1. Понятие и классификация экономических прогнозов icon

1. Понятие и классификация экономических прогнозов


2 чел. помогло.
Смотрите также:
Классификация экономических прогнозов Вопросы и задания...
Вопросы к кандидатскому экзамену по специальности 08. 00. 01 «Экономическая теория»...
2. Техническое обеспечение информационных технологий...
Календарный план (весенний семестр 2010/2011 учебного года) лекций старшего преподавателя...
Закон: понятие, признаки, виды...
Краткое содержание: Классификация кинематических пар. Модели машин...
Реферат по гражданскому праву На тему: Объекты гражданских прав...
План лекции: Понятие компьютерной сети. Эволюция компьютерных сетей...
План лекции: Понятие компьютерной сети. Эволюция компьютерных сетей...
План лекции: Понятие компьютерной сети. Эволюция компьютерных сетей...
Темы рефератов История развития средств вычислительной техники. Понятие информации...
6 Основы технических измерений. Размерные цепи Лекция 10 Понятие об измерениях и их единицах...



Загрузка...
страницы: 1   2   3
вернуться в начало
скачать
^

Тема 4: Сглаживание временных рядов с помощью скользящей средней.



Распространенным приемом при выявлении тенденции развития является сглаживание временного ряда. Суть различных приемов сглаживания сводится к замене фактических уровней временного ряда расчетными уровнями, которые подвержены колебаниям в меньшей степени. Это способствует более четкому проявлению тенденции развития. Иногда сглаживание применяют как предварительный этап перед использованием других методов выделения тенденции

Скользящие средние позволяют сгладить как случайные, так и периодические колебания, выявить имеющуюся тенденцию в развитии процесса, и поэтому, являются важным инструментом при фильтрации компонент временного ряда.

Если рассматриваемое явление носит линейный характер, то применяется простая скользящая средняя. Алгоритм сглаживания по простой скользящей средней может быть представлен в виде следующей последовательности шагов:

1. Определяют длину интервала сглаживания g, включающего в себя g последовательных уровней ряда (g
2. Разбивают весь период наблюдений на участки, при этом интервал сглаживания как бы скользит по ряду с шагом, равным 1.

3. Рассчитывают арифметические средние из уровней ряда, образующих каждый участок.

4. Заменяют фактические значения ряда, стоящие в центре каждого участка, на соответствующие средние значения.

При этом удобно брать длину интервала сглаживания g в виде нечетного числа: g=2p+1, т.к. в этом случае полученные значения скользящей средней приходятся на средний член интервала.

Наблюдения, которые берутся для расчета среднего значения, называются активным участком сглаживания.

При нечетном значении g все уровни активного участка могут быть представлены в виде: yt-p, yt-p+1, ... , yt-1, yt, yt+1, ... , yt+p-1, yt+p,

а скользящая средняя определена по формуле:




Процедура сглаживания приводит к полному устранению периодических колебаний во временном ряду, если длина интервала сглаживания берется равной или кратной циклу, периоду колебаний.

Для устранения сезонных колебаний желательно было бы использовать четырех- и двенадцатичленную скользящие средние, но при этом не будет выполняться условие нечетности длины интервала сглаживания. Поэтому при четном числе уровней принято первое и последнее наблюдение на активном участке брать с половинными весами:



Тогда для сглаживания сезонных колебаний при работе с временными рядами квартальной или месячной динамики можно использовать следующие скользящие средние:



При использовании скользящей средней с длиной активного участка g=2p+1 первые и последние p уровней ряда сгладить нельзя, их значения теряются. Очевидно, что потеря значений последних точек является существенным недостатком, т.к. для исследователя последние "свежие" данные обладают наибольшей информационной ценностью. Рассмотрим один из приемов, позволяющих восстановить потерянные значения временного ряда. Для этого необходимо:

1.Вычислить средний прирост на последнем активном участке yt-p, yt-p+1, ... , yt, ... , yt+p-1, yt+p



2.Получить P сглаженных значений в конце временного ряда путем последовательного прибавления среднего абсолютного прироста к последнему сглаженному значению.

Аналогичную процедуру можно реализовать для оценивания первых уровней временного ряда.

Метод простой скользящей средней применим, если графическое изображение динамического ряда напоминает прямую. Когда тренд выравниваемого ряда имеет изгибы, и для исследователя желательно сохранить мелкие волны, применение простой скользящей средней нецелесообразно.

Если для процесса характерно нелинейное развитие, то простая скользящая средняя может привести к существенным искажениям. В этих случаях более надежным является использование взвешенной скользящей средней.

При построении взвешенной скользящей средней на каждом участке сглаживания значение центрального уровня заменяется на расчетное, определяемое по формуле средней арифметической взвешенной, т.е. уровни ряда взвешивают.

Взвешенная скользящая средняя приписывает каждому уровню вес, зависящий от удаления данного уровня до уровня, стоящего в середине участка сглаживания.

При сглаживании по взвешенной скользящей средней используются полиномы второго (парабола) или третьего порядка.

Сглаживание с помощью взвешенной скользящей средней осуществляется следующим образом: для каждого участка сглаживания подбирается полином вида:

Yi = aj + a1t

Yi = ao + a1t + a2t2+… aptp

Параметры полинома находятся по методу наименьших квадратов.

При этом начало отсчета переносится в середину участка сглаживания, например, если длина интервалов сглаживания = 5, то индексы уровней участка сглаживания будут равны: -2, -1, 0, 1, 2.

у


t

t

t

у1

-2

4

16

у2

-1

1

1

у3

0

0

0

у4

1

1

1

у5

2

4

16




t=0

10

34

Тогда сглаживающим значением для уровня, стоящего в середине участка сглаживания, будет значение параметра а0.

Нет необходимости каждый раз заново вычислять весовые коэффициенты при уровнях ряда, входящих в участок сглаживания, поскольку они будут одинаковыми для каждого участка сглаживания, например, если в интервал сглаживания входит 5 последующих уровней ряда и выравнивание производится по параболе, то коэффициенты параболы находят по методу наименьших квадратов, учитывая, что t = 0.

Метод наименьших квадратов в этой ситуации дает следующую систему уравнений:



Для нахождения параметра а0 используют 1 и 3 уравнение



-

34-=5*34а0-10*10а0

34-=а0(170-100)

а0=




Если длина интервала сглаживания равна 7, весовые коэффициенты следующие:



Отметим важные свойства приведенных весов:

1) Они симметричны относительно центрального уровня.

2) Сумма весов с учетом общего множителя, вынесенного за скобки, равна единице.

3) Наличие как положительных, так и отрицательных весов, позволяет сглаженной кривой сохранять различные изгибы кривой тренда.

Существуют приемы, позволяющие с помощью дополнительных вычислений получить сглаженные значения для Р начальных и конечных уровней ряда при длине интервала сглаживания g=2p+1.


^ Весовые коэффициенты при сглаживании по полиномам второго и третьего порядка




Тема 5: Методы измерения и изучения устойчивости временного ряда.

Категорию устойчивости рассматривают с двух позиций:

  • устойчивость уровней ряда;

  • устойчивость тренда.

Согласно статистической теории, статистический показатель содержит в себе элементы необходимого и случайного. Необходимость проявляется в форме тенденции временных рядов, а случайность в форме колебаний уровней относительно тренда. Тенденцией характеризуется процесс эволюции.

Расчленение временных рядов на составляющие элементы – условный описательный прием. Тем не менее, решающим фактором, обусловливающим тенденцию является целенаправленная деятельность человека, а главной причиной колеблемости – изменение условий жизнедеятельности.

Отсюда следует, что устойчивость не означает обязательного повторения одинакового уровня из года в год. Слишком узким было понятие устойчивости ряда как полное отсутствие любых колебаний уровней.

Сокращение колебаний уровней ряда – одна из главных задач при повышении устойчивости.

Устойчивость временных рядов - это наличие необходимой тенденции изучаемого показателя с минимальным влиянием на него неблагоприятных условий.

Для измерения устойчивости уровней временных рядов используют следующие показатели:

  1. размах колеблемости - определяется как разница средних уровней за благоприятные и неблагоприятные по отношению к изучаемому явлению периоды времени:

R=y благопр – унеблагопр

К благоприятным периодам времени относятся все периоды с уровнями выше тренда, а к неблагоприятным – ниже тренда.

2) индекс устойчивости:

i=

3)среднее линейное отклонение:

d=

  1. среднее квадратическое отклонение:

S(t)=

Уменьшение колеблемости во времени будет равнозначно устойчивости уровней.

Для характеристики устойчивости рекомендуются также следующие показатели:

  1. процентный размах (PR):

PR=Wmax-Wmin

Wmax/min – max/min относительный прирост.

W=

  1. Скользящая средняя (МА) оценивает величину среднего отклонения от уровня скользящих средних (хt):

МА=

xt=

  1. Среднее процентное изменение (АРС) оценивает среднее значение абсолютных величин, относительных приростов и квадратов относительных приростов:

АРС=

Для оценки устойчивости уровней временных рядов применяются относительные показатели колеблемости:

V(t)=

V(t)=

K=100 – V(t) – коэффициент устойчивости (в процентах или долях единиц).

Для измерения устойчивости тенденции динамики (тренда) используют следующие показатели:

  1. коэффициент корреляции рангов (коэффициент Спирмена):

Кр=1-,

d - разность рангов уровней изучаемого ряда и рангов номеров периодов или моментов времени.

d = Ry – Rt

Для определения этого коэффициента величины уровней нумеруют в порядке возрастания, а при наличии одинаковых уровней им присваивается определенный ранг равный частному от деления рангов, приходящихся на число этих равных значений.

Коэффициент Спирмена может принимать значения в пределах от 0 до ±1. Если каждый уровень исследуемого периода выше, чем предыдущего, то ранги уровней ряда и номера лет совпадают – Кр=+1. Это означает полную устойчивость самого факта роста уровней ряда, то есть непрерывность роста. Чем ближе Кр к +1, тем ближе рост уровней к непрерывному, то есть выше устойчивости роста. Если Кр=0, рост совершенно неустойчив.

При отрицательных значениях чем ближе Кр к -1, тем устойчивее уменьшение изучаемого показателя.

  1. индекс корреляции (ИК):

I=

Индекс корреляции показывает степень сопряженности колебаний исследуемых показателей с совокупностью факторов, изменяющих их во времени. Приближение индекса корреляции к 1 означает, большую устойчивость изменения уровней временных рядов.

Число уровней ряда у двух показателей должно быть одинаково.

Применяются также комплексные показатели устойчивости, сущность которых заключается в определении их не через уровни временных рядов, а через показатели их динамики.

  1. Показатель Каякиной определяется как отношение среднего прироста линейного тренда, т.е. параметра а1 к среднему квадратическому отклонению уровней от тренда:

Кк=

Чем больше величина этого показателя, тем менее вероятно, что уровень ряда в следующем периоде будет меньше предыдущего.

  1. Показатель опережения, который получают, сопоставляя темпы роста уровней ряда с темпами значения колеблемости:

К0=

Если показатель опережения > 1, то это свидетельствует о том, что уровни ряда в среднем растут быстрее колебаний или снижаются медленнее колебаний. В таком случае коэффициент колеблемости уровней будет уменьшаться, а коэффициент устойчивости уровней увеличиваться. Если показатель опережения меньше 1, то колебания растут быстрее уровней тренда и коэффициент колеблемости растет, а коэффициент устойчивости уровней уменьшается, то есть показатель опережения определяет направление динамики коэффициента устойчивости уровней.


Тема 6. Анализ периодических колебаний во временных рядах


Временной ряд содержит, как правило, 2 основных элемента:

  • тенденцию динамики;

  • колеблемость.

Эти составляющие в разных временных рядах находятся в неодинаковом соотношении. А в крайних случаях остается один элемент, т.е. ряд без колебаний представляет собой тренд в чистом виде; а ряд без тенденции динамики, но с колебаниями уровней около постоянной средней величины – это стационарный временной ряд.

Колеблемость представляет собой важный предмет статистического исследования временного ряда и позволяет выдвинуть гипотезы о причинах колебаний, о путях влияния на них. Кроме того, на основе параметров колеблемости, ее можно прогнозировать или учитывать как факторы ошибки прогноза (рассчитывать резервы, т.е. страховой запас, необходимый для преодоления вредных последствий колебаний уровней).

Изучение колебаний целесообразно начать с графического изображения.

Все многообразие встречаемых во временных рядах колебаний обычно сводят к 3 основным типам:

  1. пилообразные (маятниковые);

  2. долгопериодические циклы колебаний;

  3. случайно распределенная во времени колеблемость.

Графическое изображение каждого из этих типов и описание основных свойств каждого типа колеблемости, во-первых, помогают по виду фактического ряда определить, какой тип колебаний является преобладающим в нем, и, во-вторых, помогают понять, какие последствия могут иметь колебания и как их устранить.

Характерной чертой пилообразной колеблемости является правильное регулярное чередование отклонений от тренда вверх и вниз, т.е. положительных по знаку и отрицательных через одно.

Свойства пилообразной колеблемости таковы:

- из-за частой смены знака отклонения от тренда не происходит аккумуляции ни положительных, ни отрицательных отклонений, следовательно, нет необходимости создавать для их компенсации значительный страховой запас;

- регулярность чередования отклонений обеспечивает их надежное прогнозирование, причем число положительных отклонений при достаточно большой длине ряда = числу отрицательных отклонений, а общее количество локальных экстремумов = числу уровней.

Распознать наличие пилообразных колебаний можно подсчетом числа локальных экстремумов в ряду отклонений от тренда. Чем ближе это число к числу уровней ряда, тем большую роль играют пилообразные колебания.

Кроме того, существует еще один способ распознавания пилообразных колебаний по знаку и величине коэффициента автокорреляции отклонений от тренда 1-го порядка (зависимость уровней ряда между собой). В рядах динамики экономических процессов может существовать взаимосвязь между уровнями. Это явление называется автокорреляцией. Измеряют автокорреляцию при помощи коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на 1 период, но и между сдвинутыми на любое число единиц времени. Этот сдвиг называется временным лагом. Он определяет порядок коэффициента автокорреляции.

Коэффициент автокорреляционных отклонений от тренда

1-го порядка рассчитывается по следующей формуле:

Ча =

Если значение последнего уровня ряда не значительно отличается от первого, то сдвинутый ряд можно условно дополнить, заменяя 1-й уровень последним. Тогда формула для расчета коэффициента автокорреляции будет иметь следующий вид:

Ча =

Чем ближе коэффициент автокорреляции (Ча) к – «1», тем большую роль играет пилообразная колеблемость.

При Ча превышающим «-0,3» считают пилообразную составляющую несуществующей.

Характерной чертой долгопериодичной циклической колеблимости является наличие нескольких подряд отклонений одного знака, затем сменяющихся примерно таким же количеством отклонений противоположного знака подряд, затем весь цикл вновь повторяется, причем, как правило, длина всех циклов одинакова. Если равенство отдельных циклов существенно нарушается, говорят о квазицикличной колеблемости.

Свойства долгопериодической циклической колеблемости:

    1. Отклонения одного и того же знака следуют подряд в течение примерно половины длины цикла (е), поэтому эти отклонения аккумулируются и для их компенсации нужен большой страховой запас.

    2. Для прогнозирования долгопериодическая циклическая колеблемость благоприятна, особенно, если длина цикла строго постоянна. Прогноз на любой будущий период состоит из прогноза тренда и циклического отклонения от него, соответствующего фазе цикла в прогнозируемый период.

Обычно за цикл наблюдаются 2 экстремума отклонений от тренда: 1 – мах и 1 min. Поэтому, за период, состоящий из n уровней насчитывается К=2*количество экстремумов.

Распознать долгопериодическую циклическую колеблемость можно по виду графика подсчетом числа экстремумов в ряду отклонений от тренда и по коэффициенту автокорреляционных отклонений 1-го порядка.

Если число локальных экстремумов в ряду отклонений мало, то можно предположить наличие циклической колеблемости.

Коэффициент автокорреляционных отклонений 1-го порядка при циклической колеблемости величина положительная, стремящаяся к «+1».

При наличии фактического коэффициента автокорреляции больше, чем «+0,3», принято считать, что в общей колеблемости временного ряда есть существенная циклическая составляющая. При Ча > 0,7 циклическая составляющая является главной.

Характерной чертой случайно распределенной во времени колеблемости является хаотичность последовательности отклонений от тренда.

Случайно распределенная во времени колеблемость – интерференция колебаний.

Свойства случайно распределенной во времени колеблемости

    1. Из-за хаотичного чередования знаков отклонений от тренда, их взаимопогашение наступает только на достаточно длительном периоде, а на коротких отрезках отклонения могут аккумулироваться, поэтому необходимы довольно значительные резервы.

    2. Случайно распределенная во времени колеблемость неблагоприятна для прогнозирования. Причиной случайно распределенных колебаний служит наличие большого числа независимых или слабо связанных между собой факторов, влияющих на уровни изучаемого явления.

Коэффициент автокорреляционных отклонений от тренда (Ча) при случайно распределенной колеблемости стремится к «0». Если ряд состоит менее чем из 20 уровней, Ча 1-го порядка не превышающие 0,3 по абсолютной величине свидетельствуют о преобладании случайной компоненты в общем комплексе колебаний.

Показатели силы и интенсивности колебаний аналогичны по построению и форме показателям вариации признаков совокупности.

К показателям абсолютной величины колебаний относятся следующие:

1) амплитуда колебаний – разность между наибольшим и наименьшим отклонениями от тренда;

2) среднее по модулю отклонение от тренда:

а(t)=

3) среднее квадратическое отклонение:



4) коэффициент колеблемости:

V(t)=

При рассмотрении квартальных или месячных данных многих социально-экономических явлений часто обнаруживается определенные постоянно повторяющиеся колебания. Они являются результатом влияния природно-климатических условий, а так же общих экономических факторов.

Периодические колебания, которые имеют определенный и постоянный период равный годовому промежутку времени называются сезонными колебаниями. Они характеризуются специальными показателями, которые называются индексами сезонности.

Для вычисления индексов сезонности применяют различные методы. Выбор метода зависит от характера общей тенденции ряда динамики.

Для анализа рядов внутригодовой динамики, в которых наблюдается стабильность годовых уровней, или имеет место незначительная тенденция развития, изучение сезонности основано на методах постоянной средней.

Is=

Yi- средние месячные уровни ряда по одноименным месяцам за несколько лет;

Yо – общий средний уровень ряда.

Для анализа рядов внутригодовой динамики, в которой наблюдается тенденция роста, изучение сезонности основано на методе переменной средней. Для расчета индекса сезонности в таких ситуациях применяют формулу:

Is=

К – число лет.

Уmmео – выровненные уровни ряда (по уравнению прямой).

Для выполнения и измерения периодичных колебаний во временном ряду можно использовать гармонический анализ. Французский математик Фурье предложил метод преобразования периодических функций в ряд тригонометрических уравнений, называемых гармониками. Функцию, заданную в каждой точке изучаемого интервала времени, можно представить бесконечным рядом синусоидальных и косинусоидальных функций.

Нахождение конечной суммы уровней с использованием функций синусов и косинусов времени называется гармоничным анализом. Иначе говоря, гармонический анализ представляет собой операцию по выравниванию заданной периодической функции в виде ряда Фурье по гармоникам разных порядков. При этом каждый уровень ряда представляет собой слагаемое постоянной величины с функцией синуса и косинуса определенного порядка.

С помощью ряда Фурье можно представить динамику явлений в виде некоторой функции времени:

Yt=a0+.

К – определяет гармонику ряда Фурье и может быть выражена целым числом (чаще всего от 1 до 4).

а0, ак, вк – параметры уравнения, которое находят, применяя метод наименьших квадратов.

а0 =

ак=

вк=

Последовательные значения t обычно определяются от 0 с увеличением или приростом, равным

Для изучения сезонности n=12 время t выражается в радиальной мере или в градусах.

Тогда ряд динамики записываются следующим образом:

Yt

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Y12

радиальная мера

0























градусы

0

30

60

90

120

150

180

210

240

270

300

320


При К=1 уравнение будет иметь следующий вид:

Yt=а0+а1cost+b1sint

a0=

a1=

b1=

при К=2 имеет ряд Фурье с 2 гармониками

Yt=а0+а1cost+b1sint+ а2+а1cos2t+b2sin2t

а2=

b2=

Далее можно аналогично рассчитать вторую гармонику. Таким образом, будем иметь 2 ряда: 1-я гармоника, 2-я гармоника. Рассчитав дисперсии для обоих рядов можно сделать вывод, какая гармоника ряда Фурье наиболее близка к фактическим уровням:




^ Тема 7: Прогнозирование с помощью моделей кривых роста


Применение моделей кривых роста в прогнозировании.

Удобным средством описания одномерных временных рядов является их выравнивание с помощью тех или иных функций времени (кривых роста). Кривая роста позволяет получить выравненные или теоретические значения уровней динамического ряда. Это те уровни, которые наблюдались бы в случае полного совпадения динамики явления с кривой.

Процедура разработки прогноза с использованием кривых роста включает в себя следующие этапы:

  1. Выбор одного или нескольких кривых, форма которых соответствует характеру изменения временных рядов.

  2. Оценка параметров выбранных кривых.

  3. Проверка адекватности выбранных кривых прогнозируемому процессу и окончательный выбор кривой роста.

  4. Расчет точечного и интервального прогнозов.

  5. Оценка прогноза.

Кривые роста могут быть разделены на 3 класса. К первому классу относятся функции, используемые для описания процессов с монотонным характером развития и отсутствием пределов роста. Ко 2 классу относятся кривые, описывающие процесс, который имеет предел роста в исследуемом периоде. Эти функции называются кривыми насыщения.

Если кривые насыщения имеют точку перегиба, то они относятся к 3 классу - к S-образным кривым. Эти кривые описывают как бы два последовательных процесса, когда прирост зависит уже от достигнутого уровня. Причем один развивается с ускорением, другой - с замедлением.

Среди кривых роста 1-го класса выделяют класс полиномов:

Yt=a0+a1t+a2t+…aptp

ao…p – параметры (коэффициенты) полинома.

t – время.

Параметры полиномов невысоких степеней могут иметь конкретную интерпретацию в зависимости от содержания временного ряда. Например, параметр а0 - это начальный уровень ряда при t=0. Параметр а1 можно трактовать как скорость роста, а2 как ускорение роста.

Полином первой степени - это прямая:

Yt=a0+a1t

Основные свойства тренда в форме прямой:

  1. равные изменения за равные промежутки времени (цепные приросты = изменению);

  2. если средний абсолютный прирост – положительная величина, то относительные приросты (темпы прироста) постепенно уменьшаются;

  3. если средние абсолютные изменения – отрицательная величина, то относительные изменения постепенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

  4. если имеется тенденция к сокращению уровней, а изучаемая величина является по определению положительной, то среднее значение параметра а1 не может быть больше среднего уровня (т.е. «а0»);

  5. при линейном тренде ускорение (т.е. разность абсолютных значений за последовательные периоды)=0

Полином 2-ой степени:

Yt=a0+a1t+a2t2

Парабола применяется в тех случаях, когда процесс развивается равноускоренно.

Параболический тренд обладает следующими свойствами:

  1. неравные, но равномерно возрастающие или убывающие абсолютные изменения за равные промежутки времени;

  2. поскольку а0 как правило величина положительная, то характер тренда определяется знаками параметров а1 и а2.

При а1>0 и а2>0 имеем восходящую ветвь, т.е. тенденцию с ускоренному росту уровней.

При а1<0 и а2<0 имеем нисходящую ветвь, т.е. тенденцию к ускоренному сокращению уровней.

При а1>0 и а2<0 имеем либо восходящую ветвь с замедляющимся ростом уровней, либо обе ветви параболы, если их по существу можно считать единым процессом.

При а1<0 и а2>0 имеем либо нисходящую ветвь с замедляющимся сокращением уровней, либо обе ветви, если их можно считать единым процессом.

  1. В зависимости от соотношения между параметрами, цепные темпы изменений могут либо уменьшаться, либо некоторое время увеличиваться. Но при достаточно длительном периоде темпы роста начинают изменяться, а темпы сокращения уровней начинают возрастать.

Полином 3-й степени:

Yt=a0+a1t+a2t2+a3t3

У этого полинома знак прироста ординат может изменяться 1 или 2 раза.

Отличительная черта полиномов – отсутствие в явном виде зависимости приростов от значений ординат.

Нахождение параметров полиномов определяется методом наименьших квадратов. С учетом переноса начала координат в середину ряда параметры для уравнения прямой определяются по следующему алгоритму:

а0= а1=

Для параболы:

а0=-


а1=


а2=

К первому классу кривых роста относятся также экспоненциальные кривые. Для них характерным является зависимость приростов от величины самой функции..

Наиболее часто применяется простая экспоненциальная кривая, которая имеет вид yt=abt

Если b>1, то кривая растет вместе с ростом t.

Если b<1, то тренд отражает замедляющиеся неравномерно уменьшение уровней.

Для нахождения параметров экспоненты данное выражение логарифмируют.



Существует другая разновидность экспоненциальных кривых – логарифмическая парабола:

Yt= abtct

Ко второму классу кривых относят модифицированную экспоненту:

yt=к+abt

Она описывает процесс, на развитие которого воздействует ограничивающий фактор (асимптота).

При решении экономических задач значение асимптоты можно определить исходя из свойств прогнозируемого явления. Иногда значение асимптоты задается экспертным путем.

Наиболее часто применяемыми кривыми 3-го класса является кривая Гомперца:

yt=к+abt

Логистическая кривая:

к+abt

У=

^ Методы выбора кривых роста

Наиболее простой метод – визуальный, опирающийся на графическое изображение временных рядов. Подбирают такую кривую роста, форма которой соответствует фактическому развитию процесса. Если тенденция на графике просматривается недостаточно четко, то проводят преобразование исходного ряда. В литературе описан также метод последовательных разностей (помогает в выборе кривых параболического типа).

Этот метод применяют при выполнении следующих предположений:

  1. уровни ряда могут быть представлены в виде суммы трендовой составляющей и случайной компоненты, подчиненной закону нормального распределения с математическим ожиданием, равным нулю и постоянной дисперсией; метод последующих разностей предполагает вычисление первых, вторых и т.д. разностей уровней ряда:







Расчет ведется до тех пор, пока разности не будут примерно равными. Порядок разностей принимается за степень выравнивающего полинома.

Этот прием можно использовать для преобразования временного ряда. При равных или равных первых разностях можно рассчитать теоретические значения уровней ряда:

Утеор =у+

В отдельных случаях используют метод характеристик прироста. Процедура выбора кривых роста с использованием этого метода включает:

1) выравнивание ряда по скользящей средней;

2) определение средних приростов;

3) вычисление производных характеристик прироста

Для многих видов кривых были найдены такие преобразования приростов, которые линейно изменялись относительно t или были постоянны. В связи с этим исследование рядов характеристик приростов часто оказывает существенную помощь при определении законов развития исходных временных рядов.

Данный метод является более универсальным по сравнению с методом последовательных разностей.

Однако, чаще всего на практике к выбору формы кривой подходят исходя из значений критерия, в качестве которого принимают сумму квадратов отклонений фактических значений уровня от расчетных, получаемых выравниванием. Из рассматриваемых кривых предпочтение будет отдано той, которой соответствует минимальное значение критерия, т.к. чем меньше значение критерия, тем ближе к кривой ложатся данные наблюдений.

Используя этот подход, следует иметь в виду ряд моментов. Во-первых, к ряду, состоящему из m точек можно подобрать многочлен степени (m-1), проходящий через все m точек. Кроме того, существует множество многочленов более высоких степеней, также проходящих через все эти точки. Для этих многочленов значение критерия будет равно 0, однако, очевидно, что такая кривая не слишком пригодна как для выделения тенденции, так и для целей прогнозирования.

Также следует учитывать, что за счет роста сложности кривой можно увеличить точность описания тренда в прошлом, однако доверительные интервалы при прогнозировании будут существенно шире, чем у более простых кривых при одинаковом периоде упреждения, например, за счет большего числа параметров.

Таким образом, использование этого подхода должно проходить в два этапа. На первом происходит ограничение приемлемых функций, исходя из содержательного анализа задачи. На втором - осуществляется расчет значений критерия и выбор на его основе наиболее подходящей кривой роста.

В современных пакетах статистической обработки данных и анализа временных рядов представлен широкий спектр кривых роста. Можно среди этих кривых выбрать отдельную функцию, и получить подробный протокол, включающий оценки параметров, характеристики остатков, прогнозы, интервальные и точечные. Можно выделить на экране несколько функций, тогда протокол будет содержать оценки параметров всех заказанных функций и значения критерия для каждой из них. В качестве критерия выбирается средняя квадратическая ошибка:



Подробный протокол, а также прогнозные значения, на заданное пользователем число временных интервалов, приводятся для функции, отвечающей минимуму указанного критерия. Представляется целесообразным для пользователя на основе выше рассмотренных подходов заранее отвергнуть заведомо непригодные варианты, ограничить поле выбора.

В заключение отметим, что нет “жестких” рекомендаций для выбора кривых роста. Особенно осторожно следует подходить к решению этой задачи при использовании полученной функции для экстраполирования найденных закономерностей в будущее. Применение кривых роста должно базироваться на предположении о сохранении выявленной тенденции в прогнозируемом периоде.


^ Тема 8. Доверительные интервалы прогноза. Оценка адекватности и точности моделей


Доверительные интервалы прогноза

Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответствующих периоду упреждения. Полученный таким образом прогноз называется точечным прогнозом. На практике в дополнение к точечному определяют границы возможного значения прогнозированного показателя, то есть вычисляют интервальный прогноз.

Несовпадение фактических данных с точечным прогнозом может быть вызвано:

  1. субъективной ошибочностью выбора вида кривой;

  2. погрешностью оценивания параметров кривых;

  3. погрешностью, связанной с отклонением отдельных наблюдений от тренда.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал прогноза определяется в следующем виде:






Ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома. Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sр, так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).



^ Проверка адекватности выбранных моделей

Проверка адекватности выбранных моделей реальному процессу строится на анализе случайной компоненты. Случайная (остаточная) компонента получается после выделения из исследуемого ряда тренда и периодической составляющей. Предположим, что исходный временной ряд описывает процесс, не подверженный периодическими колебаниями, то есть примем гипотезу об аддитивной модели временного ряда:

Уt=ut+et

Тогда ряд случайной компоненты будет получен как отклонение фактических уровней временного ряда (yt) от выровненных, расчетных





Принято считать, что модель адекватна описываемому процессу, если значения остаточной компоненты удовлетворяют свойствам независимости и подчиняются закону нормального распределения.

При правильном выборе вида тренда отклонения от него будут носить случайный характер. Это означает, что изменение остаточной случайной величины не связано с изменением времени. Таким образом, по выборке, полученной для всех моментов времени на изучаемом интервале, проверяется гипотеза о зависимости последовательности значений et от времени, или, что то же самое, о наличии тенденции в ее изменении. Поэтому для проверки данного свойства может быть использован один из критериев, например, критерий серий.

Если вид функции, описывающей тренд, выбран неудачно, то последовательные значения ряда остатков могут не обладать свойствами независимости, так как они могут коррелировать между собой. В этом случае имеет место явление автокорреляции.

В условиях автокорреляции оценки параметров модели будут обладать свойствами несмещенности и состоятельности.

Существует несколько приемов обнаружения автокорреляции. Наиболее распространенным является метод, предложенный Дарбиным и Уотсоном.

Критерий Дарбина-Уотсона связан с гипотезой о существовании автокорреляции первого порядка (то есть между соседними остаточными уровнями ряда). Значение этого критерия определяется по формуле:

d=

Можно показать, что величина d приближенно равна:



где r1- коэффициент автокорреляции первого порядка (т.е. парный коэффициент корреляции между двумя рядами e1, e2, ... ,en-1 и e2, e3, ..., en).

Из последней формулы видно, что если в значениях et имеется сильная положительная автокорреляция ,то величина d=0 , в случае сильной отрицательной автокорреляции d=4. При отсутствии автокорреляции .

Для этого критерия найдены критические границы, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции. Авторами критерия границы определены для 1, 2,5 и 5% уровней значимости.

Рассчитанные значения d сравнивают с табличными значениями. Здесь ( в таблице): d1 и d2 - соответственно нижняя и верхняя доверительная граница критерия d;

К – число переменных в модели

n – длина ряда.

При сравнении величины d с d1 и d2 возможны следующие ситуации:

  1. d< d2, то гипотеза об отсутствии автокорреляции отвергается;

  2. d> d2, то гипотеза об отсутствии автокорреляции не отвергается;

  3. d1≤ d≤ d2, то нет достаточных основании для принятия решений, величина попадает в область неопределенности.

Рассмотренные варианты относятся к случаю, когда в остатках имеется положительная автокорреляция. Когда же расчетное значение d превышает 2, то можно говорить о том, что в et существует отрицательная автокорреляция. Для проверки отрицательной автокорреляции с критическими значениями d1 и d2 сравнивается не сам коэффициент d, а 4-d.

Поскольку временные ряды экономических показателей, как правило, небольшие, то проверка распределения на нормальность может быть произведена лишь приближенно на основе исследования показателей ассиметрии и эксцесса.

При нормальном распределении показатели ассиметрии и эксцесса равны нулю.

Можно рассчитать показатель ассиметрии и эксцесса, их средние квадратические ошибки:

А=





Э=



Если одновременно выполняются следующие неравенства:

,

то гипотеза о нормальном характере распределения случайной компоненты не отвергается.

Если выполняется хотя бы одно из следующих неравенств:

,


то гипотеза о нормальном характере распределения отвергается.





Скачать 0.52 Mb.
оставить комментарий
страница2/3
Дата30.09.2011
Размер0.52 Mb.
ТипКонспект, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3
средне
  1
отлично
  2
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх