Электрическая емкость. Конденсаторы 2 icon

Электрическая емкость. Конденсаторы 2


3 чел. помогло.
Смотрите также:
Экзаменационные билеты по дисциплине «Теоретические основы электротехники» 1 часть: для...
Программа предпрофильного элективного курса «Основы электротехники»...
Реальная емкость рынка = прогнозу продаж, потенциальная емкость = наилучший объем продаж...
Доклад был представлен на 13-ю Международную конференцию по холодномй...
Входе выполнения курсовой работы была разработана топологическая схема микросхемы...
Государственный стандарт союза сср электрооборудование взрывозащищенное с видом взрывозащиты...
Огулом их называют радиолюбителями. Людей с паяльниками и, как Плюшкин, подбирающих проволочки...
Электроемкость. Конденсаторы...
Емкость: анализ, оценка и выбор приоритетов бюджетных расходов, 14-15 марта 2008 г., Джакарта...
Тема: Научно практическая конференция «Электричество вокруг нас»...
Проводники в электростатическом поле...
Доклад представителя...



Загрузка...
страницы: 1   2   3   4   5   6   7   8
вернуться в начало
скачать
^

Электрическая емкость. Конденсаторы


Устройство, состоящее из двух или более проводников (пластин), разделенных диэлектриком, называется кон­денсатором, а проводники — обкладками конденсатора. Важнейшее свойство конденсатора заключается в том, что он может накапливать определенное количество электри­чества. Если присоединить пластины к источнику тока, то в конденсатор потечет зарядный ток. При отключении источника заряд останется на конденсаторе. Разноимен­ные заряды будут удерживаться на обеих пластинах определенное время. Если конденсатор замкнуть на сопро­тивление, то под действием напряжения в цепи будет протекать ток разряда конденсатора.

Напряженность электрического поля конденсатора представляет собой отношение напряжения на обкладках к расстоянию между ними: Е = U/I.

Свойство конденсатора накапливать электрические за­ряды характеризует его емкость. Емкость конденсатора — это величина, численно равная заряду, накопленному конденсатором при напряжении между обкладками в 1 В: C=q/U, где С — емкость конденсатора, Ф; qвели­чина заряда, Кл; Uнапряжение, В.

Фарада — очень крупная единица, и поэтому для изме­рения емкости пользуются микрофарадами и пикофара-дами: ! микрофарада (мкФ) = 0,000001 Ф = 10-12 Ф, 1 пикофарада (пФ) =10-12 Ф.

Емкость плоского конденсатора зависит от площади его обкладок, расстояния между ними и диэлектрической проницаемости изолирующего материала (диэлектрика), разделяющего обкладки: C=eaS/d, где S — площадь каждой пластины, м2; dрасстояние между пластина­ми, м.

Емкость цилиндрического конденсатора ^ С =

= 2п/еа/1п -А где l — длина цилиндра, м; d\ и diдна-

d

метр внутреннего и внешнего цилиндра, мм; In — —

а\

натуральный логарифм числа d3/d\.

Энергия, запасенная в электрическом поле конденса­тора, W=CU*/2.

Если напряженность электрического поля в диэлектри­ке между обкладками конденсатора превысит предельную величину, то электрический заряд будет переходить с одной обкладки на другую через массу диэлектрика, что вы­зовет повреждение (пробой) изолирующего слоя конден­сатора. Это явление происходит, когда электрическое напряжение между проводниками (электродами), разде­ленными диэлектриком, достигает некоторого предельного (пробивного) значения. Чем толще слой данного электро­изоляционного материала, тем выше его пробивное на­пряжение. Пробивное напряжение слоя электроизоляцион­ного материала, деленное на толщину слоя, численно представляет собой электрическую прочность данного электроизоляционного материала (табл. 1). Электриче­ская прочность измеряется в В/см, В/м, кВ/см, кВ/мм. Когда диэлектрик применяется как электроизолирующий материал, прикладываемое к нему напряжение выбирают значительно ниже пробивного для того, чтобы обеспечить надежную и длительную работу установок. Отношение пробивного напряжения к рабочему напряжению изоля­ции называется коэффициентом запаса электрической прочности изоляции. Пробой диэлектриков в конденсато­рах, электрических машинах, трансформаторах, кабелях часто является причиной аварии. В некоторых случаях, наоборот, пробой диэлектриков находит практическое при­менение для технических целей. Так, например, электри­ческий разряд в газах (пробой газа) используют в газо­светных лампах для освещения, пробой в специальных разрядниках — для защиты от перенапряжений.

В зависимости от типа диэлектрика, разделяющего обкладки, конденсаторы бывают бумажные, слюдяные, керамические, электролитические и воздушные. Промыш­ленность выпускает конденсаторы постоянной, переменной и полупеременной емкости.

^ Применяются конденсаторы в промышленности для компенсации реактивной мощности, в колебательных кон­турах в радио и телевизионной технике, в электриче­ских фильтрах.
^

Соединение конденсаторов


В зависимости от напряжения сети и потребной емко­сти конденсаторы могут соединяться в батареи парал­лельно или последовательно.

^ При параллельном соединении (рис. 2, а) общая ем­кость равна сумме емкостей отдельных конденсаторов:

С = С, + С2 + С3.

При последовательном соединении (рис. 2, б) общая емкость конденсаторов уменьшается.

^ Величина, обратная общей емкости, равна сумме об­ратных величин емкостей отдельных конденсаторов:

\/С= 1/С, + 1/С2+ 1/Са.

В частном случае, когда последовательно включены два конденсатора, их эквивалентная емкость

С=С1С2/(С1+С2) При С1=С2 формула упрощается: C=C1/2

^

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА.



ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ.

Основу электрической цепи составляет совокупность источников электрической энергии, соединительных проводов и приемников электрической энергии. Кроме того, в цепь могут включаться рубильники, кнопки, реле, контакторы, приборы.
Источниками энергии являются генераторы, аккумуляторы и др. Они характеризуются следующими параметрами: ЕДС,
U, I, P.
Соединительные провода служат для передачи электрической энергии от источника к приемнику.
Приемниками электроэнергии являются электрические двигатели, осветительные и нагревательные приборы, электромагниты и другие устройства, в которых электрическая энергия преобразуется в механическую, тепловую, световую.




^

ЭЛЕКТРИЧЕСКИЙ ТОК



Электрический ток представляет собой упорядоченное движение электрических зарядов ( электронов в металлах ионов в жидкостях и газах ).
Материалы, имеющие множество подвижных носителей называются проводниками, материалы без зарядов или с небольшим колличеством зарядов называются диэлектриками. Промежуточное место занимают полупроводники.
Электрический ток может протекать только в замкнутой цепи.
Электрический ток длительно не изменяющийся по направлению называется постоянным. Периодически изменяющийся ток называется переменным.
Интенсивность электрического тока характеризуется силой тока I .Это величина, численно равная количеству электричества q ( Кл ), проходящего через поперечное сечение проводника в единицу времени t ( c ) т.е. I=q/t.
За единицу силы тока принят ампер А. 1А=1Кл/с. В простой не разветвленной цепи сила тока во всех точках одинакова.

Положительным направлением постоянного тока условно принимается направление, обратное движению электронов. В соответствии с этим (рис. 3) ток во внешней цепи протекает от зажима ( + ) источника электрической энергии к зажиму ( —).

Плотность электрического тока б определяется как отношение силы тока / к поперечному сечению S про­водника, по которому он проходит: б = //S.

Единицей плотности тока является 1 А/м2 или крат­ная ей единица 1 А/мм2 = 10-6 А/м2.

Допустимая плотность тока зависит от материала и сечения проводника, условий охлаждения и места про­кладки, а также от длительности протекания тока по проводнику.

Плотность тока, как расчетный параметр, использует­ся при выборе сечений проводов катушек электрических аппаратов, обмоток электрических машин, электричес­ких сетей.
^

Напряжение и электродвижущая сила


Электрическое напряжение Uэто отношение рабо­ты Л, затрачиваемой силами электрического поля на перемещение заряда qo из одной точки поля в другую, к величине переносимого заряда: U = A/qQ.

Единицей напряжения является вольт (В): 1 В = 1 Дж/1 Кл. Один вольт — это электрическое напря­жение, при котором совершается работа в один джоуль при перемещении между двумя точками электрического поля заряда в один кулон.

Кратными и дольными единицами измерения напря­жения являются: 1 киловольт (кВ) = 1000 В= 103 В; 1 милливольт (мВ) =0,001 В= 10~3 В; 1 микровольт (liB) = 0,000001 В = Ю-6 В.

Напряжение измеряют вольтметром (киловольтметром, милливольтметром).

В электрическом поле и в электрической цепи (при наличии источника тока) имеются точки с различными потенциалами (фа, <рв), следовательно, между ними существует электрическое напряжение (£/ав), представля­ющее собой разность электрических потенциалов,

U ав = фа — фв.

Напряжение, соответствующее постоянному току, на­зывается напряжением постоянного тока.

В замкнутой цепи электрический ток протекает под действием электродвижущей силы (ЭДС) источника энер­гии. Численно ЭДС ^ Е равна отношению работы А' сто­ронних (непотенциальных) сил к величине перемещае­мого внутри источника заряда q:

E = A'/q.

ЭДС возникает в источнике и при отсутствии тока в цепи, т. е. когда цепь разомкнута. В этом случае она равна напряжению на зажимах источника энергии. Так же как и напряжение, ЭДС измеряется в вольтах (В), киловольтах (кВ), милливольтах (мВ).
^

Электрическое сопротивление проводника и проводимость


Электрическое сопротивление можно представить в - виде особого трения, которое преодолевают электроны, постоянно сталкиваясь с атомами проводника, колеблю­щимися в узлах кристаллической решетки. Из этого следует, что как внешняя цепь, так и сам источник энер­гии оказывают препятствие прохождению тока.

Электрическое сопротивление обозначается буквой R (г). Устройства, включаемые в электрическую цепь и об­ладающие сопротивлением, называются резисторами.

Единицей сопротивления является ом (Ом). Один ом — это электрическое сопротивление такого проводника, по которому при напряжении в 1 В проходит ток в 1 А, т. е. 1 Ом = 1 В/1 А.

Кратными и дольными единицами измерения сопро­тивления являются: 1 килоом (кОм) = 1000 Ом = 103Ом; I мегаом (МОм) = 1 000000 Ом = 106 Ом; 1 миллиом (мОм) = 0,001 Ом = 10~3 Ом.

Электрическое сопротивление проводника зависит от материала, из которого он изготовлен, а также от его длины и площади поперечного сечения:

r=pl/S,

где / — длина проводника, м; S — площадь поперечного сечения, мм2; р — удельное сопротивление, Ом • мм2/м.


Удельное сопротивление — это сопротивление провод­ника длиной 1 м при поперечном сечении 1 мм2 и темпе­ратуре 20 °С. Удельное сопротивление некоторых мате­риалов приведено в табл. 2.

Сопротивление проводников зависит также от темпе­ратуры. Для металлических проводников оно увеличи­вается с повышением температуры и уменьшается с ее понижением. Коэффициент, характеризующий изменение сопротивления в 1 Ом при изменении температуры на I °С, называется температурным коэффициентом сопро­тивления и обозначается буквой а (табл. 2).

Зависимость между сопротивлением при температуре 20°С и сопротивлением при других температурах вы­ражается следующей формулой:

гт = г[1 +а(т-20)],

где г т — сопротивление проводника при температуре т; г — сопротивление того же проводника при температу­ре 20 °С.

. Эта формула широко используется на практике для определения температуры нагрева обмоток электрических машин. Пусть г\ — омическое сопротивление обмотки при некоторой начальной температуре i\. Если при работе тем­пература обмотки повысилась до значения Т2, то ее со­противление Г2 = г\ [1 + <*(j2 — ti)], откуда Т2 — ti = т =

__ Гч — Г] ^ 1

Г2 а

Исследования показывают, что средняя температура обмотки, измеренная методом сопротивления, ниже ее на­ибольшей температуры в среднем на 10 °С.

Электрическое сопротивление электролитов, полупро­водников и диэлектриков с повышением температуры уменьшается.

Регулируемые резисторы называют реостатами. Их из­готовляют из проволоки с большим удельным сопротив­лением (табл. 2).

Для расчетов иногда удобнее пользоваться не сопро­тивлением проводника, а величиной, обратной сопротив­лению,— проводимостью g = l/r.

Единицей проводимости является сименс (См): 1 См = 1/Ом.

Следовательно, соотношение между сопротивлением и проводимостью проводника следующее: g= l/r и г = = !/£•

15

Величина, обратная удельному сопротивлению, назы­вается удельной проводимостью у = 1/р м/Ом • мм2.

Формула для определения электрического сопротив­ления проводника приобретает вид: г = 1/yS.

Для наиболее часто применяемых материалов величи­ны удельных проводимостей приведены в табл. 2,

Зависимость между ЭДС, силой тока и сопротивле­нием определяется одним из основных законов электро­техники — законом Ома, который формулируется так: си­ла тока в замкнутой цепи прямо пропорциональна электро­движущей силе (ЭДС) источника тока и обратно про­порциональна сопротивлению всей цепи: / = Е/(г + г0) или Е = /(г + г о) = /г + /г0 = U + Л(Л где г — сопротивление внешней части цепи, Ом; Го — внутреннее сопротивление источника тока, Ом; Е — ЭДС источника тока, В; Uпадение напряжения во внешней цепи, В; А(/ — падение напряжения внутри источника тока, В.

Сопротивление всей цепи г + to = E/I.

Режим, при котором сопротивление внешней цепи прак­тически равно нулю, называется режимом короткого за­мыкания.

Для источников электрической энергии с малым внут-ре'нним сопротивлением (генераторы, кислотные аккуму­ляторы) короткое замыкание очень опасно — оно может вывести из строя эти источники. Одной из причин ко­роткого замыкания является нарушение изоляции про­водов, соединяющих приемник с источником энергии.

Для защиты электротехнического оборудования, элек­трических сетей от токов короткого замыкания приме­няют плавкие предохранители, автоматические выключа­тели (автоматы).

Закон Ома справедлив не только для всей цепи, но и для любого ее участка. В этом случае сила тока / на участке электрической цепи равна напряжению U на зажимах этого участка, деленному на его сопротивле­ние г. / = Uили U = 1г.

2. Основные характеристики проводниковых материалов











Температурный










Удельное


Удельная


Теплоемкость


коэффициент






Материал


Плотность, кг/м3


сопротивле­ние Р,


• проводи­мость у.


от 0° до 100 °С,


сопротивле­ния а (от 0°


Температура плавления, °С


Применение






Ом-мм2


м/Ом'Мм2


Дж/кг °С


до 100 °С) ,
















•с-1






Алюминий Медь


2700 8900


0,0288 0,0176


35

57


0,92 0,392


0,004 0,004


657 1084


Провода, кабели, ши-


Сталь


7900


0,13


7,6


0,46


0,0063


1400


ны


Латунь


8500


0,04


25


0,384


0,002


900


Контакты, зажимы


Вольфрам


19100


0,0612


16,34


0,146


0,0047


3300


Нити накала ламп


Олово


7300


0,143


7,0


0,234


0,0044


232


Припой при лужении и
















пайке, фольга для элек-
















тродов


Свинец


11400


0,221


4,52


0,129


0,0041


327


Защитные оболочки ка-
















белей, пластины аккуму-
















ляторов


Константан


8800


0,5


2,0





0,000005


1200


Нагревательные элемен-


Нихром


8200


0,98


1,02





0,00015


1360


ты печей, реостаты,


Манганин


8100


0,42


2,38





0,000006


960


сопротивления прибо-


Фехраль


7600


1,4


0,7





0,00028


1450


ров

^

Соединение резисторов (сопротивлений)


Резисторы в электрических цепях могут быть включе­ны последовательно, параллельно или смешанно.

При последовательном включении все резисторы соеди­нены один за другим без разветвлений (рис. 5, а), и при подключении к источнику питания по ним протекает ток одной и той же величины.

Общее, или эквивалентное, сопротивление такой цепи равно сумме сопротивлений этих резисторов:

Г = Г\ + Г2 + Г3.

Напряжения (падения напряжения) на отдельных уча­стках цепи. Общее напряжение всей цепи равно сумме падений напряжения на отдельных участках: U=Ui + U2+ f/з-

Ток неразветвленной цепи

I=U/r = Ui/n = U2/r2 = U3/r3.

Последовательное включение резисторов (добавочных сопротивлений) используется на практике для понижения напряжения (пусковые и регулировочные реостаты), а также для расширения пределов измерения измеритель­ных приборов (вольтметров).

При параллельном соединении все резисторы подклю­чены к двум точкам (узлам) цепи на одно и то же напряжение (рис. 5,6).




Рис. 5. Соединение резисторов:

а — последовательное; б — параллельное; в — смешанное

Общее сопротивление резисторов такой цепи можно найти из выражения:

1/Г=1/Г| + 1/Г2+ 1/Гз.

В частном случае, когда параллельно включены три резистора, эквивалентное сопротивление

Г 1^2 + Г2Г3 -j- rtf\

При двух параллельно включенных резисторах

—— Г'Г2 Т\ -f- Г 2

При параллельном включении п одинаковых резисто­ров общее сопротивление уменьшается в п раз:

где т\ — сопротивление одного резистора.

Заменяя величины сопротивлений проводимостями, по­лучим

0 —— G1 —|— /То —I— (fi
о о 1 I о^ I о ^*

Следовательно, общая проводимость цепи при парал­лельном соединении резисторов равна сумме проводимостей параллельных ветвей.


Рис. 6. Электрическая цепь:

а — с узловыми точками; б — замкнутого контура

Напряжение цепи

U = /г = 1{Г\ = /2Г2 = /3/*3-

Ток в неразветвленной цепи определяется по формуле / = /, + /2 + /з.

Выключение одного или нескольких резисторов из цепи не отражается на работе оставшихся. Поэтому осве­тительные лампы, электродвигатели и другие приемники электрической энергии преимущественно включают парал­лельно.

При смешанном соединении резисторы включают в цепь последовательно и параллельно (рис. 5, в). В этом случае расчет электрической цепи приводится к расчету параллельных и последовательных соединений, а сама цепь — к эквивалентной последовательной.

Для расчета сложных разветвленных электрических цепей применяют законы Кирхгофа, которые устанавли­вают соотношения между токами и напряжениями в сети.

Первый закон. Сумма токов, притекающих к точке разветвления (узлу) цепи, равна сумме токов, вытека­ющих из этого узла, или алгебраическая сумма токов в узловой точке электрической цепи равна нулю. На­пример, в узле А (рис. 6, а.)

/ = /! + /2 или / — /1 -*- /2 = 0, т. е. 2/ = 0.

Притекающие к узлу токи принято считать положи­тельными, а вытекающие из узла — отрицательными.

Второй закон. Алгебраическая сумма ЭДС (источ­ников тока), действующих в любом замкнутом контуре, равна алгебраической сумме падений напряжения в вет­вях этого контура:

Е123+….+ЕN=I1R1+I2R2+….INRN

При составлении уравнений направление обхода контура и направление токов выбираются произвольно.
Если направление обхода контура , показанное внутри стрелкой, совпадает с направлением ЕДС и тока, то они считаются положительными, если не совпадают - отрицательными и записываются с отрицательными знаками.
Если в результате решения уравнений значение тока получилось отрицательным, значит, ток в контуре протекает в обратном направлении.

^ РАБОТА И МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Для переноса зарядов в замкнутой цепи источник электрической энергии затрачивает работу ( энергию ) Wист=Eq=Eit. Часть этой работы затрачивается на преодоление внутреннего сопротивления источника и проводов. Источник производит работу, равную W=Uq=Uit=I2 rt где U-напряжение на зажимах приемника.
Величина энергии, вырабатываемой или потребляемой за единицу времени, называется мощностью Р. P=W/t=Uq/t=UI=I2r=U2/r .Единицей мощности является ватт (Вт)- т.е. работа в один джоуль произведенный в одну секунду. 1Вт=1Дж/1с или 1В*1А.
Электрическая энергия может быть выражена через мощность: W=Pt=Uit=I2rt
^

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА


При прохождении тока через металлический проводник свободные электроны сталкиваются с атомами, ионами или молекулами. При этом расходуется энергия, которая превращается в тепло. Переход энергии из электрической в тепловую отражает закон Джоуля-Ленца: количество теплоты, выделяемой в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени его протекания:
Q = I2rt = U2t/r = UIt

При протекании тока по проводнику происходит его нагрев. Допустимым называется ток, при котором устанавливается наибольшая допустимая температура провода в зависимости от изоляции. Сечение провода для данной силы тока определяется из таблицы допустимых токовых нагрузок.


Сечение токопроводящей жилы, мм2

Провода, проложенные открыто

Провода, проложенные в одной трубе

Два одно-
жильных

Три одно-
жильных

Четыре одно-
жильных

Один двух-
жильный

Один трех-
жильный

0.5
0.75
1
1.5
2.5
4
6
10
16
25





















Ток, проходя по проводам, вызывает падение напряжения. Разность напряжений в начале и конце линии называется потерей напряжения:
U =UH-UK

Отклонение напряжения на зажимах токоприемников допускается: для осветительной нагрузки (-2.5+5) процентов; для электродвигателей 5 ; в отдельных случаях до 10.
Сечение проводов двухпроводной линии, при котором допускается нормальное рабочее напряжение на зажимах потребителей электрической энергии, определяется по одной из формул:
S=2Il/U=2Il/UU=2Pl/UU=2Pl100/UU2
где -удельное сопротивление ; - удельная проводимость
Найденное по формуле сечение провода округляется до ближайшего большего стандартного.






С определением сечения проводов связан выбор предохранителей, предназначенных для защиты источников и приемников электрической энергии от теплового действия токов короткого замыкания.
Предохранители характеризуются номинальным напряжением UH и номинальным током IH. Номинальное напряжение должно быть не меньше рабочего напряжения установки, а номинальный ток должен соответствовать номинальному току установки IH= IУСТ.

Шкала номинальных токов предохранителей, выпускаемых промышленностью: 6; 10; 15; 25;35;60; 80;100; 125; 225; 260; 300; 350-1000.


^

СОЕДИНЕНИЕ ИСТОЧНИКОВ ЭДС


Для составления аккумуляторной батареи несколько элементов соединяются последовательно или параллельно.






оставить комментарий
страница2/8
Дата03.10.2011
Размер1 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8
плохо
  9
средне
  3
отлично
  3
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх