Учебно-методическое пособие Рекомендовано методической комиссией механико-математического факультета для студентов ннгу, обучающихся по направлению подготовки 010500 «Прикладная математика и информатика» icon

Учебно-методическое пособие Рекомендовано методической комиссией механико-математического факультета для студентов ннгу, обучающихся по направлению подготовки 010500 «Прикладная математика и информатика»


1 чел. помогло.
Смотрите также:
Учебное пособие Рекомендовано методической комиссией механико-математического факультета для...
Учебно-методическое пособие Рекомендовано методической комиссией факультета управления и...
Методические указания по выполнению курсовых работ по курсу...
Учебно-методическое пособие Рекомендовано методической комиссией финансового факультета для...
Учебно-методическое пособие Рекомендовано методической комиссией филологического факультета для...
Практикум Рекомендовано методической комиссией факультета международных отношений для студентов...
Учебно-методическое пособие для студентов экономического факультета специальности 060800...
Учебное пособие Рекомендовано методической комиссией факультета социальных наук для студентов...
Пособие для преподавателей русского языка, ведущих занятия с иностранными студентами...
Учебно-методическое пособие по английскому языку...
Практикум по ценообразованию...
Учебное пособие для студентов ммф томск 2007...



Загрузка...
страницы:   1   2   3   4   5   6   7   8   9   ...   13
скачать


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ


Нижегородский государственный университет им. Н.И. Лобачевского


С.А. Капустин

Метод взвешенных невязок решения задач механики

деформируемых тел и теплопроводности


Учебно-методическое пособие


Рекомендовано методической комиссией механико-математического

факультета для студентов ННГУ, обучающихся по направлению подготовки 010500 «Прикладная математика и информатика»


Нижний Новгород

2010


УДК 539.3 (075)

ББК В25 (Я73-4)

К20


К 20 Капустин С.А. МЕТОД ВЗВЕШЕННЫХ НЕВЯЗОК РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМЫХ ТЕЛ И ТЕПЛОПРОВОДНОСТИ: учебно-методическое пособие. – Нижний Новгород: Нижегородский госуниверситет, 2010. – 60 с.


Учебно-методическое пособие посвящено изложению основ наиболее известных методов дискретизации непрерывных задач, определенных соответствующими дифференциальными уравнениями, которые являются основой для построения широкого класса методов численного решения задач математической физики. В частности, рассмотрены метод конечных разностей и метод взвешенных невязок, объединяющий в своем составе ряд различных конкретных методов, таких как метод коллокации, метод Галеркина, метод конечных элементов и др.

Пособие рассчитано на студентов бакалавриата и магистратуры университетов по специальностям «Прикладная математика» и «Механика».


УДК 539.3 (075)

ББК В25 (Я73-4)


© Нижегородский государственный

Университет им. Н.И. Лобачевского, 2010


Содержание

Введение 3

1. Общая характеристика уравнений теории упругости и теплопроводности. Метод конечных разностей 7

1.1.Уравнения теории упругости 7

1.2.Уравнения теплопроводности 10

1.3. Конечно-разностные аппроксимации производных 13

1.4. Решение одномерных задач методом конечных разностей 15

^ 2. Метод взвешенных невязок с использованием базисных функций 21

2.1. Аппроксимация функций с использованием систем базисных функций 21

2.2. Основы метода взвешенных невязок 23

2.3. Аппроксимация решений дифференциальных уравнений 27

2.4. Использование в МВН функций, не удовлетворяющих априори краевым условиям 30

2.5. Естественные краевые условия 32

2.6. Общая формулировка естественных краевых условий для задач теплопроводности 34

2.7. Применение МВН в задачах теории упругости 35

^ 3. Метод взвешенных невязок с кусочным определением базисных функций (метод конечных элементов) 39

3.1. Особенности задания базисных функций в методе конечных элементов (МКЭ) 39

3.2. Аппроксимация решения дифференциальных уравнений с использованием кусочно-определенных базисных функций 41

^ 4. Построение базисных координатных функций в МКЭ 50

4.1. Основные требования к координатным функциям в МКЭ 50

4.2. Построение базисных функций конечных элементов в обобщенных координатах 50

4.3. Построение локальных систем координат 53

4.4. Лагранжево семейство элементов 55

4.5. Сирендипово семейство элементов 57

4.6. Треугольные элементы 58

Литература 65



Введение



Уровень развития современной техники неразрывно связан с состоянием исследований в области механики и вычислительных методов, позволяющих осуществлять математическое моделирование реальных физических процессов. Поэтому количественные методы исследования таких процессов проникают в настоящее время практически во все сферы человеческой деятельности, а математические модели становятся основным средством познания реальной действительности.

Количественное описание исследуемых процессов с использованием математических моделей обычно строится путем последовательной реализации двух основных этапов.

На первом этапе осуществляется математическая постановка решаемой задачи, заключающаяся в формулировке исходных дифференциальных уравнений, ограниченных определенной системой краевых и начальных условий. Далее требуется решить поставленную задачу для конкретных конфигураций исследуемых объектов, заданных свойств этих объектов, конкретных начальных и краевых условий.

Решение таких задач на основе современных аналитических методов обычно удается получить лишь для простейших систем уравнений, ограниченных видов конфигураций объектов и частных видов краевых условий. Кроме этого, применение аналитических методов не позволяет в должной мере использовать для решения задач постоянно растущие возможности современных ЭВМ.

Более перспективными в этом плане являются методы вычислительной математики, непосредственно ориентированные на применение ЭВМ и постоянно совершенствующиеся вместе с прогрессом в области вычислительной техники. На основе этих методов удается преобразовать исходную задачу к чисто алгебраической форме, для решения которой достаточно использовать только основные арифметические операции. Такие преобразования возможны на основе применения различных методов дискретизации непрерывных задач, определенных соответствующими дифференциальными уравнениями.

В результате дискретизации бесконечные множества чисел, определяющих неизвестные функции, аппроксимируются конечным числом параметров, а исходная непрерывная задача сводится к определению значений этих параметров.

К настоящему времени известно большое число различных методов дискретизации, отличающихся различными способами аппроксимации искомых функций и исходной непрерывной задачи.

Применительно к решению краевых задач математической физики, вопросам решения которых посвящен основной материал предлагаемого пособия, в настоящее время наибольшее распространение получили две наиболее известные группы методов дискретизации, существенно различных по своей основе, но, тем не менее, имеющих много общих черт.

Первую группу составляют конечно-разностные методы (МКР), имеющие в зависимости от постановки решаемых задач большое число различных модификаций.

В самых общих чертах суть МКР сводится к замене дифференциальных выражений в исходных дифференциальных уравнениях некоторой краевой задачи соответствующими конечно-разностными выражениями относительно значений искомых функций в узлах сеточной области. С этой целью исследуемая область покрывается системой сеточных линий. Действительная граница области заменяется сеточной границей таким образом, чтобы сеточные узлы наилучшим образом приближали истинную границу. В каждом узле области дифференциальные операторы краевой задачи заменяются соответствующими конечно-разностными операторами. При этом исходная краевая задача сводится к задаче решения системы алгебраических уравнений относительно значений искомых функций в узлах сеточной области.

Вторая группа методов с общим названием “метод взвешенных невязок” (МВН) включает в себя широкий класс различных схем, в основу которых положено два, общих для всех конкретных схем, фактора:

- введение системы базисных функций, удовлетворяющих определенным условиям исходной задачи и используемых для аппроксимации искомых функций;

- построение метода определения параметров аппроксимации путем приравнивания нулю интеграла от невязки исходных уравнений, взятых с определенной системой весовых функций.

Выбирая различные варианты базисных функций, весовых функций, различные способы построения уравнений невязок для определения параметров аппроксимации искомых функций можно, получать различные варианты конкретных схем МВН.

Обычно базисные функции выбирают такими, чтобы для них выполнялись те или иные условия исходной краевой задачи, причем, для определения параметров этих функций, составляются уравнения невязок для оставшейся части невыполненных условий.

В частности, при использовании базисных функций, удовлетворяющих всем краевым условиям исходной задачи, для определения параметров этих функций составляется уравнение в виде равенства нулю интеграла по области от произведения невязки основного дифференциального оператора задачи на выбранную систему весовых функций. В результате в зависимости от выбора весовых функций могут быть получены соответствующие классические схемы МВН: метод моментов, методы коллокации, метод Галеркина и другие.

При выборе базисных функций, удовлетворяющих основному дифференциальному оператору внутри области, для определения неизвестных параметров составляется уравнение, содержащее интеграл по границе области от произведения невязки граничных условий на соответствующую систему весовых функций. Получаемые при этом конкретные схемы МВН соответствуют схеме метода граничных уравнений.

В классических вариантах МВН базисные функции задаются для всей области, что приводит к определенным трудностям при выборе самих функций и при численном решении таких задач. В частности известно, что с увеличением номера приближения в таких схемах существенно ухудшается обусловленность результирующей системы линейных алгебраических уравнений. Однако перечисленные трудности могут быть легко преодолимы путем использования локально определенных базисных функций, задаваемых на отдельных подобластях исследуемой области.

Применение такой системы МВН, которую в дальнейшем будем называть методом конечных элементов (МКЭ), предполагает деление исследуемой области системой непересекающихся подобластей (конечных элементов), в каждой из которых осуществляется аппроксимация искомых функций с помощью простейших степенных полиномов. В результате существенно упрощается сам выбор базисных функций, удовлетворяющих заданным краевым условиям, появляются широкие возможности исследования областей, имеющих нерегулярные границы, улучшается структура и обусловленность результирующей системы.

Следует иметь в виду, что для задач, допускающих вариационную формулировку исходных уравнений, идентичные МВН схемы МКЭ могут быть получены в рамках известных вариационных методов. В частности, в первых работах, определивших появление МКЭ, этот метод трактовался либо как разновидность классического вариационного метода Релея-Ритца с локальным заданием базисных функций, либо как разновидность вариационно-разностного метода. Поэтому МКЭ можно рассматривать как общий метод дискретизации непрерывных краевых задач, имеющий непосредственную связь с МВН и классическими вариационными методами, использующими базисные функции для аппроксимации неизвестных функций, а также с конечно-разностными методами, основанными на вариационной формулировке исходных уравнений.

Вобрав в себя лучшие качества конечно-разностных методов, МКЭ имеет перед ними определенные преимущества, обеспечивая возможность свободного размещения узловых точек и сгущения их в местах высокого градиента функций, возможность одновременного использования в рамках единой расчетной схемы конечных элементов различной сложности и мерности. Кроме того, наличие разрывов в геометрии конструкции нисколько не затрудняет анализ таких конструкций МКЭ, что делает этот метод весьма перспективным для исследования сложных конструктивных образований.

В настоящее время МКЭ признается одним из наиболее универсальных методов решения прикладных задач математической физики, успешно используемых для математического моделирования в области прочности, аэрогидродинамики, теплофизики.

Предлагаемое учебное пособие посвящено изложению основ перечисленных методов дискретизации и иллюстрации их применения для двух классов задач:

-задач стационарной теплопроводности, на примерах решения которых удается наиболее просто и наглядно продемонстрировать основные принципы построения численных решений;

-задач теории упругости, являющихся наиболее сложными задачами математической физики, и требующих для построения численных решений привлечение более широкого набора вычислительных средств.

В первой главе пособия рассмотрены постановка задач и основные уравнения теории упругости. Приведена система дифференциальных уравнений в частных производных и краевых условий для функций перемещений, описывающих упругое равновесие деформируемых систем. Рассмотрены основные соотношения и совокупность уравнений, описывающих распределение температур в изотропных теплопроводящих средах при различных граничных условиях. Дано описание способов построения конечно-разностных аппроксимаций производных различных порядков и рассмотрены вопросы применения МКР для решения одномерных задач.

Вторая глава посвящена изложению основ МВН с использованием базисных функций, определенных на всей области рассматриваемой задачи. На примерах решения задач теплопроводности рассмотрены различные варианты аппроксимации дифференциальных уравнений на основе различных систем весовых функций и базисных функций, удовлетворяющих и неудовлетворяющих априори заданным краевым условиям. Рассмотрена слабая формулировка МВН для задач теплопроводности и теории упругости.

Третья глава содержит описание основ МКЭ, как специальной формы МВН с кусочным определением базисных функций. Рассмотрены особенности задания локальных базисных функций в МКЭ и применения их для аппроксимации дифференциальных уравнений задач теплопроводности и теории упругости.

Четвертая глава посвящена вопросам построения базисных координатных функций в МКЭ. Сформулированы основные требования к таким функциям, обеспечивающие сходимость численных решений. Рассмотрены некоторые способы построения базисных функций в элементах различной конфигурации и пространственной мерности. Приведены основные сведения об искривленных изопараметрических элементах и применении для вычисления их жесткостных характеристик схем численного интегрирования.






оставить комментарий
страница1/13
Дата02.10.2011
Размер0,69 Mb.
ТипУчебно-методическое пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4   5   6   7   8   9   ...   13
плохо
  2
отлично
  2
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх