Тема пространство и метрология сигналов физическая величина более точно определяется уравнением, чем измерением icon

Тема пространство и метрология сигналов физическая величина более точно определяется уравнением, чем измерением


Смотрите также:
Одновременное изменение разных физических величин...
Лекция Дифференциал функции...
Положение о рейтинговой оценке студентов Специальность «Физическая культура» по дисциплине...
Актуальность темы исследования определяется мировыми культурными процессами...
Стратегическими целями предприятия в области финансов являются обеспечение его ликвидности и...
Бойко борисов: Не случайно за две години виждате...
Программа вступительного экзамена по специальности 05. 12. 13 "системы...
Философия это инструкция для достижения кратчайшим путем счастья...
2 Этнокультурная ситуация в Балаково (К. С. Мокин)...
Понятие энтропии было введено Клаузиусом...
Курсовая работа...
Доклад посвящен реализации программного обеспечения...



Загрузка...
страницы: 1   2   3
вернуться в начало
скачать
Автокорреляционные функции (АКФ) сигналов (correlation function, CF). Применительно к детерминированным сигналам с конечной энергией АКФ является количественной интегральной характеристикой формы сигнала, и представляет собой интеграл от произведения двух копий сигнала s(t), сдвинутых относительно друг друга на время :

Bs() = s(t) s(t+) dt. (2.4.1)

Как следует из этого выражения, АКФ является скалярным произведением сигнала и его копии в функциональной зависимости от переменной величины значения сдвига . Соответственно, АКФ имеет физическую размерность энергии, а при  = 0 значение АКФ непосредственно равно энергии сигнала:

Bs(0) =s(t)2 dt = Es.

Функция АКФ является непрерывной и четной. В последнем нетрудно убедиться заменой переменной t = t- в выражении (2.4.1):

Bs() =s(t-) s(t) dt = s(t) s(t- ) dt = Bs(-). (2.4.1')

С учетом четности, графическое представление АКФ производится только для положительных значений . На практике сигналы обычно задаются на интервале положительных значений аргументов от 0-Т. Знак + в выражении (2.4.1) означает, что при увеличении значений  копия сигнала s(t+) сдвигается влево по оси t и уходит за 0, что требует соответствующего продления сигнала в область отрицательных значений аргумента. А так как при вычислениях интервал задания как правило, много меньше интервала задания сигнала, то более практичным является сдвиг копии сигнала влево по оси аргументов, т.е. применение в выражении (2.4.1) функции s(t-) вместо s(t+).

По мере увеличения значения величины сдвига  для финитных сигналов временное перекрытие сигнала с его копией уменьшается и скалярное произведение стремятся к нулю.

Пример. На интервале (0,Т) задан прямоугольный импульс с амплитудным значением, равным А. Вычислить автокорреляционную функцию импульса.

При сдвиге копии импульса по оси t вправо, при 0≤≤T сигналы перекрываются на интервале от  до Т. Скалярное произведение:

Bs() =A2 dt = A2(T-).

При сдвиге копии импульса влево, при -T≤<0 сигналы перекрываются на интервале от 0 до Т-. Скалярное произведение:

Bs() = A2 dt = A2(T+).

При || > T сигнал и его копия не имеют точек пересечения и скалярное произведение сигналов равно нулю (сигнал и его сдвинутая копия становятся ортогональными).


Обобщая вычисления, можем записать:

Bs() =.

В случае периодических сигналов АКФ вычисляется по одному периоду Т, с усреднением скалярного произведения и его сдвинутой копии в пределах периода:

Bs() = (1/Т)s(t) s(t-) dt.




Рис. 2.4.1.
При =0 значение АКФ в этом случае равно не энергии, а средней мощности сигналов в пределах интервала Т. АКФ периодических сигналов также является периодической функцией с тем же периодом Т. Для однотонального гармонического сигнала это очевидно. Первое максимальное значение АКФ будет соответствовать =0. При сдвиге копии сигнала на четверть периода относительно оригинала подынтегральные функции становятся ортогональными друг другу (cos o(t- = cos (ot-/2)  sin ot) и дают нулевое значение АКФ. При сдвиге на =T/2 копия сигнала по направлению становится противоположной самому сигналу и скалярное произведение достигает минимального значения. При дальнейшем увеличении сдвига начинается обратный процесс увеличения значений скалярного произведения с пересечением нуля при =3T/2 и повторением максимального значения при =T=2o (cos ot-2 копии  cos ot сигнала). Аналогичный процесс имеет место и для периодических сигналов произвольной формы (рис. 2.4.1).

Отметим, что полученный результат не зависит от начальной фазы гармонического сигнала, что характерно для любых периодических сигналов и является одним из свойств АКФ.

Для сигналов, заданных на определенном интервале [a, b], вычисление АКФ производится с нормировкой на длину интервала [a, b]:

Bs() =s(t) s(t+) dt. (2.4.2)

Автокорреляция сигнала может оцениваться и функцией автокорреляционных коэффициентов, вычисление которых производится по формуле (по центрированным сигналам):

rs() = cos () = s(t), s(t+) /||s(t)||2.

Взаимная корреляционная функция (ВКФ) сигналов (cross-correlation function, CCF) показывает как степень сходства формы двух сигналов, так и их взаимное расположение друг относительно друга по координате (независимой переменной), для чего используется та же формула (2.4.1), что и для АКФ, но под интегралом стоит произведение двух разных сигналов, один из которых сдвинут на время :

B12() = s1(t) s2(t+) dt. (2.4.3)

При замене переменной t = t- в формуле (2.4.3), получаем:

B12() =s1(t-) s2(t) dt = s2(t) s1(t-) dt = B21(-)




Рис. 2.4.2. Сигналы и ВКФ.
Отсюда следует, что для ВКФ не выполняется условие четности, а значения ВКФ не обязаны иметь максимум при  = 0. Это можно наглядно видеть на рис. 2.4.2, где заданы два одинаковых сигнала с центрами на точках 0.5 и 1.5. Вычисление по формуле (2.4.3) с постепенным увеличением значений  означает последовательные сдвиги сигнала s2(t) влево по оси времени (для каждого значения s1(t) для подынтегрального умножения берутся значения s2(t+)).

При =0 сигналы ортогональны и значение B12()=0. Максимум В12() будет наблюдаться при сдвиге сигнала s2(t) влево на значение =1, при котором происходит полное совмещение сигналов s1(t) и s2(t+). При вычислении значений B21(-) аналогичный процесс выполняется последовательным сдвигом сигнала s1(t) вправо по временной оси с постепенным увеличением отрицательных значений , а соответственно значения B21(-) являются зеркальным (относительно оси t=0) отображением значений B12(), и наоборот. На рис. 2.4.3 это можно видеть наглядно.




Рис. 2.4.3. Сигналы и ВКФ.
Таким образом, для вычисления полной формы ВКФ числовая ось  должна включать отрицательные значения, а изменение знака  в формуле (2.4.3) равносильно перестановке сигналов.

Для периодических сигналов понятие ВКФ обычно не применяется, за исключением сигналов с одинаковым периодом, например, сигналов входа и выхода систем при изучении характеристик систем.

Функция коэффициентов взаимной корреляции двух сигналов вычисляется по формуле (по центрированным сигналам):

rsv() = cos () = s(t), v(t+) /||s(t)|| ||v(t)||. (2.4.4)

Значение коэффициентов взаимной корреляции может изменяться от -1 до 1.

2.5. математическое описание шумов и помех [1, 30].

Шумы и помехи (noise). При детектировании сигналов в сумме с основным информационным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи различной природы. К помехам относят также искажения информационных сигналов при влиянии дестабилизирующих факторов на процессы измерений, как, например, температуры на датчики измерений, каверн в стенках скважины на измерения в радиометрических методах каротажа, грозовых разрядов на электроразведочные методы измерений и т.п. Выделение информационных составляющих из зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки сигналов (результатов наблюдений).

Если помехи известны и регулярны, как например, фон переменного тока, то борьба с ними особых затруднений не представляет. Наибольшие трудности представляет борьба со случайными (непредсказуемыми) помехами. В общей форме влияние помех на регистрируемый сигнал записывается в следующем виде:

y(t) = V(s(t), q(t)), (2.5.1)

где s(t) – информационная (полезная) часть сигнала, q(t) – помеха.

Помеха называется аддитивной, и обычно именуется шумом, если выражение (2.5.1) представляет собой простую сумму сигнала и помехи:

y(t) = s(t) + q(t). (2.5.2)

Если случайный процесс v(t), оказывающий влияние на сигнал, является неотрицательным, а его влияние выражается в форме:

y(t) = v(t)·s(t), (2.5.3)

то помеху v(t) называют мультипликативной.

В общем случае в сигнале могут присутствовать оба вида помех:

y(t) = v(t) s(t) + q(t). (2.5.4)

Природа помех. Как правило, случайные шумовые помехи (аддитивные) порождаются различного рода физическими флюктуациями – случайными отклонениями тех или иных физических величин от своих средних значений. Природа флюктуаций обычно определяется статистической природой физических процессов. Многие физические величины представляют собой результаты усреднения определенных параметров физических процессов, дискретных и случайных по своей природе. Так, например, тепловой шум регистрируемого напряжения на резисторах электрических цепей обуславливается флюктуациями теплового движения носителей зарядов - случайностью процесса дрейфа отдельных электронов по резистору, по суммарной интенсивности движения которых и формируется падение напряжения на резисторе. Дискретной и стохастической является природа ионизирующих видов излучения. Флюктуации физических величин, дискретных и случайных по своей природе, принципиально неустранимы, и речь может идти только о том, чтобы уменьшать их относительную величину имеющимися в нашем распоряжении средствами.

Природа мультипликативных помех обычно связана с изменениями условий измерений, параметров каналов передачи данных и систем их обработки, т.е. когда случайные помехи или дестабилизирующие факторы накладываются не на сам сигнал непосредственно, а на системы, в которых этот сигнал формируется и обращается, вызывая опосредствованные искажения сигнала, как линейные, так и нелинейные.

Характеристики помех. В математическом описании помехи представляются случайными функциями времени. Случайную функцию непрерывного времени обычно называют случайным процессом, ее дискретный аналог – случайной последовательностью. Как правило, помехи относятся к классу стационарных случайных процессов, и характеризуются своими распределениями и числовыми параметрами моментов распределений. Основное распределение большинства шумовых сигналов – нормальное (гауссов процесс). Это объясняется тем, что распределение сумм независимых случайных величин, из которых складываются случайные помехи, сходится к нормальному, вне зависимости от характера распределения слагаемых (теорема Ляпунова).

Момент первого порядка выражает среднее значение (постоянную составляющую) случайного процесса:

M{q =  =q·p(q) dq, (2.5.5)

где p(q) – плотность вероятностей значений q.

Центральный момент второго порядка определяет дисперсию процесса:

D{q = =(q-)2·p(q) dq = - 2. (2.5.6)

Дисперсия выражает мощность переменной составляющей процесса. Корень квадратный из значения дисперсии, т.е. значение , является средним квадратическим значением разброса случайных значений q относительно среднего значения .

Смешанный момент второго порядка называется функцией автокорреляции случайного процесса q(t):

M{q(t)q(t+) =x1x2·p(x1,x2) dx1 dx2 = B(). (2.5.7)

Величина B() при  = 0 равна общей мощности случайного процесса q(t).

На практике большинство случайных процессов обладают свойством эргодичности. Оно заключается в том, что средние значения (математические ожидания) моментов распределения по множеству реализаций, вычисляемые по плотностям распределений (2.5.5-2.5.7), совпадают со значениями по времени Т одной реализации процесса при Т  . Это позволяет производить оценку числовых значений параметров помех непосредственно по произвольным интервалам [a, b] задания сигналов:

= q(t) dt. (2.5.8)

2= (q(t)-)2 dt (q(t)-)2 dt. (2.5.9)

= q(t)q(t+) dt q(t)q(t+) dt. (2.5.10)

Спектральная плотность мощности случайного процесса (распределение мощности помех и шумов по частоте) связана с функцией автокорреляции преобразованием Фурье. В одностороннем (физическом) представлении спектра:

f= 4B() cos 2f d. (2.5.11)

=B(f) cos 2f d. (2.5.12)

Аддитивную помеху с равномерным спектром B(f) = B0 = const называют белым шумом. Мощность белого шума в полосе частот 0-F пропорциональна ширине полосы:

WF=B(f) df = BoF.

При белом шуме полоса частот всегда полагается конечной, т.к. в противном случае мы получим бесконечную мощность шумов.

Сигнал с аддитивной помехой обычно характеризуют не абсолютной мощностью помехи, а отношением средних мощностей сигнала и помехи, которое кратко называют отношением сигнал/помеха:

Wc/Wq.

Значения случайных процессов являются некоррелированными только при неограниченной полосе частот. Любое ограничение частотной полосы вносит определенную корреляцию в процесс и независимыми друг от друга можно считать только значения процесса, отстоящие друг от друга как минимум на интервал корреляции o:

o = (2/WF)B(t) dt = 1/2F.

литература

1. Баскаков С.И. Радиотехнические цепи и сигналы Учебник для вузов. - М. Высшая школа, 1988.

3. Васильев Д.В. Радиотехнические цепи и сигналы: Учебное пособие для вузов. - М.: Радио и связь, 1982. - 528 с.

11. Зиновьев А.Л., Филиппов Л.И. Введение в теорию сигналов и цепей: Учебное пособие для вузов. - М.: Высшая школа, 1975. - 264 с.

16. Макс Ж. Методы и техника обработки сигналов при физических измерениях: В 2-х томах.- М.: Мир, 1983.

25. Сергиенко А.Б. Цифровая обработка сигналов. / Учебник для вузов. – СПб.: Питер, 203. – 608 с.

29. Сато Ю. Обработка сигналов. Первое знакомство. – Изд.: ДОДЭКА, 2002.

30. Харкевич А.А. Борьба с помехами. – М.: Наука, 1965.

Главный сайт автора ~ Лекции по сигналам ~ Практикум

О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.

Copyright © 2008-2010 Davydov А.V.


Если Вы считали эту лекцию в интернете не с сайта автора,

то проверьте, нет ли на сайте автора более новой версии.





Скачать 494.62 Kb.
оставить комментарий
страница3/3
Дата02.10.2011
Размер494.62 Kb.
ТипРеферат, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3
Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх