№3 Программные средства реализации информационных процессов. Классификация, виды и характеристики программного обеспечения. Классификация языков программирования. Искусственный интеллект, базы знаний, экспертные системы. Инструментальное программное обеспечение icon

№3 Программные средства реализации информационных процессов. Классификация, виды и характеристики программного обеспечения. Классификация языков программирования. Искусственный интеллект, базы знаний, экспертные системы. Инструментальное программное обеспечение


1 чел. помогло.
Смотрите также:
Курс 4 группа 403 по дисциплине: информатика преподавателя Яковлевой Н. Б...
Интеллект человека и искусственный интеллект...
Темы вашего учебного проекта...
Календарно тематический план занятий Предмет: информационные ресурсы в менеджменте для студентов...
План лекции: Уровни программного обеспечения Базовое программное обеспечение...
«Искусственный интеллект»...
Название: Искусственный интеллект...
3. Языки и системы программирования. Технологий разработки программного обеспечения...
Курс лекций "Экспертные системы" (Для студентов заочного обучения юридического факультета кгу)...
Примерная рабочая программа дисциплины "Программные и аппаратные средства информатики"...
Программа собеседования для вступительных испытаний по направлению подготовки магистров «230700...
Классификация программного обеспечения...



Загрузка...
страницы: 1   2   3   4   5   6
вернуться в начало
скачать
^

Языки программирования для Интернета

С активным развитием глобальной сети было создано немало реализаций популярных языков программирования, адаптированных специально для Интернета. Все они отличаются характерными особенностями: языки являются интерпретируемыми, интерпретаторы для них распространяются бесплатно, а сами программы – в исходных текстах. Такие языки называются скрипт – языками.

HTML. Общеизвестный язык для оформления документов, его команды называются тэги. Он очень прост и содержит элементарные команды форматирования текста, добавления рисунков, задания цветов и шрифтов, организации ссылок и таблиц. Все Web-страницы написаны на языке HTML или используют его расширения.

Perl. В 80-х годах Ларри Уолл разработал язык Perl. Он задумывался как средство обработки больших текстовых файлов, генерации текстовых отчетов и управления задачами. По мощности Perl значительно превосходит языки типа Си. В него введено много часто используемых функций работы со строками, массивами, всевозможными средствами преобразования данных, управления процессами, работы с системной информацией и др.

^ PHP – язык для разработки web-приложений.

Tcl/Tk. В конце 80-х годов Джон Аустираут придумал популярный скрипт-язык Tcl и библиотеку Tk. В Tcl он попытался воплотить видение идеального скрипт-языка. Tcl ориентирован на автоматизацию рутинных процессов и состоит из мощных команд, предназначенных для работы с абстрактными нетипизированными объектами. Он не зависит от типа системы и при этом позволяет создать программы с графическим интерфейсом.


^ Области применения языков программирования

В настоящее время языки программирования применяются в самых различных областях человеческой деятельности, таких как:

  • научные вычисления (языки C++, FORTRAN, Java);

  • системное программирование (языки C++, Java);

  • обработка информации (языки C++, COBOL, Java);

  • искусственный интеллект (LISP, Prolog);

  • издательская деятельность (Postscript, TeX);

  • удаленная обработка информации (Perl, PHP, Java, C++);

  • описание документов (HTML, XML).

Парадигмы программирования

Синтаксис языка описывает систему правил написания различных языковых конструкций, а семантика языка программирования определяет смысл этих конструкций.

Семантика языка взаимосвязана с используемой вычислительной моделью. В настоящее время языки программирования в зависимости от применяемой вычислительной модели делятся на четыре основные группы:

  • ^ Процедурные языки, которые представляют собой последовательность выполняемых операторов. Если рассматривать состояние ПК как состояние ячеек памяти, то процедурный язык – это последовательность операторов, изменяющих значение одной или нескольких ячеек. К процедурным языкам относятся FORTRAN, C, Ada, Pascal, Smalltalk и некоторые другие. Процедурные языки иногда также называются императивными языками. Код программы на процедурном языке может быть записан следующим образом:

оperator1; operator2; operator3;

  • ^ Аппликативные языки, в основу которых положен функциональный подход. Язык рассматривается с точки зрения нахождения функции, необходимой для перевода памяти ПК из одного состояния в другое. Программа представляет собой набор функций, применяемых к начальным данным, позволяющий получить требуемый результат. К аппликативным языкам относится язык LISP. Код программы на аппликативном языке может быть записан следующим образом:

  • function1(function2(

  • function3(beginning_date)));

  • Языки системы правил, называемые также языками логического программирования, основываются на определении набора правил, при выполнении которых возможно выполнение определенных действий. Правила могут задаваться в виде утверждений и в виде таблиц решений. К языкам логического программирования относится язык Prolog.

Код программы на языке системы правил может быть записан следующим образом:

if condition1 then operator1;

if condition2 then operator2;

if condition3 then operator3;

  • ^ Объектно-ориентированные языки, основанные на построении объектов как набора данных и операций над ними. Объектно-ориентированные языки объединяют и расширяют возможности, присущие процедурным и аппликативным языкам. К объектно-ориентированным языкам относятся C++, Object Pascal, Java.

В настоящий момент наибольшее распространение получили языки, основанные на объектно-ориентированной модели. Они, реализуя процедурную модель построения языка, поддерживают аппликативность конструкций, позволяя представлять блок-схему выполнения структурированной программы как некоторый набор аппликативных функций.

^ Прикладное программное обеспечение

ППО - это комплекс прикладных программ, с помощью которых выполняются конкретные задания: производственные, творческие, развлекательные и т.д.

^ Классификация ПП средств

Текстовые редакторы - основные их функции - ввод и редактирование текстовых данных.

Графические редакторы - обширный класс программ, предназначенных для создания и обработки графических изображений.

^ Системы управления базами данных. БД называют огромные массивы данных, организованные в табличные структуры.

Электронные таблицы - это комплексные средства для хранения различных типов данных и их обработки. Электронные таблицы аналогичны базам данных, но акцент смещен не на хранения данных, а на преобразование данных.

^ Системы автоматизированного проектирования (CAD-системы), они предназначены для автоматизации процесса верстки полиграфических изданий.

Существуют и другие прикладные программные средства: экспертные системы, редакторы HTML (Web-редакторы), броузеры (средства просмотра Web), интегрированные системы делопроизводства, бухгалтерские системы и т.д.

^ Резюме

Парадигмы программирования

Парадигма — набор теорий, стандартов и методов, которые представляют собой способ организации научного знания, — иными словами, способ видения мира. Парадигма в программировании — способ концептуализации, который определяет, как следует проводить вычисления, и как работа, выполняемая компьютером, должна быть структурирована и организована.

Известно несколько основных парадигм программирования, важнейшими из которых на данный момент времени являются парадигмы директивного, объектно-ориентированного и функционально-логического программирования. Для поддержки программирования в соответствии с той или иной парадигмой разработаны специальные алгоритмические языки.

C и Pascal являются примерами языков, предназначенных для директивного программирования (directive programming), когда разработчик программы использует процессно-ориентированную модель, то есть пытается создать код, должным образом воздействующий на данные. Активным началом при этом подходе считается программа (код), которая должна выполнить все необходимые для достижения нужного результата действия над пассивными данными.

Этот подход представляется вполне естественным для человека, который только начинает изучать программирование, и исторически возник одним из первых, однако он практически неприменим для создания больших программ.

Сейчас весьма распространенным стал объектно-ориентированный (object oriented) подход, реализуемый, например, языками C++ и Java. При этом, наоборот, первичными считаются объекты (данные), которые могут активно взаимодействовать друг с другом с помощью механизма передачи сообщений (называемого также и механизмом вызова методов). Функция программиста в этом случае подобна роли бога при сотворении Вселенной — он должен придумать и реализовать такие объекты, взаимодействие которых после старта программы приведет к достижению необходимого конечного результата.

Раздел № 4

Модели решения функциональных и вычислительных задач.

^ Моделирование, методы и технология моделирования, виды моделей.

Моделирование как средство проектирования программного обеспечения вычислительных систем

^ Моделью называется семантически законченная абстракция системы или полное описание какой-то системы с определенной точки зрения. Модель – это некоторое представление или описание оригинала (объекта, процесса, явления), которое при определенных предложениях, гипотезах о поведении оригинала позволяет замещать оригинал для его лучшего изучения, исследования, описания его свойств.

Проблема моделирования состоит из трех взаимосвязанных задач: построение новой (адаптация известной) модели; исследование модели (разработка метода исследования или адаптация, применение известного); использование (на практике или теоретически) модели.

^ Классификация моделей

Модель статическая, если среди параметров описания модели нет (явно) временного параметра.

Модель динамическая, если среди параметров модели явно выделен временной параметр.

^ Модель дискретная, если описывает поведение оригинала лишь дискретно, например, в дискретные моменты времени (для динамической модели).

Модель непрерывная, если описывает поведение оригинала на всем промежутке времени.

^ Модель детерминированная, если для каждой допустимой совокупности входных параметров она позволяет определять однозначно набор выходных параметров; в противном случае – модель недетерминированная, стохастическая (вероятностная).

^ Модель функциональная, если она представима системой функциональных соотношений (например, уравнений).

Модель теоретико-множественная, если она представима некоторыми множествами и отношениями их и их элементов.

^ Модель логическая, если она представима предикатами, логическими функциями и отношениями.

Модель информационно-логическая, если она представима информацией о составных элементах, подмоделях, а также логическими отношениями между ними.

^ Модель игровая, если она описывает, реализует некоторую игровую ситуацию между элементами (объектами и субъектами игры).

Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом ее исследования), вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

^ Модель графовая, если она представима графом (отношениями вершин и соединяющих их ребер) или графами и отношениями между ними.

Модель иерархическая (древовидная), если она представима иерахической структурой (деревом).

^ Модель языковая, лингвистическая, если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.

^ Модель визуальная, если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Модель натурная, если она есть материальная копия оригинала.

Модель геометрическая, если она представима геометрическими образами и отношениями между ними.

^ Модель имитационная, если она построена для испытания или изучения, проигрывания возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели.

Есть и другие типы моделей.

^ Примеры моделей

Алгоритмической моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности.

Правила правописания – языковая, структурная модель. Глобус – натурная географическая модель земного шара. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает визуальную геометрическую модель окружности на экране компьютера.

Тип модели зависит от связей и отношений его подсистем и элементов, окружения, а не от его физической природы.

Основные свойства любой модели:

  • целенаправленность;

  • конечность;

  • упрощенность;

  • приблизительность;

  • адекватность;

  • информативность;

  • полнота;

  • замкнутость и др.

Современное моделирование сложных процессов и явлений невозможно без компьютера, без компьютерного моделирования.

Компьютерное моделирование – основа представления знаний как в компьютере, так и с помощью компьютера и с использованием любой информации, которую можно обрабатывать с помощью ЭВМ.

Разновидность компьютерного моделирования – вычислительный эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента – компьютера, компьютерной технологии. Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать события и т.д.

Компьютерное моделирование от начала и до завершения проходит следующие этапы.

  1. Постановка задачи.

  2. Предмодельный анализ.

  3. Анализ задачи.

  4. Исследование модели.

  5. Программирование, проектирование программы.

  6. Тестирование и отладка.

  7. Оценка моделирования.

  8. Документирование.

  9. Сопровождение.

  10. Использование (применение) модели.


При моделировании систем ПО выделяют два подхода: структурное моделирование и объектно-ориентированное моделирование. Каждый из этих подходов использует свои методы и средства. Язык моделирования должен включать: элементы модели, т.е. функциональные концепции моделирования и их семантику, нотацию, т.е. визуальное представление элементов моделирования и руководство по использованию. При моделировании широко используются инструментальные средства, называемые Case-средствами. Case-средство – это технология использования и эксплуатации систем ПО. Case-средство – это программное средство, которое поддерживает процессы жизненного цикла ПО. ЖЦ любого ПО – это период времени от принятия решения о необходимости создания ПО до изъятия ПО из эксплуатации. Все процессы ЖЦ ПО делятся на три группы: основные (5), вспомогательные (8), организационные (4). Для разработки моделей ЖЦ используется стандарт (ISO/IEC 12207). Стадия создания ПО – это часть процесса создания ПО, ограниченная временными рамками и заканчивающаяся выпуском конкретного продукта (модели, программы или документации). В состав ЖЦ ПО включают стадии:

  1. Формирование требований к ПО

  2. Проектирование

  3. Реализация

  4. Тестирование

  5. Ввод в действие

  6. Эксплуатация и сопровождение

  7. Снятие с эксплуатации.

Сущность структурного подхода к разработке ПО заключается в его декомпозиции на автоматизируемые функции: система разбивается на функциональные подсистемы, которые в свою очередь делятся на подфункции, те – на задачи и т.д. до конкретных процедур. Все компоненты автоматизируемой системы взаимоувязаны. В структурном подходе используются две группы средств, которые описывают функциональную структуру системы и отношения между данными. Каждой группе средств соответствуют определенные виды моделей, самые распространенные среди них:

^ DFD – диаграмма потоков данных – основное средство моделирования функциональных требований к проектируемой системе. Требования к системе представляются в виде иерархии функциональных компонент (процессов), связанных потоками данных. Главная цель такого представления – показать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами. Основными компонентами диаграммы потоков данных являются внешние сущности, системы и подсистемы, процессы, накопители данных и потоки данных.

^ SADT – метод структурного анализа и проектирования – совокупность правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые объектом действия и связи между ними.

^ ERD – диаграммы сущность – связь. Это самое распространенное средство моделирования данных, которые в процессе проектирования и реализации будут отображены в базу данных. Базовыми понятиями данного средства моделирования являются: сущность, связь и атрибут.

^ Принципиальное отличие между структурным и объектно-ориентированном подходом при моделировании систем ПО заключается в способе декомпозиции системы. Объектно-ориентированный подход использует объектную декомпозицию. При этом статическая структура системы описывается с помощью объектов и связей между ними, а поведение объектов системы описывается сообщениями, которыми объекты обмениваются между собой. Основой объектно-ориентированного подхода является объектная модель. Элементами (свойствами) этой модели являются: абстрагирование, инкапсуляция, модульность, иерархия, типизация, параллелизм, устойчивость.

Абстракция – это процесс выявления основных характеристик какой-либо сущности, которые отличают ее от других сущностей.

Инкапсуляция – это процесс отделения друг от друга отдельных элементов объекта, которые определяют устройство и поведение объекта. Инкапсуляция служит для того, чтобы изолировать интерфейс объекта, который отражает внешнее поведение объекта от его внутренней реализации.

Модульность – это свойство системы, связанное с возможностью ее декомпозиции на ряд внутренне связных, но слабо связанных между собой модулей.

Иерархия – это ранжирование или упорядочивание системы абстракций. Виды иерархических структур – это структура классов и структура объектов.

Типизация – это ограничение, которое накладывается на класс объектов, она препятствует взаимозаменяемости различных классов.

Параллелизм – это свойство объектов находиться в активном или пассивном состоянии и различать активные и пассивные объекты между собой.

Устойчивость – свойство объекта существовать во времени и/или пространстве.

^ Основные понятия, используемые при объектно-ориентированном моделировании: объект и класс.

Объект – это предмет или явления, которое имеет четко определяемое поведение. Класс – это множество объектов, которые имеют общую структуру и поведение. Объект является экземпляром класса. Важными понятиями в объектно-ориентированном моделировании являются полиморфизм и наследование. Полиморфизм – это способность класса принадлежать более чем одному типу. Наследование – это построение новых классов на основе уже существующих, при этом можно добавлять или переопределять данные и методы.

^ Языки моделирования

Язык визуального моделирования – это формальный язык, который имеет графическую нотацию, язык предназначен для визуального моделирования и спецификации программных и аппаратных средств.

VRML – формальный язык для создания трехмерных изображений. В 1994 году был создан язык VRML для организации виртуальных трехмерных интерфейсов в Интернете. Он позволяет описывать в текстовом виде различные трехмерные сцены, освещение и тени, текстуры (покрытия объектов), создавать свои миры, путешествовать по ним, «облетать» со всех сторон, вращать в любых направлениях, масштабировать, регулировать

Унифицированный язык моделирования UML – формальный язык визуального моделирования, который предназначен для проектирования и построения моделей сложных программных систем.

^ Объектно-ориентированное программирование

Одной из альтернатив директивному (императивному) программированию является объектно-ориентированное программирование, которое действительно помогает справиться с нелинейно растущей сложностью программ при увеличении их объема.

^ Основные концепции ООП

(основные идеи объектно-ориентированного проектирования и объектно-ориентированного программирования одинаковы, т.к. разработанный проект реализуется на одном из объектно-ориентированных языков программирования)

Объектно-ориентированное программирование или ООП — методология программирования, основанная на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного типа, использующая механизм пересылки сообщений и классы, организованные в иерархию наследования.

Центральный элемент ООП — абстракция. Данные с помощью абстракции преобразуются в объекты, а последовательность обработки этих данных превращается в набор сообщений, передаваемых между этими объектами. Каждый из объектов имеет свое собственное уникальное поведение. С объектами можно обращаться как с конкретными сущностями, которые реагируют на сообщения, приказывающие им выполнить какие-то действия.

ООП характеризуется следующими принципами (по Алану Кею):

  • все является объектом;

  • вычисления осуществляются путем взаимодействия (обмена данными) между объектами, при котором один объект требует, чтобы другой объект выполнил некоторое действие; объекты взаимодействуют, посылая и получая сообщения; сообщение — это запрос на выполнение действия, дополненный набором аргументов, которые могут понадобиться при выполнении действия;

  • каждый объект имеет независимую память, которая состоит из других объектов;

  • каждый объект является представителем класса, который выражает общие свойства объектов данного типа;

  • в классе задается функциональность (поведение объекта); тем самым все объекты, которые являются экземплярами одного класса, могут выполнять одни и те же действия;

  • классы организованы в единую древовидную структуру с общим корнем, называемую иерархией наследования; память и поведение, связанное с экземплярами определенного класса, автоматически доступны любому классу, расположенному ниже в иерархическом дереве.

Абстрагирование (abstraction) — метод решения задачи, при котором объекты разного рода объединяются общим понятием (концепцией), а затем сгруппированные сущности рассматриваются как элементы единой категории.

Абстрагирование позволяет отделить логический смысл фрагмента программы от проблемы его реализации, разделив внешнее описание (интерфейс) объекта и его внутреннюю организацию (реализацию).

Инкапсуляция (encapsulation) — техника, при которой несущественная с точки зрения интерфейса объекта информация прячется внутри него.

Наследование (inheritance) — свойство объектов, посредством которого экземпляры класса получают доступ к данным и методам классов-предков без их повторного определения.

^ Наследование позволяет различным типам данных совместно использовать один и тот же код, приводя к уменьшению его размера и повышению функциональности.

Полиморфизм (polymorphism) — свойство, позволяющее использовать один и тот же интерфейс для различных действий; полиморфной переменной, например, может соответствовать несколько различных методов.

^ Полиморфизм перекраивает общий код, реализующий некоторый интерфейс, так, чтобы удовлетворить конкретным особенностям отдельных типов данных.

Класс (class) — множество объектов, связанных общностью структуры и поведения; абстрактное описание данных и поведения (методов) для совокупности похожих объектов, представители которой называются экземплярами класса.

Объект (object) — конкретная реализация класса, обладающая характеристиками состояния, поведения и индивидуальности, синоним экземпляра.

При объектно-ориентированном подходе программа представляет собой описание объектов, их свойств (или атрибутов), совокупностей (или классов), отношений между ними, способов их взаимодействия и операций над объектами (или методов). Основными концепциями, характеризующими объектно-ориентированное программирование, являются наследование (сохранение производными объектами свойств базовых объектов) и инкапсуляция (изоляция определений объектов от методов управления ими), а также уже упомянутое понятие полиморфизма


^ Основы представления графических данных

Виды компьютерной графики

Существует специальная область информатики, изучающая методы и средства создания и обработки изображений с помощью программно-аппаратных вычисли­тельных комплексов, — компьютерная графика. Она охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Виды компьютерной графики: полиграфия, 2D графика, 3D графика и анимация, САПР и деловая графика, Web дизайн, мультимедиа, видеомонтаж.

В зависимости от способа формирования изображений компьютерную 2D-графику принято подразделять на растровую, векторную и фрактальную.

Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная гра­фика, научная графика, Web-графика, компью­терная полиграфия и прочие.

На стыке компьютерных, телевизионных и кино­технологий зародилась и стремительно развива­ется сравнительно новая область компьютерной графики и анимации.

Хотя компьютерная графика служит всего лишь инструментом, ее структура и методы основаны на передовых достижениях фундаментальных и прикладных наук: математики, физики, химии, биологии, статистики, программирования и мно­жества других. Это замечание справедливо как для программных, так и для аппаратных средств создания и обработки изображений на компью­тере. Поэтому компьютерная графика является одной из наиболее бурно развивающихся отрас­лей информатики и во многих случаях выступает «локомотивом», тянущим за собой всю компью­терную индустрию.



Растровая графика




Векторная графика



Трехмерная графика



Инженерная графика


^ Растровая графика

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выра­жающее количество точек, приходящихся на еди­ницу длины. При этом следует различать:

• разрешение оригинала;

• разрешение экранного изображения;

• разрешение печатного изображения.

^ Разрешение оригинала. Разрешение оригинала измеряется в точках на дюйм (dots per inch — dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки или методу создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требования к качеству, тем выше должно быть разрешение оригинала.

^ Разрешение экранного изображения. Для экранных копий изображения элемен­тарную точку растра принято называть пикселом. Размер пиксела варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных зна­чений), разрешения оригинала и масштаба отображения.

Мониторы для обработки изображений с диагональю 20-21 дюйм (профессионального класса), как правило, обеспечивают стандартные экранные разрешения 640x480, 800x600, 1024x768, 1280x1024, 1600x1200, 1600x1280, 1920x1200, 1920x1600 точек. Расстояние между соседними точками люминофора у качественного монитора состав­ляет 0,22-0,25 мм.

Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устрой­ства вывода. В случае, если твердая копия будет увеличена по сравнению с ориги­налом, эти величины следует умножить на коэффициент масштабирования.

^ Разрешение печатного изображения и понятие линиатуры. Размер точки растро­вого изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растри­ровании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch — Ipi) и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсив­ности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале при­ближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра (рис. 1). Такой метод называют растрированием с амплитудной модуляцией (AM).




^ Рис. 1. Примеры амплитудной и частотной модуляции растра



Существует и метод растрирования с частотной модуляцией (ЧМ), когда интен­сивность тона регулируется изменением расстояния между соседними точками одинакового размера. Таким образом, при частотно-модулированном растрирова­нии в ячейках растра с разной интенсивностью тона находится разное число точек (см рис. 1). Изображения, растрированные ЧМ-методом, выглядят более каче­ственно, так как размер точек минимален и во всяком случае существенно меньше, чем средний размер точки при АМ-растрировании. Еще более повышает качество изображения разновидность ЧМ-метода, называемая стохастическим растрированием. В этом случае рассчитывается число точек, необходимое для отображения требуемой интенсивности тона в ячейке растра. Затем эти точки располагаются внутри ячейки на расстояниях, вычисленных квазислучайным методом (на самом деле используется специальный математический алгоритм). То есть регулярная структура растра внутри ячейки, как и на изображении в целом, вообще отсутствует (рис. 2). Поэтому при стохастическом ЧМ -растрировании теряет смысл понятие линиатуры растра, имеет значение лишь разрешающая способность устройства вывода. Такой способ требует больших затрат вычислительных ресурсов и высокой точности полиграфического оборудования; он применяется в основном для художествен­ных работ, при печати с числом красок, превышающим четыре.



^ Рис.2. Пример использования стохастического растра

Связь между параметрами изображения и размером файла. Средствами растровой графики принято иллюстрировать работы, требующие высокой точности в пере­даче цветов и полутонов. Однако размеры файлов растровых иллюстраций стре­мительно растут с увеличением разрешения. Фотоснимок, предназначенный для домашнего просмотра (стандартный размер 10x15 см, оцифрованный с разрешени­ем 200-300 dpi, цветовое разрешение 24 бита), занимает в формате TIFF с вклю­ченным режимом сжатия около 4 Мбайт. Оцифрованный с высоким разрешением слайд занимает 45-50 Мбайт. Цветоделенное цветное изображение формата А4 занимает 120-150 Мбайт.

^ Масштабирование растровых изображений. Одним из недостатков растровой гра­фики является так называемая пикселизация изображений при их увеличении (если не приняты специальные меры). Раз в оригинале присутствует определенное коли­чество точек, то при большем масштабе увеличивается и их размер, становятся заметны элементы растра, что искажает саму иллюстрацию (рис 3). Для противодействия пикселизации принято заранее оцифровывать оригинал с разрешением, достаточ­ным для качественной визуализации при масштабировании. Другой прием состоит в применении стохастического растра, позволяющего уменьшить эффект пикселиза­ции в определенных пределах. Наконец, при масштабировании используют метод интерполяции, когда увеличение размера иллюстрации происходит не за счет мас­штабирования точек, а путем добавления необходимого числа промежуточных точек. При масштабировании растровой графики возможны потери в изображении.




^ Рис.3. Эффект пикселезации при масштабировании растрового изображения


Векторная графика

Если в растровой графике базовым элементом изображения является точка, то в векторной графике - линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия — элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (тек­стуры, карты) или выбранным цветом.

Простейшая незамкнутая линия Ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами.

Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно представить куб и как двенадцать связанных линий, образующих ребра.




^ Рис. 4. Объекты векторной графики


Математические основы векторной графики

Рассмотрим подробнее способы представления различных объектов в векторной графике.

^ Точка. Этот объект на плоскости представляется двумя числами (х, у), указываю­щими его положение относительно начала координат.

Прямая линия. Ей соответствует уравнение у = kx + b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе коор­динат, то есть для задания прямой достаточно двух параметров.

^ Отрезок прямой. Он отличается тем, что требует для описания еще двух парамет­ров — например, координат x1 и х2 начала и конца отрезка.

Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+а5 = 0.

Таким образом, для описания бесконечной кривой второго порядка достаточно пятя; параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.

^ Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например график функции у = x3 имеет точ­ку перегиба в начале координат (рис. 15.5). Именно эта особенность позволяет сде­лать кривые третьего порядка основой отображения природных объектов в век­торной графике. Например линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3 + а1у3 + а2x2у + a3xy2 + a4x2 + а5y2 + а6xy + a7x + а8y + а9 = 0

Таким образом, кривая третьего порядка описывается девятью параметрами. Опи­сание ее отрезка потребует на два параметра больше.



^ Рис.5. Кривая третьего порядка (слева) и кривая Безье (справа)


Кривые Безье. Это особый, упрощенный вид кривых третьего порядка (с. рис. 5). Метод построения кривой Безье (Bezier) основан на использовании пары касатель­ных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описы­ваются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных «рычагов», с помощью которых управляют кривой.

Отрезками кривых Безье можно аппроксимировать сколь угодно сложный контур. Наряду с линией другим основным элементом векторной графики является узел (опорная точка). Линии и узлы используются для построения контуров. Каждый контур имеет несколько узлов. Форма контуров в векторных редакторов изменяется путем манипуляции узлами. Это можно сделать одним из следующих способов: перемещением узлов, изменением свойств узлов, добавлением или удалением узлов. В основе всех процедур связанных с редактированием контуров лежит работа с узлами. При выделении узловой точки криволинейного сегмента у нее появляются одна или две управляющие точки, соединенные с узловой точкой касательными линиями. Управляющие точки изображаются черными закрашенными точками. Расположение касательных линий и управляющих точек определяет длину и форму криволинейного сегмента, а их перемещение приводит к изменению формы контура.

^ Типы узловых точек.

Вид касательных линий и соответственно методы управления кривизной сегмента в точке привязки определяются типом узловой точки. Различают три типа узловых точек.

^ Симметричный узел. У симметричного узла оба отрезка касательных по обе стороны точки привязки имеют одинаковую длину и лежат на одной прямой, которая показывает направление касательной к контуру в данной узловой точке. Это означает, что кривизна сегментов с обеих сторон точки привязки одинакова.

^ Гладкий узел. У гладкой узловой точки оба отрезка касательных линий по обе стороны точки привязки лежат на одной прямой, которая показывает направление касательной к кривой в данной точке, но длина управляющих линий разная.

^ Острый узел. У острого узла касательные линии с разных сторон этой точки не лежат на одной прямой. Поэтому два криволинейных сегмента, прилегающих к опорной точке, имеют различную кривизну с разных сторон узловой точки и контур в этой точке образует резкий излом.

^ Представление графических данных

Форматы графических данных

Способ организации информации в файле называется форматом хранения изображения. В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом «де-факто» и применяется в подавляющем большинстве программ. Как правило, несовмести­мые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Все множество форматов условно делится на три категории:

Форматы, хранящие изображения в растровом виде: BMP, TIFF. PCD, PSD, JPEG, PNG, GIF;

Форматы, хранящие информацию в векторном виде: WMF;

Универсальные форматы (векторное и растровое представление): EPS, PICT, CDR – формат Coral Draw.

^ Основные критерии выбора формата – это совместимость программ и компактность записи. По сравнении с векторным растровый формат устроен проще. Это прямоугольная таблица или матрица bitmap, в каждой ячейке или клетке которой установлен пиксел. Считывание информации из файла растрового изображения сводится к следующему:

Определяется размер изображения в виде произведения пикселов по горизонтали и вертикали;

Определяется размер пиксела;

Определяется битовая глубина, она характеризует емкость пиксела в битах или цветовую разрешающую способность, т.е. количество цветов. В цветном RGB изображении каждый пиксел кодируется 24-битовым числом, поэтому в каждой ячейки битовой матрицы хранится число из 24 нулей и единиц.

Многие при­ложения ориентированы на собственные «специфические» форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в «стандартный» формат.

^ TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высокого качества (расширение имени файла .ТIF), данный формат поддерживается основными растровыми и векторными редакторами. Он относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC к Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цвето­вого охвата — от монохромного черно-белого до 32-разрядной модели цветоделе­ния CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Данный формат – это лучший выбор для импорта растровой графики в векторные программы. Для уменьшения размера файла применяется встроенный алгоритм сжатия без потерь LZW (возможно сжатие до 50%)..

^ PSD (PhotoShop Document). Собственный формат программы Adobe Photoshop (расширение имени файла .PSD), один из наиболее мощных по возможностям хране­ния растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов, однако этот формат постоянно совершенствуется. Еще один формат программы Adobe Photoshop имеет расширение PDF – это аппаратно-независимый растровый формат, в этом формате документ хранится целиком.

^ Windows Bitmap. Формат хранения растровых изображений в операционной системе Windows (расширение имени файла .BMP). Соответственно, поддерживается всеми приложениями, работающими в этой среде, данный формат обеспечивает быстрый вывод изображений, но из-за очень больших размеров файла используется только для нужд Windows.

WMF (Windows Meta File) – формат хранения векторных изображений ОС Windows, он искажает цвет изображений.

EPS – универсальный формат хранения изображений, как векторных, так и растровых на языке PostScript. На экране векторное изображение представляется в формате WMF, а растровое в формате TIFF.

^ JPEG (Joint Photographic Experts Group). Формат предназначен для хранения растровых изображений (расширение имени файла .JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применя­емые методы сжатия основаны на удалении «избыточной» информации, поэтому формат рекомендуют использовать только для электронных публикаций, т.к. алгоритм сжатия приводит к потери качества изображения. Этот формат не рекомендуется использовать, если важны цветовые нюансы, в формате .JPEG хранят только конечный результат, т.к. каждое промежуточное хранение в данном формате приводит к потерям.

^ GIF (Graphics Interchange Format). Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расши­рение имени файла .GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять черес­строчную загрузку изображений и создавать рисунки с прозрачным фоном. Чересстрочноя запись изображения означает, что в начале файла хранятся строки изображения с номерами, кратными восьми, затем кратными четырем и т.д. Просмотр идет с нарастающим уровнем детализации, видно приблизительное изображение до завершения полной загрузки. Ограни­ченные возможности по количеству цветов обусловливают его применение исклю­чительно в электронных публикациях.

^ Основные стандарты расширения файлов

.com .exe

Исполняемые файлы

.bat

Командные файлы

.txt

Текстовые файлы

.doc

Файлы Word

.xls

Файлы Excel

.bmp gif jpg

Файлы рисунков

.zip .rar .arj

Архивные файлы

.htm .html

Файлы, используемые в Интернете


^ Алгоритмы сжатия изображений

В настоящее время не существует алгоритмов, одинаково сжимающих файлы любых форматов. Степень сжатия изображений может колебаться от 4:1 до 200:1. Различают алгоритмы сжатия с потерями качества изображения и без потерь. Суть алгоритмов сжатия без потерь в том, что при наличии больших областей однотонной закраски или однотипных узорах в растровых изображениях повторяющиеся одинаковые пиксельные области запоминают один раз и впоследствии повторяют его необходимое количество раз. При этом в исходных данных ничего не отбрасывается и не теряется. Такие алгоритмы используются в форматах TIFF или GIF. Пример такого алгоритма – LZW.

Алгоритмы сжатия с потерями приходиться использовать, если имеют дело с фотографическими изображениями, у которых нет повторяющихся узоров или больших областей однотонной закраски. В растровом рисунке, который имеет много слегка отличающихся друг от друга оттенков (пикселов) большие области могут заполняться пикселами одного цвета. Важным моментов в применения сжатия с потерями является определение приемлемого уровня потерь.

Пример хранения одного и того же изображения в разных форматах. Пусть имеется одна и та же картинка.

Формат

Размер файла, в байтах

PCX

886406

BMP

817974

TIF (без сжатия)

818705

TIF (LZW сжатие)

527320

PSD

817988

JPG

55707


^ Понятие цвета

Цвет чрезвычайно важен в компьютерной графике как средство усиления зритель­ного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов.

Световой поток формируется излучениями, представляющими собой комбинацию трех «чистых» спектральных цветов (красный, зеленый, синий — КЗС) и их про­изводных (в англоязычной литературе используют аббревиатуру RGB — Red, Green, Blue). Для излучающих объектов характерно аддитивное цветовоспроизведение (световые излучения суммируются), для отражающих объектов — субтрактивное цветовоспроизведение (световые излучения вычитаются). Примером объекта пер­вого типа является электронно-лучевая трубка монитора, второго типа — полигра­фический отпечаток.

Физические характеристики светового потока определяются параметрами мощ­ности, яркости и освещенности. Визуальные параметры ощущения цвета характе­ризуются светлотой, то есть различимостью участков, сильнее или слабее отражающих свет. Минимальную разницу между яркостью различимых по светлоте объек­тов называют порогом. Величина порога пропорциональна логарифму отношения яркостей. Последовательность оптических характеристик объекта (расположен­ная по возрастанию или убыванию), выраженная в оптических плотностях или логарифмах яркостей, составляет градацию и является важнейшим инструментом для анализа и обработки изображения.

^ Способы описания цвета

В компьютерной графике применяют понятие цветового разрешения (другое назва­ние — глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изобра­жения достаточно одного бита (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют True Color).

С практической точки зрения цветовому разрешению близко понятие цветового охвата. Под цветовым охватом понимают диапазон цветов, который можно воспроизвести с помощью устройств вывода. Цвет – это точка в трехмерном пространстве. Цветовые модели расположены в трехмерной системе координат, которая образует цветовое пространство. Цвет можно выразить точкой в трехмерном пространстве. Первый закон

^ Цветовая модель CIE Lab

В1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage — международная комиссия по освещению. L,a,b — обозначения осей координат в этой системе). Система является аппаратно независи­мой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (I) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится пре­образовывать. Данная модель была разработана для согласования цветных фото­химических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.


^ Цветовая модель RGB



Рис. 6. Аддитивная цветовая модель RGB

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов — красного (Red), зеле­ного (Green), синего (Blue). Она служит основой при создании и обработке компью­терной графики, предназначенной для электронного воспроизведения (на мони­торе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому — максимальные, с координатами (255,255,255).


^ Цветовая модель HSB




Рис. 7 Цветовая модель HSB


Цветовая модель HSB разработана с максимальным учетом особенностей восприя­тия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brightness). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности — чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекры­вает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специ­альные программы, имитирующие кисти, перья, карандаши. Обеспечивается ими­тация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации.


^ Цветовая модель CMYK, цветоделение



Рис. 8 Цветовая модель CMYK


Цветовая модель CMYK относится к субтрактивным, и ее используют при подго­товке публикаций к печати. Цветовыми компонентами CMY служат цвета, полу­ченные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печат­ных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY — наложение друг на друга дополни­тельных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK).

Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.


Раздел № 5

Локальные и глобальные сети ЭВМ. Защита информации в сетях.

Понятие сетей, локальные, глобальные сети, сетевые устройства. Топология сети, способы передачи информации в сети. Уровни модели связи. Интернет, службы и протоколы Интернета. Методы защиты информации, программных и аппаратных средств. Виды вирусов. Методы борьбы с вирусами. Антивирусные программы. Криптографические функции, симметричное и несимметричное кодирование, электронно-цифровая подпись.


^ Локальные и глобальные компьютерные сети.

Internet

. Компьютерная сеть – это совокупность компьютеров, соединенных с помощью каналов связи и средств коммуникации в единую систему для обмена сообщениями и доступа пользователей к программным, техническим, информационным и организационным ресурсам сети. В общем случае для создания компьютерных сетей необходимо специальное аппаратное обеспечение (сетевое оборудование) и специальное программное обеспечение (сетевые программные средства). Простейшее соединение двух компьютеров для обмена данными называется прямым соединением. Архитектура сети - это реализованная структура сети передачи данных, определяющая ее топологию, состав устройств и правила их взаимодействия в сети. В рамках архитектуры сети рассматриваются вопросы кодирования информации, ее адресации передачи, управления потоком сообщений, контроля ошибок и анализа работы сети в аварийных ситуациях. Трафик – это информация, приходящая из сети, т.е. поток данных по линии связи или в сети передачи данных.


^ Базовая модель OSI

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на модели OSI - модели взаимодействия открытых систем - Model of Open System Interconnections. Она создана на основе технических предложений Международного института стандартов ISO. OSI является международным стандартом для передачи данных.





оставить комментарий
страница3/6
Дата28.08.2012
Размер1,01 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6
хорошо
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх