Конспект лекций Для специальности -100100 з/о сокращенной формы обучения Киров 2002 icon

Конспект лекций Для специальности -100100 з/о сокращенной формы обучения Киров 2002



Смотрите также:
Конспект лекций Для специальности -100100 з/о сокращенной формы обучения Киров 2002...
Конспект лекций по курсу “Начертательная геометрия и инженерная графика” Кемерово 2002...
Конспект лекций н...
Конспект лекций (для студентов всех форм обучения) Кемерово 2002...
Рабочая программа дисциплины философия гсэ. Ф. 10 для студентов ипп сокращенной формы обучения...
Конспект лекций по дисциплине «сетевые технологии» (дополненная версия) для студентов...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Конспект лекций для студентов всех специальностей дневной и заочной формы обучения Челябинск...
Курс лекций по дисциплине: «стратегический менеджмент» (часть 1) для студентов специальности...
Учебно-методический комплекс для студентов заочной формы обучения по специальности: 021100...
Учебно-методический комплекс для студентов заочной формы обучения по специальности: 021100...



страницы: 1   ...   10   11   12   13   14   15   16   17   18
вернуться в начало
скачать
^

10.4 Подключение к Интернету



Основные понятия

Для работы в Интернете необходимо:

  • физически подключить компьютер к одному из узлов Всемирной сети;

  • получить IP-адрес на постоянной или временной основе;

  • установить и настроить программное обеспечение – программы-клиенты тех служб Интернета, услугами которых предполагается пользоваться.

Организации, предоставляющие возможность подключения к своему узлу и выделяющие IP-адреса, называются поставщиками услуг Интернета (используется также термин сервис-провайдер). Они оказывают подобную услугу на договорной основе.

Физическое подключение может быть выделенным или коммутируемым. Для выделенного соединения необходимо проложить новую или арендовать готовую физическую линию связи (кабельную, оптоволоконную, радиоканал, спутниковый канал и т. п.). Такое подключение используют организации и предприятия, нуждающиеся в передаче больших объемов данных. От типа линии связи зависит ее пропускная способность (измеряется в единицах бит в секунду). В настоящее время пропускная способность мощных линий связи (оптоволоконных и спутниковых) составляет сотни мегабит в секунду (Мбит/с).

В противоположность выделенному соединению коммутируемое соединение – временное. Оно не требует специальной линии связи и может быть осуществлено, например, по телефонной линии. Коммутацию (подключение) выполняет автоматическая телефонная станция (АТС) по сигналам, выданным в момент набора телефонного номера.

Для телефонных линий связи характерна низкая пропускная способность. В зависимости от того, какое оборудование использовано на станциях АТС по пути следования сигнала, различают аналоговые и цифровые телефонные линии. Основную часть телефонных линий в городах России составляют устаревшие аналоговые линии. Их предельная пропускная способность немногим более 30 Кбит/с (одна-две страницы текста в секунду или одна-две фотографии стандартного размера в минуту). Предельная пропускная способность цифровых телефонных линий составляет 120 Кбит/с, то есть в 2-4 раза выше.

Телефонные линии связи никогда не предназначались для передачи цифровых сигналов – их характеристики подходят только для передачи голоса, причем в достаточно узком диапазоне частот – 300-3000 Гц. Поэтому для передачи цифровой информации несущие сигналы звуковой частоты модулируют по амплитуде, фазе и частоте. Такое преобразование выполняет специальное устройство – модем (название образовано от слов модулятор и демодулятор).


^ Подключение к компьютеру поставщика услуг Интернета

Для подключения к компьютеру поставщика услуг Интернета надо правильно настроить программу Удаленный доступ к сети. При настройке программы необходимы данные, которые должен сообщить поставщик услуг:

  • номер телефона, по которому производится соединение;

  • имя пользователя (login);

  • пароль (password);

  • IP-адрес сервера DNS (на всякий случай вводят два адреса – основной и дополнительный, используемый, если основной сервер DNS по каким-то причинам временно не работает).

Этих данных достаточно для подключения к Интернету, хотя при заключении договора с поставщиком услуг можно получить и дополнительную информацию, например номера телефонов службы поддержки. Вводить собственный IP-адрес для настройки программы не надо. Сервер поставщика услуг выделит его автоматически на время проведения сеанса работы.

^

11 Вопросы компьютерной безопасности




11.1 Понятие о компьютерной безопасности



В вычислительной технике понятие безопасности является весьма широким. Оно подразумевает и надежность работы компьютера, и сохранность ценных данных, и защиту информации от внесения в нее изменений неуполномоченными лицами, и сохранение тайны переписки в электронной связи. Разумеется, во всех цивилизованных странах на страже безопасности граждан стоят законы, но в сфере вычислительной техники правоприменительная практика пока развита недостаточно, а законотворческий процесс не успевает за развитием технологий, поэтому надежность работы компьютерных систем во многом опирается на меры самозащиты.

^

11.2 Компьютерные вирусы



Компьютерный вирус – это программный код, встроенный в другую программу, или в документ, или в определенные области носителя данных и предназначенный для выполнения несанкционированных действий на несущем компьютере.

Основными типами компьютерных вирусов являются:

  • программные вирусы;

  • загрузочные вирусы;

  • сетевые вирусы (черви);

  • макровирусы.

К компьютерным вирусам примыкают и так называемые троянские кони (троянские программы, троянцы).

Программные вирусы. Программные вирусы – это блоки программного кода, целенаправленно внедренные внутрь других прикладных программ. При запуске программы, несущей вирус, происходит запуск имплантированного в нее вирусного кода. Работа этого кода вызывает скрытые от пользователя изменения в файловой системе жестких дисков и/или в содержании других программ. Так, например, вирусный код может воспроизводить себя в теле других программ – этот процесс называется размножением. По прошествии определенного времени, создав достаточное количество копий, программный вирус может перейти к разрушительным действиям – нарушению работы программ и ОС, удалению информации, хранящейся на жестком диске. Этот процесс называется вирусной атакой.

Самые разрушительные вирусы могут инициировать форматирование жестких дисков. Поскольку форматирование диска – достаточно продолжительный процесс, который не должен пройти незамеченным со стороны пользователя, во многих случаях программные вирусы ограничиваются уничтожением данных только в системных секторах жесткого диска, что эквивалентно потере таблиц файловой структуры. В этом случае данные на жестком диске остаются нетронутыми, но воспользоваться ими без применения специальных средств нельзя, поскольку неизвестно, какие сектора диска каким файлам принадлежит. Теоретически восстановить данные в этом случае можно, но трудоемкость этих работ исключительно высока.

Считается, что никакой вирус не в состоянии вывести из строя аппаратное обеспечение компьютера. Однако бывают случаи, когда аппаратное и программное обеспечение настолько взаимосвязаны, что программные повреждения приходится устранять заменой аппаратных средств. Так, например, в большинстве современных материнских плат базовая система ввода-вывода (BIOS) хранится в перезаписываемых постоянных запоминающих устройствах (так называемая флэш-память). Возможность перезаписи информации в микросхеме флэш-памяти используют некоторые программные вирусы для уничтожения данных BIOS. В этом случае для восстановления работоспособности компьютера требуется либо замена микросхемы, хранящей BIOS, либо ее перепрограммирование на специальных устройствах, называемых программаторами.

Программные вирусы поступают на компьютер при запуске непроверенных программ, полученных на внешнем носителе (гибкий диск, компакт-диск и т. п.) или принятых из Интернета. Особое внимание следует обратить на слова при записке. При обычном копировании зараженных файлов заражение компьютера произойти не может. В связи с этим все данные, принятые из Интернета, должны проходить обязательную проверку на безопасность, а если получены незатребованные данные из незнакомого источника, их следует уничтожать, не рассматривая. Обычный прием распространения «троянских» программ – приложение к электронному письму с «рекомендацией» извлечь и запустить якобы полезную программу.

^ Загрузочные вирусы. От программных вирусов загрузочные вирусы отличаются методом распространения. Они поражают не программные файлы, а определенные системные области магнитных носителей (гибких и жестких дисков). Кроме того, на включенном компьютере они могут временно располагаться в оперативной памяти.

Обычно заражение происходит при попытке загрузки компьютера с магнитного носителя, системная область которого содержит загрузочный вирус. Так, например, при попытке загрузить компьютер с гибкого диска происходит сначала проникновение вируса в оперативную память, а затем в загрузочный сектор жестких дисков. Далее этот компьютер сам становится источником распространения загрузочного вируса.

^ Сетевые вирусы (черви - worm) распространяются по информационным сетям с одного сервера на другой, как правило, не выполняя деструктивных действий (по причине большого разнообразия и хорошей защищенности различных серверных ОС). Вред сетевых вирусов состоит в дополнительном расходе памяти и каналов связи. Кроме того черви могут служить транспортом для распространения других видов вирусов. Частный случай сетевых вирусов – почтовые черви (mail worm), распространяемые во вложениях к электронным письмам. Вирус активизируется при открытии (запуске) вложения, содержащего деструктивные функции. Почтовые черви могут причинить очень опасные повреждения информации, вплоть до ее полного уничтожения на всех доступных дисках. Кроме того, почтовые вирусы очень быстро распространяются, используя для этого адреса пользователей, содержащиеся в адресной книге почтовой программы.

Макровирусы. Эта особая разновидность вирусов поражает документы, выполненные в некоторых прикладных программах, имеющих средства для исполнения так называемых макрокоманд. В частности, к таким документам относятся документы текстового процессора Microsoft Word (они имеют расширение .doc). Заражение происходит при открытии файла документа в окне программы, если в ней не отключена возможность исполнения макрокоманд. Как и для других типов вирусов, результат атаки может быть как относительно безобидным, так и разрушительным.

^

11.3 Средства антивирусной защиты



Основным средством защиты информации является резервное копирование наиболее ценных данных. В случае утраты информации по любой из вышеперечисленных причин жесткие диски переформатируют и подготавливают к новой эксплуатации. На «чистый» отформатированный диск устанавливают ОС с дистрибутивного компакт-диска, затем под ее управлением устанавливают все необходимое программное обеспечение, которое тоже берут с дистрибутивных носителей. Восстановление компьютера завершается восстановлением данных, которые берут с резервных носителей.

Создавая план мероприятий по резервному копированию информации, необходимо учитывать, что резервные копии должны храниться отдельно от компьютера. То есть, например, резервирование информации на отдельном жестком диске того же компьютера только создает иллюзию безопасности. Относительно новым и достаточно надежным приемом хранения ценных, но неконфиденциальных данных является их хранение в Web-папках на удаленных серверах в Интернете. Есть службы, бесплатно предоставляющие пространство (до нескольких Мбайт) для хранения данных пользователя.

Резервные копии конфиденциальных данных сохраняют на внешних носителях, которые хранят в сейфах, желательно в отдельных помещениях. При разработке организационного плана резервного копирования учитывают необходимость создания не менее двух резервных копий, сохраняемых в разных местах. Между копиями осуществляют ротацию.

Вспомогательными средствами защиты информации являются антивирусные программы, периодически или постоянно проверяющие файлы в оперативной памяти и на дисках компьютера, и средства аппаратной защиты. Так, например, простое отключение перемычки на материнской плате не позволит осуществить стирание перепрограммируемой микросхемы ПЗУ (флэш-BIOS), независимо от того, кто будет пытаться это сделать: компьютерный вирус, злоумышленник или неаккуратный пользователь.

Существует достаточно много программных средств антивирусной защиты. Наибольшее распространение получили следующие антивирусные программы: Antiviral Toolkit Pro (AVP), Doctor Web, Norton Antivirus.

Таким образом, можно выделить следующие средства антивирусной защиты:

1. Создание образа жесткого диска на внешних носителях (например, на гибких дисках). В случае выхода из строя данных в системных областях жесткого диска сохраненный «образ диска» может позволить восстановить если не все данные, то по крайней мере их большую часть. Это же средство может защитить от утраты данных при аппаратных сбоях и при неаккуратном форматировании жесткого диска.

2. Регулярное сканирование жестких дисков в поисках компьютерных вирусов. Сканирование обычно выполняется автоматически при каждом включении компьютера и при размещении внешнего диска в считывающем устройстве. При сканировании следует иметь в виду, что антивирусная программа ищет вирус путем сравнения кода программ с кодами известных ей вирусов, хранящимися в базе данных. Если база данных устарела, а вирус является новым, сканирующая программа его не обнаружит. Для надежной работы следует регулярно обновлять антивирусную программу. Желательная периодичность обновления – один раз в две недели; допустимая – один раз в три месяца.

3. Контроль за изменением размеров и других атрибутов файлов. Поскольку некоторые компьютерные вирусы на этапе размножения изменяют параметры зараженных файлов, контролирующая программа может обнаружить их деятельность и предупредить пользователя.

4. Контроль за обращениями к жесткому диску. Поскольку наиболее опасные операции, связанные с работой компьютерных вирусов, так или иначе обращены на модификацию данных, записанных на жестком диске, антивирусные программы могут контролировать обращения к нему и предупреждать пользователя о подозрительной активности.

^

11.4 Защита информации в Интернете



При работе в Интернете следует иметь в виду, что насколько ресурсы Всемирной сети открыты каждому клиенту, настолько же и ресурсы его компьютерной системы могут быть при определенных условиях открыты всем, кто обладает необходимыми средствами.

Для частного пользователя этот факт не играет особой роли, но знать о нем необходимо, чтобы не допускать действий, нарушающих законодательства тех стран, на территории которых расположены серверы Интернета. К таким действиям относятся вольные или невольные попытки нарушить работоспособность компьютерных систем, попытки взлома защищенных систем, использование и распространение программ, нарушающих работоспособность компьютерных систем (в частности, компьютерных вирусов).

Работая во Всемирной сети, следует помнить о том, что абсолютно все действия фиксируются и протоколируются специальными программными средствами и информация как о законных, так и о незаконных действиях обязательно где-то накапливается. Таким образом, к обмену информацией в Интернете следует подходить как к обычной переписке с использованием почтовых открыток. Информация свободно циркулирует в обе стороны, но в общем случае она доступна всем участникам информационного процесса. Это касается всех служб Интернета, открытых для массового использования.

Сегодня Интернет является не только средством общения и универсальной справочной системой – в нем циркулируют договорные и финансовые обязательства, необходимость защиты которых как от просмотра, так и от фальсификации, очевидна. Начиная с 1999 года Интернет становится мощным средством обеспечения розничного торгового оборота, а это требует защиты данных кредитных карт и других электронных платежных средств.

Принципы защиты информации в Интернете опираются на определение информации, сформулированное нами в первой главе этого пособия. Информация – это продукт взаимодействия данных и адекватных им методов. Если в ходе коммуникационного процесса данные передаются через открытые системы (а Интернет относится именно к таковым), то исключить доступ к ним посторонних лиц невозможно даже теоретически. Соответственно, системы защиты сосредоточены на втором компоненте информации – на методах. Их принцип действия основан на том, чтобы исключить или, по крайней мере, затруднить возможность подбора адекватного метода для преобразования данных в информацию. Одним из приемов такой защиты является шифрование данных.

^

11.5 Понятие о несимметричном шифровании информации



Системам шифрования столько же лет, сколько письменному обмену информацией. Обычный подход состоит в том, что к документу применяется некий метод шифрования (назовем его ключом), после чего документ становится недоступен для чтения обычными средствами. Его можно прочитать только тот, кто знает ключ, – только он может применить адекватный метод чтения. Аналогично происходит шифрование и ответного сообщения. Если в процессе обмена информацией для шифрования и чтения пользуются одним и тем же ключом, то такой криптографический процесс является симметричным.

Основной недостаток симметричного процесса заключается в том, что, прежде чем начать обмен информацией, надо выполнить передачу ключа, а для этого опять-таки нужна защищенная связь, то есть проблема повторяется, хотя и на другом уровне. Если рассмотреть оплату клиентом товара или услуги с помощью кредитной карты, то получается, что торговая фирма должна создать по одному ключу для каждого своего клиента и каким-то образом передать им эти ключи. Это крайне неудобно.

Поэтому в настоящее время в Интернете используют несимметричные криптографические системы, основанные на использовании не одного, а двух ключей. Происходит это следующим образом. Компания для работы с клиентами создает два ключа: один – открытый (public – публичный) ключ, а другой – закрытый (private – личный) ключ. На самом деле это как бы две «половинки» одного целого ключа, связанные друг с другом.

Ключи устроены так, что сообщение, зашифрованное одной половинкой, можно расшифровать только другой половинкой (не той, которой оно было закодировано). Создав пару ключей, торговая компания широко распространяет публичный ключ (открытую половинку) и надежно сохраняет закрытый ключ (свою половинку).

Как публичный, так и закрытый ключ представляют собой некую кодовую последовательность. Публичный ключ компании может быть опубликован на ее сервере, откуда каждый желающий может его получить. Если клиент хочет сделать фирме заказ, он возьмет ее публичный ключ и с его помощью закодирует свое сообщение о заказе и данные о своей кредитной карте. После кодирования это сообщение может прочесть только владелец закрытого ключа. Никто из участников цепочки, по которой пересылается информация, не в состоянии это сделать. Даже сам отправитель не может прочитать собственное сообщение, хотя ему хорошо известно содержание. Лишь получатель сможет прочесть сообщение, поскольку только у него есть закрытый ключ, дополняющий использованный публичный ключ.

Если фирме надо будет отправить клиенту квитанцию о том, что заказ принят к исполнению, она закодирует ее своим закрытым ключом. Клиент сможет прочитать квитанцию, воспользовавшись имеющимся у него публичным ключом данной фирмы. Он может быть уверен, что квитанцию ему отправила именно эта фирма, и никто иной, поскольку никто иной доступа к закрытому ключу фирмы не имеет.

^

11.6 Принцип достаточности защиты



Защита публичным ключом (впрочем, как и большинство других видов защиты информации) не является абсолютно надежной. Дело в том, что поскольку каждый желающий может получить и использовать чей-то публичный ключ, то он может сколь угодно подробно изучить алгоритм работы механизма шифрования и пытаться установить метод расшифровки сообщения, то есть реконструировать закрытый ключ.

Это настолько справедливо, что алгоритмы кодирования публичным ключом даже нет смысла скрывать. Обычно к ним есть доступ, а часто они просто широко публикуются. Тонкость заключается в том, что знание алгоритма еще не означает возможности провести реконструкцию ключа в разумно приемлемые сроки.

Защиту информации принято считать достаточной, если затраты на ее преодоление превышают ожидаемую ценность самой информации. В этом состоит принцип достаточности защиты, которым руководствуются при использовании несимметричных средств шифрования данных. Он предполагает, что защита не абсолютна, и приемы ее снятия известны, но она все же достаточна для того, чтобы сделать это мероприятие нецелесообразным. При появлении иных средств, позволяющих-таки получить зашифрованную информацию в разумные сроки, изменяют принцип работы алгоритма, и проблема повторяется на более высоком уровне.

^

11.7 Понятие об электронной подписи



Принцип создания электронной подписи тот же, что и рассмотренный выше. Если надо создать себе электронную подпись, следует с помощью специальной программы (полученной от банка) создать те же два ключа: закрытый и публичный. Публичный ключ передается банку. Если теперь надо отправить поручение банку на операцию с расчетным счетом, оно кодируется публичным ключом банка, а своя подпись под ним кодируется собственным закрытым ключом. Банк поступает наоборот. Он читает поручение с помощью своего закрытого ключа, а подпись – с помощью публичного ключа поручителя. Если подпись читаема, банк может быть уверен, что поручение ему отправили именно мы, и никто другой.

^

11.8 Понятие об электронных сертификатах



Системой несимметричного шифрования обеспечивается делопроизводство в Интернете. Благодаря ей каждый из участников обмена может быть уверен, что полученное сообщение отправлено именно тем, кем оно подписано. Однако здесь возникает еще ряд проблем, например проблема регистрации даты отправки сообщения. Такая проблема возникает во всех случаях, когда через Интернет заключаются договоры между сторонами. Отправитель документа может легко изменить текущую дату средствами настройки ОС. Поэтому обычно дата и время отправки электронного документа не имеют юридической силы. В тех же случаях, когда это важно, выполняют сертификацию даты/времени.

^ Сертификация даты. Сертификация даты выполняется при участии третьей, независимой стороны. Например, это может быть сервер организации, авторитет которой в данном вопросе признают оба партнера. В этом случае документ, зашифрованный открытым ключом партнера и снабженный своей электронной подписью, отправляется сначала на сервер сертифицирующей организации. Там он получает «приписку» с указанием точной даты и времени, зашифрованную закрытым ключом этой организации. Партнер декодирует содержание документа, электронную подпись отправителя и отметку о дате с помощью своих «половинок» ключей. Вся работа автоматизирована.

^ Сертификация Web-узлов. Сертифицировать можно не только даты. При заказе товаров в Интернете важно убедиться в том, что сервер, принимающий заказы и платежи от имени некоей фирмы, действительно представляет эту фирму. Тот факт, что он распространяет ее открытый ключ и обладает ее закрытым ключом, строго говоря, еще ничего не доказывает, поскольку за время, прошедшее после создания ключа, он мог быть скомпрометирован. Подтвердить действительность ключа тоже может третья организация путем выдачи сертификата продавцу. В сертификате указано, когда он выдан и на какой срок. Если добросовестному продавцу станет известно, что его закрытый ключ каким-либо образом скомпрометирован, он сам уведомит сертификационный центр, старый сертификат будет аннулирован, создан новый ключ и выдан новый сертификат.

Прежде чем выполнять платежи через Интернет или отправлять данные о своей кредитной карте кому-либо, следует проверить наличие действующего сертификата у получателя путем обращения в сертификационный центр. Это называется сертификацией Web-узлов.

^ Сертификация издателей. Схожая проблема встречается и при распространении программного обеспечения через Интернет. Так, например, мы указали, что Web-броузеры, служащие для просмотра Web-страниц, должны обеспечивать механизм защиты от нежелательного воздействия активных компонентов на компьютер клиента. Можно представить, что произойдет, если кто-то от имени известной компании начнет распространять модифицированную версию ее броузера, в которой специально оставлены бреши в системе защиты. Злоумышленник может использовать их для активного взаимодействия с компьютером, на котором работает такой броузер.

Это относится не только к броузерам, но и ко всем видам программного обеспечения, получаемого через Интернет, в которое могут быть имплантированы «троянские кони», «компьютерные вирусы», «часовые бомбы» и прочие нежелательные объекты, в том числе и такие, которые невозможно обнаружить антивирусными средствами. Подтверждение того, что сервер, распространяющий программные продукты от имени известной фирмы, действительно уполномочен ею для этой деятельности, осуществляется путем сертификации издателей. Она организована аналогично сертификации Web-узлов.

^

Использованная литература





  1. Информатика. Базовый курс / Симонович С.В. и др. – СПб: Питер, 2001.

  2. Фигурнов В.Э. IBM PC для пользователя. Изд. 5-е, исправл.и доп. – С.-Петербург, АО «Коруна», НПО «Информатика и компьютеры», 1994.

  3. Информатика: Учебник. – 3-е перераб. изд. /Под. ред. проф. Н.В. Макаровой. – М.: Финансы и статистика, 2000.

  4. Информатика: Практикум по технологии работы на компьютере / Под ред. Н.В. Макаровой. – 3-е изд., перераб. – М.: Финансы и статистика, 2000.


Оглавление


1 Введение 4

2 Информация и информатика 4

2.1 Предмет и задачи информатики 4

2.2 Понятие об информации 4

2.3 Кодирование данных двоичным кодом 5

2.4 Кодирование целых и действительных чисел 6

2.5 Кодирование текстовых данных 7

2.6 Универсальная система кодирования текстовых данных 8

2.7 Кодирование графических данных 8

2.8 Кодирование звуковой информации 9

2.9 Основные структуры данных 10

3 Файлы и файловая структура 11

3.1 Единицы представления данных 11

3.2 Единицы измерения данных 11

3.3 Единицы хранения данных 11

3.4 Понятие о файловой структуре 12

4 История развития средств вычислительной техники 12

5 Методы классификации компьютеров 16

5.1 Классификация по назначению 16

5.2 Классификация по уровню специализации 17

5.3 Классификация по типоразмерам 17

5.4 Классификация по совместимости 18

5.5 Классификация по типу используемого процессора 18

6 Состав вычислительной системы 18

6.1 Аппаратное обеспечение 18

6.2 Программное обеспечение 19

6.3 Классификация служебных программных средств 20

6.4 Классификация прикладных программных средств 21

6.5 Языки программирования 23

7 Базовая аппаратная конфигурация 24

7.1 Системный блок 24

7.2 Монитор 24

7.3 Клавиатура 25

7.4 Мышь 27

7.5 Материнская плата 27

7.6 Оперативная память 27

7.7 Процессор 28

7.8 Микросхема ПЗУ и система BIOS 29

7.9 Шинные интерфейсы материнской платы 30

7.10 Жесткий диск 30

7.11 Дисковод гибких дисков 31

7.12 Дисковод компакт-дисков CD-ROM 31

7.13 Видеокарта (видеоадаптер) 32

7.14 Звуковая карта 33

7.15 Устройства ввода графических данных 33

7.16 Устройства вывода данных 34

7.17 Устройства обмена данными 35

8. Операционные системы персональных компьютеров 35

8.1. Обеспечение интерфейса пользователя 37

8.2. Организация файловой системы 38

8.3. Обслуживание файловой структуры 39

8.4 Создание и именование файлов 39

8.5 Создание каталогов (папок) 41

8.6 Копирование, перемещение удаление файлов и каталогов (папок) 41

8.7 Навигация по файловой структуре 42

8.8 Управление атрибутами файлов 42

8.9. Управление установкой, исполнением и удалением приложений 43

8.10. Обеспечение взаимодействия с аппаратным обеспечением 44

9. Обслуживание компьютера 45

9.1 Средства проверки дисков 45

9.2 Средства управления виртуальной памятью 46

9.3 Средства кэширования дисков 46

9.4 Средства резервного копирования данных 47

9.5 Прочие функции ОС 47

10 Компьютерные сети 47

10.1 Локальные и глобальные сети. Основные понятия 47

10.2 Интернет. Основные понятия 49

10.3 Службы Интернета 50

10.4 Подключение к Интернету 54

11 Вопросы компьютерной безопасности 56

11.1 Понятие о компьютерной безопасности 56

11.2 Компьютерные вирусы 56

11.3 Средства антивирусной защиты 57

11.4 Защита информации в Интернете 58

11.5 Понятие о несимметричном шифровании информации 59

11.6 Принцип достаточности защиты 60

11.7 Понятие об электронной подписи 60

11.8 Понятие об электронных сертификатах 60

Использованная литература 61






Скачать 1,25 Mb.
оставить комментарий
страница18/18
Медов Р.В
Дата30.09.2011
Размер1,25 Mb.
ТипКонспект, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   ...   10   11   12   13   14   15   16   17   18
отлично
  6
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх