учитывать мощность водоприемника, качество воды в нем, вид водопользования и его самоочищающую способность.
^

Общесплавная система водоотведения


Эту систему целесообразно применять для небольших промышленных предприятий, если производственные стоки близки по составу к бытовым сточным водам и возможно попадание в дождевые стоки промышленных загрязнений (см. рис). Все категории сточных вод отводятся на единые очистные сооружения.


^

Раздельные системы водоотведения


Эти системы могут быть различными в зависимости от вида стоков, образующихся на предприятии. Бытовые и дождевые стоки отводятся по самостоятельным сетям. Производственные стоки могут отводиться по нескольким различным системам трубопроводов, в зависимости от категории стоков. В отдельных случаях производственные сточные воды могут отводиться совместно с бытовыми стоками (производственно-бытовая сеть) или дождевыми водами (производственно-дождевая сеть). Бывают следующие возможные раздельные системы:

1.^ С локальными очистными сооружениям (см. рис).

Применяется тогда, когда в сточных водах отдельных цехов содержатся специфические загрязнения, для очистки от которых целесообразно устройство отдельных очистных установок



2. ^ С частичным оборотом производственных сточных вод (см. рис). Целесообразно применять при возможности повторного использования некоторых производственных сточных вод с частичной очисткой или для водоснабжения других цехов.



3. ^ С полным оборотом производственных и бытовых вод (см. рис). Применяют при нехватке воды для целей водоснабжения


^

Замкнутые системы водопользования промышленных предприятий


Раздельная система водоотведения с полным оборотом всех категорий сточных вод называется бессточной системой водопользования, или замкнутой системой водного хозяйства промышленного предприятия. В зависимости от конкретных условий на предприятиях возможно создание нескольких систем очистки с вариантами объединения различных видов сточных вод. В общем виде замкнутая система водопользования промышленного предприятия включает:

  • локальные оборотные системы;

  • централизованные замкнутые системы;

  • охлаждающие локальные оборотные системы, а также системы последовательного использования воды в двух или нескольких технологических операциях.

При очистке и использовании дождевых вод необходимо их усреднять по расходу. Поверхностный сток и бытовые сточные воды в ближайшие годы могут удовлетворить более 50% потребности промышленности в воде.

При оценке систем водоотведения промышленных предприятий необходимо учитывать следующие коэффициенты использования воды:

  • оборотной: Kоб = qоб/(qоб + qсв);

  • свежей: Kсв = (qсв – qсб)/qсв,
    где qоб и qсв – расход соответственно оборотной и свежей воды, забираемой из источника,
    qоб + qсв – общее количество расходуемой воды,
    qсб – расход сточных вод, сбрасываемых в водоем.

Коэффициент использования оборотной воды, например, на предприятиях черной и цветной металлургии составляет 0,8.
^

Схемы комплексного водоотведения жилой застройки и промышленных предприятий


При разработке систем комплексного водоотведения районов и промышленных комплексов одновременно рассматриваются системы водоотведения нескольких городов и промышленных предприятий, расположенных на сравнительно близком расстоянии друг от друга или связанных между собой географическими, административными или иными связями. Такие системы аналогичны системам промышленных предприятий и тоже бывают общесплавными и раздельными.

При разработке систем чаще всего рассматривают следующие варианты комплексного использования воды:

  • сточных вод одного предприятия в качестве источников водоснабжения других предприятий;

  • концентрированных сточных вод одних предприятий в качестве сырья для производства товарного продукта на других предприятиях;

  • очищенных городских сточных вод на промышленных предприятиях в системах технического водоснабжения, для полива, обводнения водоемов и др. целей.

При проектировании систем водоотведения районов и промышленных комплексов появляются следующие возможности:

  • повышения уровня комплексного решения водохозяйственных вопросов городов и промышленных объектов;

  • комплексного использования природных водоемов, ограничения их числа для сброса сточных вод и уменьшения уровня их загрязнения;

  • повышения пропускной способности очистных сооружений, на создание которых сокращаются удельные капитальные вложения;

  • снижения удельных эксплуатационных затрат на очистку воды;

  • повышения уровня эксплуатации очистных сооружений.

Выбор вариантов систем водоотведения должен производиться на основании технико-экономического сравнения вариантов, равноценных в санитарном отношении.
^

Технико-экономическое сравнение вариантов водоотводящих систем


Как правило, при проектировании систем водоотведения можно разработать сразу несколько проектных решений, которые в общем будут приблизительно одинаковы по техническим показателям. Для выбора самого экономичного проектного решения производится сравнение их технико-экономических показателей. Итоги сравнения приводятся в табличной форме (см. табл.).

^ Форма для сравнения различных вариантов проектных решений



Технико-экономические
показатели

Единицы

Варианты

I

II

III

IV


 
 

2

3

4

5

6

7

8

 

9

10

11

12

13

Производительность:

суточная

годовая

Протяженность трассы коллекторов

Общая длина трубопроводов

Стоимость строительства

Годовые эксплуатационные расходы

Себестоимость 1 м3 воды

Численность персонала

Годовая потребность:

в электроэнергии

в тепловой энергии

Расход стальных труб

Продолжительность строительства

Приведенные затраты

Приведенные затраты на 1 м3
годовой производительности

 

тыс. м3

млн. м3

км

км

тыс. руб

тыс. руб

руб

чел.

тыс. кВт× ч

Гкал

тыс.т

год

тыс. руб

руб

 

 

 

 

Одним из основных экономических показателей являются годовые приведенные затраты. По каждому рассматриваемому варианту эти затраты определяются по формуле:

П = С + Ен∙К,
 

где С – годовые эксплуатационные затраты по данному варианту,
Ен – нормативный коэффициент эффективности капитальных вложений,
^ К – капитальные вложения.

Годовые эксплуатационные затраты слагаются из отдельных статей затрат:

С = Среаг + Сзп + Сэл + Ст + Сам + Св + Стр + Спр + Ск,
 

где Среаг – стоимость реагентов,
Сзп – заработная плата персонала,
Сэл – стоимость электроэнергии,
Ст – стоимость тепловой энергии,
Сам – амортизационные отчисления,
Св – стоимость воды на собственные нужды,
Стр – затраты на текущий ремонт,
Спр – прочие расходы,
Ск – затраты на капитальный ремонт.

Для систем водоснабжения и канализации нормативный коэффициент Ен принимается равным 0,16. Этот коэффициент представляет собой обратную величину срока окупаемости построенного объекта.

Наиболее предпочтительным является вариант, у которого приведенные затраты – наименьшие.
^

Экологические аспекты при проектировании водоотводящих систем


При выборе наилучшего проекта системы водоотведения населенного пункта, кроме учета технико-экономических показателей, необходимо принимать во внимание ущерб, который будет наноситься окружающей среде при эксплуатации сетей и сооружений. В данном случае речь идет о загрязнении водных объектов бытовыми, дождевыми и производственными стоками. Степень загрязненности зависит прежде всего от эффективности работы очистных сооружений, однако немалое значение имеет и техническое решение самой водоотводящей сети. Например, в случае полной раздельной системы весь поверхностный сток может сбрасываться в водоем без очистки, в общесплавной системе во время сильных дождей сбрасывается смесь дождевых и бытовых стоков, а в полураздельной системе в водоем попадают только наименее загрязненные дождевые воды.

Ущерб от загрязнения водных источников представляет собой часть теряемого обществом национального дохода, выступающего в стоимостной и натурально-вещественной форме, как в сфере материального производства, так и в сфере обслуживания. В сферах материального производства и обслуживания потери трудовых затрат, материальные и финансовые ресурсы, связанные с ликвидацией последствий загрязнения водных объектов, определяются следующими основными факторами:

  • увеличением расходов на подготовку воды для питьевого, промышленного и сельскохозяйственного водоснабжения;

  • снижением продуктивности рыбного хозяйства;

  • падением производительности сельского и лесного хозяйства;

  • увеличением расходом в связи с переносом или ликвидацией водозаборов;

  • недобором промышленной и сельскохозяйственной продукции в связи с увеличением заболеваемости трудящихся;

  • ростом расходов на восстановление природного состояния водоемов;

  • увеличением расходов на санитарное обслуживание населенных пунктов и мест массового отдыха;

  • увеличением расходов на медицинское обслуживание в связи с увеличением заболеваемости населения.

Для оценки экономического эффекта от природоохранных мероприятий следует руководствоваться Временной типовой методикой. Для этого необходимо сначала рассчитать экономический ущерб от сброса в водный объект загрязненных сточных вод:

У = 400σкМ,
 

где σк – географическая константа, принимаемая по таблице 1 из Методики,
М – приведенная масса годового сброса примесей источником загрязнения:



, где ^ N – общее число примесей, сбрасываемых объектом,
Аi – показатель относительной опасности i-ого вещества, присутствующего в стоках,
mi – общая масса годового сброса i-ого вещества.

Для каждого загрязняющего вещества показатель относительной опасности сброса определяется по формуле:

Аi = 1/ПДКi,
 

где ПДКi – предельно допустимая концентрация i-ого вещества в воде водных объектов, используемых в рыбохозяйственных целях (т.е. предназначенных для разведения пород рыб или других водных организмов).

Общая масса годового сброса i-ой примеси определяют по формуле:
 

mi = KiW,
 

где Ki – концентрация i-ого загрязняющего компонента в сточных водах,
W – годовой объем сточных вод.

Если имеются несколько источников загрязнения, то ущерб от них складывается.

Следующий этап – рассчитывается предотвращаемый экономический ущерб, как разница между ущербами до и после проведения природоохранных мероприятий (У1 и У2):
 

Упр = У1У2.

Затем можно сосчитать предотвращаемый экономический эффект:
 

Эпр = Упр – П,
 

где П – годовые приведенные затраты на осуществление природоохранных мероприятий.

Общая (абсолютная) экономическая эффективность природоохранных затрат определяется по следующей формуле:

Эз = Эпр.

В некоторых случаях для оценки определяется общая (абсолютная) эффективность капитальных вложений:
 

Эа = (Эпр)/К,
 

где С – эксплуатационные расходы,
К – капитальные вложения.
^

Режим движения сточных вод в водоотводящих сетях


Сточная жидкость является неоднородной системой с большим количеством плотных и жидких нерастворимых примесей.

При малых скоростях течения нерастворимые примеси могут выпадать в трубах, что приводит к уменьшению пропускной способности, а иногда и к полной закупорке труб. Поэтому в нормально работающей водоотводящей сети нерастворимые примеси должны транспортироваться потоком воды.

Все существующие коллекторы водоотводящих сетей можно разбить на три группы, в которых:

1. Обеспечивается необходимая скорость и никогда не выпадает осадок;

2. Наблюдается волнообразное движение песка, прочистка таких коллекторов также не требуется (см. рисунок);

3. Осадок не движется, так как транспортирующая способность потока недостаточна. Эксплуатация таких коллекторов возможна только при их регулярной прочистке.

Чтобы избежать полного засорения сети осадками, для контроля состояния трубопроводов необходимо знать три характеристики: а. Режим движения сточных вод, б. Критические скорости, т.е. скорости, при которых нерастворимые вещества не выпадают в осадок, в. Транспортирующую способность потока.

Характеристикой режима потока служит величина безразмерного критерия Рейнольдса, который показывает соотношение между силами вязкости и инерции при движении жидкости. Сточные воды являются более вязкими, чем чистая вода.

При полном заполнении круглых труб критерий Рейнольдса определяется по формуле:

Re = v∙d/ν,

где v – скорость течения, d – диаметр трубы, ν - кинематическая вязкость.

Для движения чистой воды установлено, что при Re < 2320 режим движения ламинарный, а при больших значениях – турбулентный.

Движение стоков по водоотводящим сетям почти всегда является турбулентным, а в пределах расчетных скоростей – турбулентным в области гладких труб или квадратичного сопротивления и в переходной области между ними.

Кроме этого, движение в сетях может быть равномерным и неравномерным, напорным и безнапорным, установившимся и неустановившимся.

^ Равномерное движение в водоотводящей сети наблюдается на прямых участках коллекторов без боковых присоединений, при движении со скоростью больше критической. Это движение характеризуется следующими условиями:

  • постоянство расхода;

  • постоянство живого сечения;

  • постоянство гидравлического уклона, равного уклону дна русла (трубы) при безнапорном режиме;

  • однотипность шероховатости труб и отсутствие местных сопротивлений.

^ Неравномерное установившееся движение имеет место тогда, когда расход воды постоянен, гидравлический уклон не равен уклону русла, и живое сечение потока изменяется по длине. Это движение встречается в коллекторах, когда истечение жидкости из них в водоем или резервуар заканчивается водопадом, или же под уровень воды.

^ Неустановившееся движение – движение, при котором гидравлические характеристики изменяются во времени. Оно характерно для дождевых потоков. Основными причинами неравномерности движения стоков являются местные сопротивления, перепады, изменение уклонов труб и т.д. Все водоотводящие сети являются безнапорными, что обусловлено такими причинами:

  • При неполном наполнении всегда имеется запас для пропуска расходов, больших расчетных;

  • Происходит вентиляция сети;

  • Имеется возможность саморегулирования скорости движения при изменении расхода;

  • Более низкие требования к качеству заделки стыков между трубами;

  • Возможность устройства открытых лотков в пределах канализационных колодцев, что обеспечивает простоту в эксплуатации.
^

Формы поперечных сечений труб и коллекторов


Форма поперечного сечения труб и коллекторов водоотводящих сетей выбирается, исходя из гидравлических, технологических и строительных требований. Все формы с определенными допущениями можно подразделить на профили:

  • круглые,

  • вытянутые,

  • сжатые.







Наиболее экономичная форма – круглая форма поперечного сечения. Круглые трубы хорошо сопротивляются внешним нагрузкам, удобны в эксплуатации и поэтому получили наибольшее распространение (≈90% всех сетей).

При малой глубине заложения коллекторам придают полукруглую форму сечения с вертикальными боковыми стенками.

Коллекторы с банкетами также относят к круглым, их используют для общесплавной водоотводящей системы.

В целях уменьшения толщины стенок крупным коллекторам придают шатровое сечение.

Овоидальные формы коллекторов хорошо сопротивляются давлению грунта и временным нагрузкам, однако не индустриальны. Они нашли распространение при строительстве общесплавной водоотводящей сети.

Сжатые сечения позволяют уменьшить глубину заложения труб: к ним относятся лотковая и пятиугольная форма. Такие коллекторы используются при строительстве дождевой сети.

Открытые каналы и лотки трапецеидального и прямоугольного сечений применяются при транспортировании сточной воды по очистным сооружениям канализации и при строительстве открытой дождевой сети.


^

Гидравлические характеристики потока


Гидравлическими характеристиками потока сточных вод являются расход Q, средняя по сечению скорость потока v, живое сечение потока ω, смоченный периметр χ, гидравлический радиус R, равный отношению ω/χ.

Гидравлический радиус круглой трубы при полном ее заполнении равен 0,25d, а максимального значения он достигает при высоте слоя воды в трубе h = 0,813d. Из всех типов профилей коллекторов максимальный гидравлический радиус - у круглой трубы.

Важными показателями трубопровода являются его уклон ^ I, коэффициент шероховатости n и степень наполнения h/d.


Если построить график зависимостей скоростей движения воды и расходов в круглой трубе от степени ее наполнения, то выяснится, что максимальная скорость потока наблюдается при наполнении, равном 0,813, а максимальная пропускная способность трубы – при наполнении 0,95.




Гидравлический уклон равен отношению падения уровня воды в начале и в конце трубопровода к его длине. При самотечном режиме движения гидравлический уклон принимается равным уклону самого трубопровода.
^

Формулы гидравлического расчета самотечных трубопроводов


Расчет самотечных трубопроводов заключается в определении его диаметра, уклона, наполнения и скорости. Исходным данным для расчета обычно является расход.

Расчетные формулы, лежащие в основе гидравлического расчета, выведены для установившегося и равномерного движения воды:

1. Формула постоянства расхода:
 

Q = ω∙v,

где ω - площадь живого сечения,
v – средняя скорость по сечению.

2. Формула Шези:

,

где C – коэффициент Шези,
R – гидравлический радиус,
i – гидравлический уклон.

2. Формула Дарси:

,

где λ - коэффициент сопротивления трению по длине.

Между коэффицентами λ и С существует зависимость:
 

или .

Коэффициент Шези в соответствии со СНиП 2.04.03-85 определяется по формуле Н.Н.Павловского (при 0,1 < R < 3 м):

,

где ,
n – коэффициент шероховатости.

Другой, более сложный способ определения коэффициента сопротивления λ (а значит, и коэффициента Шези С) производится по формуле Н.Ф.Федорова, включающей в себя дополнительные параметры:

,

где Δэ – эквивалентная абсолютная шероховатость,
a2 – коэффициент, учитывающий характер шероховатости стенок труб,
Re – число Рейнольдса.

Эта универсальная формула справедлива для всех трех областей турбулентного режима движения: областей гладких труб, квадратичного сопротивления и переходной области между ними. Для расчета коэффициента λ можно использовать формулу, связывающую коэффициент шероховатости и абсолютную эквивалентную шероховатость:

.
^

Учет местных сопротивлений при гидравлическом расчете водоотводящих сетей


Гидравлический расчет водоотводящих сетей основан на положении, что в сети движение сточных вод является равномерным и установившимся. В действительности из-за местных сопротивлений (перепады, повороты и т.д.) на значительном протяжении трубопроводов наблюдается неравномерное движение.

Наиболее резкое снижение скорости при безнапорном движении происходит перед поворотами потока и перед боковыми присоединениями. Здесь может выпасть взвесь, что приводит к заиливанию сети. Поэтому при гидравлическом расчете как напорных, так и самотечных сетей следует учитывать местные потери напора, которые определяются по формуле Вейсбаха:

,

где hм – потери напора,
ζ – коэффициент местного сопротивления,
v – средняя скорость течения.

При расчетах обычно принимают среднюю скорость, отнесенную к сечению, расположенному ниже по течению после местного сопротивления. Коэффициент местного сопротивления зависит от значения числа Рейнольдса.

Практически местные потери напора в поворотных колодцах составляют 1,5 – 3 см, а соединительных колодцах достигают 6 см. Поэтому, например, в поворотных колодцах следует давать дополнительный уклон поворотному лотку на величину местных потерь напора (см. рис.).


^

Минимальные диаметры труб. Степень наполнения труб и каналов


В начальных участках внутриквартальной и уличной канализации расчетный расход обычно невелик и его можно было бы пропустить по трубам небольшого диаметра. Однако практика показывает, что количество засорений в трубах геометрически растет с уменьшением диаметра. Поэтому при уменьшении диаметра эксплуатационные затраты на прочистку увеличиваются. Граничное значение расхода, при котором капитальные затраты на устройство сети равны эксплуатационным расходам на ее содержание – около 10 л/с.

Исходя их этих соображений, в СНиП 2.04.03-85 установлены минимальные диаметры труб, которые зависят от вида стоков, системы и сети водоотведения.

 




^ Минимальные диаметры водоотводящих сетей

Вид водоотводящей сети

Системы водоотведения

Бытовая и производственная

Общесплавная

Дождевая

Уличная

200

250

250

Внутриквартальная и производственная

150

200

200

Присоединения от дождеприемников

---

200-250

200-250

Напорные трубопроводы

150

200

200

Кроме минимальных диаметров, регламентируется и наполнение трубопроводов. ^ Расчетное наполнение – максимально допустимое отношение глубины потока сточных вод в трубе к ее диаметру.

Необходимо отметить, что общесплавную и дождевую водоотводящие сети рассчитывают на полное наполнение при максимальной интенсивности дождя.

В соответствии со СНиП 2.04.03-85 для самотечных труб установлены следующие расчетные наполнения:

d, мм

150 - 200

300 - 400

450 - 900

> 1000

h/d

0,6

0,7

0,75

0,8

Необходимость установления оптимальных наполнений обусловлена:

  • созданием запаса в трубопроводах на случай максимального расхода,

  • возможность возникновения подпора уровня воды на поворотах.

В отдельных случаях, например, при кратковременном пропуске душевых, банно-прачечных и др. вод, в коллекторах до 500 мм допускается полное наполнение.

Расчетное наполнение каналов с поперечным сечением любой формы следует принимать не более 0,7.
^

Расчетные скорости движения. Минимальные уклоны


Для создания нормальных условий работы водоотводящим сетям придают определенные уклоны, обеспечивающие течение сточных вод с самоочищающими скоростями. Скорость течения возрастает с увеличением уклона и гидравлического радиуса.

Как известно, распределение скоростей по сечению канала (трубы) является неравномерным. Самая наименьшая скорость наблюдается у дна. Однако проведение расчета только по придонным скоростям связано с большими трудностями, поэтому проектирование сети ведут на т.н. расчетную скорость течения.

^ Минимальной незаиливающей расчетной скоростью называется наименьшая допустимая скорость протока сточных вод, при которой обеспечивается самоочищение труб и каналов.

Выпадение взвеси обуславливается поперечными пульсациями скорости потока, причем выпадение не происходит, если значение этой скорости больше на 40-50% гидравлической крупности ωo расчетной взвеси

Был предложен ряд зависимостей для незаиливающей скорости, например, формула С.В.Яковлева:

vmin = 14,5ωoR0,2,

где R – гидравлический радиус.

В основу скоростей, рекомендуемых СНиП, положена зависимость Н.Ф.Федорова:

,

где A = 1,42 и n = 4,5 + R/2.

По СниП 2.04.03-85 следует принимать следующие минимальные расчетные скорости:

Диаметр, мм

vmin, м/с

150 –200

0,7

300 – 400

0,8

450 – 500

0,9

600 – 800

1

900 – 1200

1,15

1300 – 1500

1,3

>1500

1,5

Чем больше диаметр трубы, тем больше минимальная расчетная скорость.

На очистных станциях минимальную расчетную скорость в лотках и трубах допускается принимать 0,4 м/с, а наименьшую скорость течения осадков следует принимать по табл. 17 СНиП 2.04.03-85. Для дождевой сети минимальная скорость принимается равной 0,6 м/с.

Кроме минимальных скоростей, нормируются и максимальные скорости движения стоков.

Максимальной расчетной скоростью называют наибольшую допустимую скорость течения, не вызывающую снижения механической прочности материала труб при истирающем действии песка и твердых веществ в стоках.

Для металлических труб значение максимальной скорости составляет не более 8 м/с, а для неметаллических – не более 5 м/с. Для дождевой сети – соответственно 10 и 7 м/с.

Уклоны водоотводящей сети следует вычислять по формулам Дарси или Шези. Минимальный уклон трубопроводов находят по формуле:

.

Трубы с начальным минимальным диаметром не рассчитываются, скорость и наполнение в них неизвестны, поэтому в СниП приняты минимальные уклоны для труб диаметром 150 и 200 мм соответственно 0,008 и 0,007.

Для приближенных расчетов на практике можно воспользоваться предложенной С.В.Яковлевым формулой:

imin = 1/D,

где D – диаметр трубопровода в мм.

В открытой дождевой сети наименьшие уклоны лотков, кюветов и канав принимают по СНиП в пределах 0,003 – 0,005.

Максимальные уклоны могут быть найдены по той же формуле, что и минимальные.
^

Порядок гидравлического расчета трубопровода


Основными исходными данными являются расход Q, уклон местности iм, и длина трубопровода. Требуется определить диаметр, наполнение, скорость и уклон трубопровода.

  1. Принимают гидравлический уклон, а значит и уклон трубопровода, равный уклону местности io = iм. Если получается, что этот уклон меньше минимального, то принимают io = imin.

  2. По уклону io и расходу Q в соответствии с расчетным наполнением подбирают диаметр трубопровода, начиная с минимального.

  3. Затем устанавливают скорость при выбранном диаметре.

Если скорость оказывается не больше минимальной, то уклон io увеличивают и расчет повторяют до тех пор, пока скорость не станет большей или равной минимальной.
^

Гидравлический расчет напорных трубопроводов


Движение воды в напорных трубопроводах происходит полным сечением трубы. Гидравлический расчет напорных трубопроводов при транспортировании сточных вод, илопроводов и дюкеров сводится к выбору экономически выгодных диаметров и определению в них потерь напора.

Диаметр трубопровода определяется по формуле постоянства расходов, исходя из заданного расхода ^ Q, и задаваясь экономичными скоростями vэк. Для водоотводящих сетей экономичная скорость составляет 1,5 – 2,5 м/с, кроме этого, скорости в трубах должны быть не менее незаиливающих.

Диаметр рассчитывается по формуле:

.

Общие потери напора в трубопроводе складываются из местных hм и линейных потерь hL:

.

Потери напора по длине определяются по формуле Дарси-Вейсбаха:

,

где i – гидравлический уклон (в этом случае он не совпадает с уклоном самого трубопровода),
λ – коэффициент сопротивления трению, определяется по формуле Н.Ф.Федорова.

Сумма местных потерь напора включает потери напора в коленах, отводах задвижках и т.д. Потери в отдельном местном сопротивлении рассчитываются по формуле Вейсбаха.
^

Расчет дюкеров


Дюкеры служат для транспортирования сточных вод через реки, овраги и при пересечении с различными подземными сооружениями.



Дюкеры работают полным сечением, жидкость в них движется под действием столба воды, определяемого разностью уровней стоков во входной и выходной камерах (H = Z1Z2). Значение H соответствует потерям напора в дюкере, определяемым по формуле:

,

где Σζ - сумма сопротивлений.

Коэффициент сопротивления на входе в трубу при острых кромках: ζвх = 0,5. Сопротивление на выходе из дюкера может быть определено по формуле:

,

где v – скорость в дюкере,
v1 – в коллекторе на выходе.

Для цилиндрических труб и фасонных частей в коленах сопротивление вычисляется по формуле:

,

где Θ - угол поворота в градусах,
ζпов – коэффициент сопротивления на повороте, равный для колена с углом 30o = 0,07.

При наличии задвижек во входной камере дюкера, открытых не полностью, необходимо также учитывать сопротивления на них. В этом случае коэффициент ζзад принимается в зависимости от степени открытия задвижки.
^

Плотность населения и расчетное население


Расчетное население – это число жителей, которое будет проживать в городе или населенном пункте к концу расчетного периода. Нужно заметить, что величина расчетного населения рассчитывается не на текущее время проектирования, а на 20-25 лет вперед, так как предполагается, что население будет расти и через некоторое время запроектированная и построенная система водоотведения будет уже не в состоянии нормально функционировать из-за возросших расходов сточной воды.

Поэтому и вводится понятие т.н. расчетного периода. Это - промежуток времени, в продолжение которого водоотводящая сеть будет иметь необходимую пропускную способность, и удовлетворять своему назначению без реконструкции. Для городов и населенных пунктов он составляет 20-25 лет, а для промышленных предприятий – это расчетный срок работы на полную производительность.

Расчетное население определяется по плотности населения, т.е. числу жителей на 1 га канализуемой территории. Различают два вида плотности населения:

1. ^ Плотность населения по селитебельной территории pc - средняя плотность по всей территории, на которой проживает население. По этой плотности исчисляют расход сточных вод для всего города или большого района.

2. ^ Плотность населения жилого квартала или микрорайона pк - плотность, при которой учитывается площадь застройки только отдельных кварталов. Эту плотность учитывают при детальных расчетах наружной водоотводящей сети.

Плотность населения зависит от этажности зданий, нормы жилой площади и др. параметров. Расчетное население определяется по формуле:

Np = ΣpFβ,

где p – плотность населения,
F – площадь территории с одинаковой плотностью населения,
β – коэффициент обслуживания водоотводящей сетью.
^

Нормы водоотведения и режим поступления сточных вод


Практикой установлено, что количество отводимых сточных вод приближенно равно количеству расходуемой воды.

^ Удельным водоотведением (или нормой водоотведения) называется среднесуточное (за год) количество воды, расходуемое на 1 жителя, пользующегося системой водоотведения (л/сут∙ч). На промышленных предприятиях удельным водоотведением называется количество сточных вод, образующееся при выпуске единицы продукции.

Считается, что удельное водоотведение равно удельному водопотреблению, поэтому величина удельного водоотведения принимается по СНиП 2.04.02-84 в зависимости от степени благоустройства районов и местных условий. В эту норму входит:

  1. Количество воды, потребляемое в быту;

  2. Количество воды, потребляемое на коммунальных предприятиях.

Исключения составляют: больницы, санатории, дома отдыха, гостиницы, гаражи и промышленные предприятия. В неканализованных районах удельное водоотведение принимается из расчета 25 л/сут на 1 жителя.

На промышленных предприятиях различают удельное водоотведение бытовых сточных вод, которое равно 45 л/смену для горячих цехов (с тепловыделением более 80 кДж/ч на 1 м3) и 25 л/смену – для холодных, а также водоотведение душевых стоков – 500 л/смену при продолжительности 45 минут.

Неучтенные расходы допускается принимать в размере 5% от суммарного среднесуточного водоотведения населенного пункта.

Известно, что водоотведение стоков, как и водопотребление, в течение времени происходит неравномерно. Например, в ночное время водоотведение ниже, чем в дневное и т.д. Различают неравномерность суточного и часового водоотведения, которые характеризуют коэффициентами неравномерности:

1. ^ Коэффициент суточной неравномерности – это отношение максимального суточного расхода Qmax к среднесуточному расходу Qmid (за год):

K1 = Qmax/Qmid.

2. Коэффициент часовой неравномерности – отношение максимального часового расхода qmax(m) к среднему часовому расходу qmid(m) в сутки максимального водоотведения:

K2 = qmax(m)/qmid(m).

3. Общий максимальный коэффициент неравномерности – произведение первых двух:

Kgen.max = K1K2.

Значения этого коэффициента приведены в табл.2 СНиП 2.04.03-85 в зависимости от среднего расхода. При промежуточных расходах коэффициент неравномерности находят интерполяцией. Коэффициент часовой неравномерности для горячих цехов промышленных предприятий равен 2,5, а для холодных – 3,0.

Коэффициенты неравномерности водоотведения производственных сточных вод следует принимать в соответствии с техническим заданием.

Для более точного определения истинного максимального расхода строят графики колебания расходов сточных вод для города совместно с предприятиями. Имеются уже готовые таблицы изменения расхода бытовых стоков по часам суток, которые построены на основе опытных данных по эксплуатации сетей и насосных станций.

Общие графики колебания расходов сточных вод, как и графики водоснабжения, строятся по часам суток на основе графиков поступления бытовых сточных вод, производственных, душевых и бытовых стоков с промышленных предприятий.

На промпредприятиях повышенные расходы наблюдаются в начале смены и перед обеденным перерывом.




оставить комментарий
страница4/15
Дата22.09.2011
Размер1,34 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   15
средне
  1
хорошо
  1
отлично
  12
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх