Ртуть, человек, окружающая среда (краткий очерк) icon

Ртуть, человек, окружающая среда (краткий очерк)


3 чел. помогло.
Смотрите также:
Методические рекомендации для студентов «Человек и окружающая среда»...
Ртуть (лат. Hudrargyrum) химический элемент 2 группы периодической системы Менделеева...
Учебно-методический комплекс дисциплины 151001 Промышленность и окружающая среда...
Книга-почтой (каталожная)...
Краткий биографический очерк...
Отчет 39 стр., 4 рисунка, 9 таблиц, источников цементное производство, окружающая среда...
Новости ядерная энергия, человек и окружающая среда...
Борисов С. М. В. Фрунзе. Краткий биографический очерк...
Рекомендательный аннотированный список литературы по естественным наукам для подготовки...
Новости ядерная энергия, человек и окружающая среда...
Программа факультативных занятий для общеобразовательных учреждений «Энергия и окружающая среда»...
Новости ядерная энергия, человек и окружающая среда...



Загрузка...
страницы:   1   2   3
скачать


© Янин Е.П. Ртуть, человек, окружающая среда (краткий очерк)


Содержание

1. Общие сведения о ртути

1.1. Важнейшие свойства ртути

1.2. Распространенность ртути в природе

1.3. Добыча, производство и использование ртути

1.4. Токсичность ртути (как ртуть влияет на здоровье человека)

1.5. Технические требования, санитарные правила, нормативы

2. Из глубины веков…

2.1. Исторические районы добычи и применения ртути

2.2. Ртуть и золото алхимиков

2.3. Лекарство или яд?

^ 3. Ртуть и экологические проблемы

3.1. Загрязнение окружающей среды ртутью

3.2. Ртутьсодержащие отходы потребления и их утилизация

3.4. Демеркуризация объектов городской среды

^ 4. Аналитические методы определения ртути

5. Справочная литература


1. Общие сведения о ртути


Ртуть – удивительный химический элемент. Это очевидно хотя бы по тому, что ртуть – единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности – от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах.

Ртуть причастна к научным открытиями и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. Нобелевской премии был удостоен чешский химик Я. Гейровский, создавший полярографический метод химического анализа, где ртуть играет далеко не последнюю роль.

Однако ртуть может быть не только полезной, но и вредной для всего живого. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья. Одна из самых известных экологических трагедий 20 столетия – болезнь Минамата – вызвана загрязнением окружающей среды ртутью.

^ 1.1. Важнейшие свойства ртути


Ртуть (Hg) – химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59; в состав природной ртути входят 7 стабильных изотопов с массовыми числами: 196 (распространенность 0,146%), 198 (10,02%), 199 (16,84%), 200 (23,13%), 201 (13,22%), 202 (29,80%) и 204 (6,85%). Природная ртуть характеризуется относительно устойчивым изотопным соотношением. Тем не менее в ней в небольших количествах присутствуют радиоактивные изотопы. Искусственно получено более 20 короткоживущих изотопов, из которых практическое значение имеют (метки в медицине, в аналитике, в технологических процессах) 203Hg (период полураспада 46,6 дня) и 197Hg (64,1 ч). Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20оС 13,54616 г/см3; температура плавления = –38,89оС, кипения 357,25оС. При замерзании (–38,89оС) она становится твердой и легко поддается ковке.

Даже в обычных условиях ртуть обладает повышенным давлением насыщенных паров и испаряется с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов ртутной атмосферы. Например, при 24оС атмосферный воздух, насыщенный парами ртути, может содержать их в количестве около 18 мг/м3; такой уровень в 1800 раз превышает ПДК (предельно допустимую концентрацию) ртути в воздухе рабочей зоны и в 60000 раз ПДК в атмосферном воздухе. Ртуть способна испаряться через слои воды и других жидкостей. Кроме благородных газов, ртуть является единственным элементом, образующим пары, которые при комнатной температуре одноатомные (Hgo). В нормальных условиях растворимость паров ртути в воде, свободной от воздуха, составляет около 20 мкг/л.

При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Это же явление легло в основу спектрального метода определения малых количеств ртути в различных объектах. Ртуть характеризуется очень низкой удельной теплоемкостью. Это ее свойство находило применение в ртутно-паросиловых установках. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.

В соединениях ртуть проявляет степень окисления +2 и +1. В специальной литературе в таких случаях обычно указывается соответственно Hg(II) или Hg(I). Обладая высоким потенциалом ионизации, высоким положительным окислительным потенциалом, ртуть является относительно стойким в химическом отношении элементом. Это обусловливает ее способность восстанавливаться до металла из различных соединений и объясняет частые случаи нахождения ртути в природе в самородном состоянии. Обычно самородная ртуть содержит небольшие количества других металлов, в том числе золото и серебро, т. е., по сути, является амальгамой. Известны минералы ртути, в которых содержания благородных и других металлов очень высоки (ртутистое серебро, ртутистое золото, ртутистый палладий, ртутистый свинец, амальгамид золота и др.). Ртуть весьма агрессивна по отношению к различным конструкционным материалам, что приводит к коррозии и разрушению производственных объектов и транспортных средств. Так, в 1970-е гг. довольно актуальной была проблема загрязнения самолетов, в конструкции которых попадала ртуть, вызывающая жидкометаллическое охрупчивание алюминиевых сплавов. Самолеты направлялись на капитальный ремонт и даже снимались с эксплуатации.

На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350оС), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути HgO, который при дальнейшем нагревании (до 400оС и выше) снова распадается на ртуть и кислород. Желтый оксид ртути HgO получается при добавлении щелочей к водному раствору соли Hg(II). Существует и оксид ртути черного цвета (Hg2O), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании – в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Hg2+ (создавая концентрации до 40 мкг/л).

Ртуть реагирует с галогенами (хлор, йод, фтор, бром), серой, селеном, фосфором и другими неметаллами. Практическое значение имеют йодная ртуть HgJ, хлористая ртуть (каломель) Hg2Cl2 и хлорная ртуть (сулема) HgCl2. При взаимодействии ртути с серой образуется сульфид ртути HgS – самое распространенное в природе ее соединение, в форме которого добывается почти вся ртуть. Оно известно в трех модификациях: красная (идентичная минералу киноварь), черная (черный сульфид ртути, или метациннабарит) и β-киноварь (в природных условиях не обнаружена). Из других соединений ртути известны такие, как гремучая ртуть Hg(ONC)2, нитрат Hg(NO3)2, сульфат (HgSO4) и сульфит (HgSO3) ртути, красный и желтый йодид ртути и др. При воздействии на соли ртути аммиака образуются комплексные соединения (белый плавкий преципитат HgCl.2NH3, белый неплавкий преципитат HgNH2Cl и др.).

Существует большое количество ртутьсодержащих органических соединений, в которых атомы металла связаны с атомами углерода. Среди них выделяют две основных группы: 1) арилртутные соединения, как правило синтетические, характеризующиеся присутствием в их молекуле радикала ароматических углеводородов; 2) алкилртутные (метил- и диметилртутные) соединения, имеющие в своем составе однозамещенный углеводородный радикал и образующиеся в природных условиях (например, ион метилртути СH3-Hg+). Химическая связь углерода и ртути очень устойчива. Она не разрушается ни водой, ни слабыми кислотами, ни основаниями. С позиций опасности для живых организмов (т. е. с позиций токсикологии – науки о ядах) наиболее токсичными из металлоорганических соединений ртути являются алкилртутные соединения с короткой цепью, прежде всего, метилртуть.


^ 1.2. Распространенность ртути в природе


Ртуть –редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оцениваются в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы (для сравнения – одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы). Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет 100 000 000 000 т (сто миллиардов тонн), из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах (в водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах – 0,03 мкг/л). Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.

Известно более 100 ртутных и ртутьсодержащих минералов. Как мы уже знаем, основным минералом, определяющим промышленную значимость ртутных месторождений, является киноварь. Самородная ртуть, метациннабарит, ливингстонит и ртутьсодержащие блеклые руды имеют резко подчиненное значение и добываются попутно с киноварью. Размер кристаллов киновари обычно варьируется в пределах от 2-3 до 0,1 мм; реже наблюдаются кристаллы до 1 см, более крупные (3-5 см) составляют редкость. Теоретический состав киновари: ртуть 86,2%, сера 13,8%. Но в ней часто обнаруживается примесь 15-20 элементов: кремния, алюминия, магния, меди, цинка, мышьяка, сурьмы, серебра и др.

Всего в мире обнаружено около 5000 ртутных месторождений, рудных участков и рудопроявлений, получивших самостоятельное название; из них в разное время разрабатывались около 500. Но за всю историю ртутной промышленности подавляющая часть ртути (более 80%) получена на 8 месторождениях: Альмаден (Испания), Идрия (Словения), Монте-Амиата (Италия), Уанкавелика (Перу), Нью-Альмаден и Нью-Идрия (США), Никитовка (Украина), Хайдаркан (Киргизия). Ртутные руды делятся на очень богатые (5-10% ртути и более), богатые (около 1%), рядовые (0,2-0,3%, бедные (0,06-0,12%), убогие (0,02-0,06%) и ртутьсодержащие (0,01-0,00001%). Руды большинства ныне разрабатываемых месторождений ртути – это в основном рядовые руды. В промышленности для получения металлической ртути используют два варианта технологии ее извлечения из руд: окислительно-дистилляционный обжиг с выделением ртути из газовой фазы и комбинированный способ, включающий предварительное обогащение и последующую пирометаллургическую переработку концентрата. По оценкам, человеком было произведено порядка 700000 т ртути, существенная часть из которых рассеяна на земной поверхности. Количество ртути, которое поступило в среду обитания в ходе других видов человеческой деятельности (при добыче различных полезных ископаемых, выплавке металлов, производстве цемента, сжигании ископаемого топлива и т. д.), также велико.

Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. Вероятность нахождения ртути в объектах среды обитания определяется чувствительностью используемого анализа, поэтому часто встречающееся выражение «ртуть не обнаружена» свидетельствует только лишь о том, что данный аналитический метод не достаточен для обнаружения этого металла. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в бокситах, некоторых глинах, горючих сланцах, известняках и доломитах, в углях, природном газе, нефти.

Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочки Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли». Процессы эти идут постоянно, но активизируются при извержениях вулканов, землетрясениях, геотермальных явлениях и т. п. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т в год.

В природных условиях ртуть обычно мигрирует в трех наиболее распространенных состояниях – Hgo (элементарная ртуть), Hg2+ (ион двухвалентной ртути), CH3Hg+ (ион метилртути), а также в виде менее распространенного иона Hg22+. Химические соединения Hg(II) встречаются в природе значительно чаще, нежели Hg(I). В водах между Hgo, Hg22+ и Hg2+ устанавливается равновесие, которое определяется окислительно-востановительным потенциалом раствора и концентрацией различных веществ, формирующих комплексы с Hg2+. Ионы Hg(II) образуют устойчивые комплексы с биологически важными молекулами. Именно высокое химическое сродство ртути (II) и ее метилированных соединений к биомолекулам в существенной мере определяет токсикологическую опасность ртути в условиях окружающей среды.

Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей главным образом из техногенных источников. Многие этапы локального круговорота еще недостаточно ясны, но полагают, что он включает циркуляцию в среде обитания диметилртути. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.

Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути (элементарная ртуть Hgo и неорганический ион Hg2+) претерпевают преобразования в результате окислительно-восстановительных процессов. Пары ртути окисляются в воде в присутствии кислорода неорганическую двухвалентную ртуть (Hg2+), чему в значительной мере способствуют присутствующие в водной среде органические вещества, которых особенно много в зонах загрязнения. В свою очередь, ионная ртуть, поступая или образуясь в воде, способна формировать комплексные соединения с органическим веществом. Значение имеет взаимодействие ртути с серой (сульфид-ионом), приводящее к образованию (в безкислородных условиях) устойчивого сульфида ртути HgS, который, однако, в присутствии кислорода может окисляться в растворимые соли – сульфит и сульфат ртути, что обусловливает участие металла в последующих химических реакциях. Наряду с окислением паров ртути образование Hg2+ может происходить при разрушении ртутьорганических соединений.

Неорганическая ртуть Hg2+ претерпевает два важных вида превращений в окружающей среде. Первый – это восстановление с образованием паров ртути. Этот процесс, являющийся ключевым в глобальном круговороте ртути, изучен плохо. Известно, что некоторые бактерии способны осуществлять это преобразование. Второй важной реакцией, которой подвергается Hg2+ в природе, является ее превращение в метил- и диметилпроизводные и их последующие взаимопревращения друг в друга. Эта реакция играет ключевую роль в локальном круговороте ртути. Важно то, что метилирование ртути происходит в самых различных условиях: в присутствии и отсутствии кислорода, разными бактериями, в различных водоемах, в почвах и даже в атмосферном воздухе. Особенно интенсивно процессы метилирования протекают в верхнем слое богатых органическим веществом донных отложений водоемов, во взвешенном в воде веществе, а также в слизи, покрывающей рыбу. Метилирование приводит к образованию монометил- и диметилртутных соединений. Монометилртуть (CH3-Hg+, обычно говорят и пишут просто «метилртуть»), обладая, как уже говорилось, высоким сродством к биологическим молекулам, чрезвычайно активно накапливается живыми организмами. Факторы биоконцентрирования, т. е. отношения содержания метилртути в тканях рыб к ее концентрации в воде, могут достигать 10000-100000. Диметилртуть (CH3)2Hg, отличаясь высокой растворимостью и испаряемостью, улетучивается из воды в атмосферу, где может превращаться в монометилртуть, удаляться с дождевыми осадками и возвращаться в водоемы и в почву, завершая таким образом локальный круговорот ртути.

Типичные природные (фоновые) концентрации паров ртути в приземном слое атмосферном воздухе обычно составляют 10-15 нг/м3 при колебаниях от 0,5-1 до 20-25 нг/м3. Видимо, именно такие содержания практически безопасны для живых организмов. В зонах загрязнения возрастают в десятки и сотни раз, а в производственных или загрязненных ртутью помещениях могут достигать экстремально высоких значений (до 1-5 мг/м3). Главной формой ртути в атмосфере являются пары металла (Hgo), меньшее значение имеют ионная форма, органические и неорганические (хлориды, йодиды) соединения. Она также связывается с аэрозолями. В зонах загрязнения концентрации ртути в дождевой воде достигают 0,3-0,5 мкг/л и даже более (при фоне обычно не больше 0,1 мкг/л). В городах наблюдается увеличение количества ртути, переносимой с аэрозолями и атмосферной пылью.

Фоновые уровни ртути в природных почвах зависят от их типа, но в большинстве случаев находятся в пределах 0,01-0,1 мг/кг. Нижние пределы характерны для песчаных почв, верхние – для почв, богатых органическим веществом. Содержания, превышающие эти величины, связаны с влиянием загрязнения. В зонах загрязнения уровни ртути, особенно в верхних горизонтах почв, увеличиваются в десятки-сотни раз, иногда даже в тысячи раз. В почвах ртуть активно аккумулируется гумусом, глинистыми частицами, может мигрировать вниз по почвенному профилю и поступать в грунтовые воды, поглощаться растительностью, в том числе сельскохозяйственной, а также выделяться в виде паров и в составе пыли в атмосферу. При сильном загрязнении почв концентрации ртути в воздухе могут достигать опасных для человека величин.

В поверхностных водах ртуть мигрирует в двух основных фазовых состояниях – в растворе вод (растворенные формы) и в составе взвеси (взвешенные формы). В свою очередь, в растворе вод она может находиться в виде двухвалентного иона, гидроксида ртути, комплексных соединений (с хлором, органическим веществом и др.). Среди соединений Hg (II), мы уже знаем об этом, по своему экологическому и токсикологическому значению особая роль принадлежит ртутьорганическим соединениям, которые обычно разделяют на две группы: 1) соединения, в которых ртуть связывается с одним органическим радикалом; 2) соединения, в которых ртуть связывается с двумя органическими радикалами. Первая группа характеризуется высокой растворимостью в воде и липидах (органических веществах, входящих в состав всех живых клеток) и устойчивостью в водной системе (это, например, ион монометилртути CH3-Hg+). Вторая группа включает неполярные соединения, почти нерастворимые в воде и очень летучие (диметилртуть (CH3)2Hg). Доля метилртути от ее общего количества в воде может достигать 20-40%. Монометилртуть активно аккумулируется живыми организмами. Соотношение между количествами образующихся моно- и диметилртути сильно зависит от рН среды. При значениях рН 8-9 почти вся метилированная ртуть находится в форме диметилртути, при более низких значениях рН (часто типичных для современных вод) преобладает монометилртуть. Важнейшими аккумуляторами ртути, особенно в условиях загрязнения, являются взвесь и донные отложения водных объектов. Наиболее высокими концентрациями ртути характеризуются техногенные илы, активно накапливающиеся в реках и водоемах, куда поступают сточные воды промышленности. Уровни содержания ртути в них достигают 100-300 мг/кг и больше (при фоне до 0,1 мг/кг). Известны случаи, когда количество ртути, поступившей со сточными водами и накопившееся в таких илах, составляло десятки и сотни тонн. Нормальное функционирование таких рек и водоемов, их практическое использование возможно только при удалении загрязненных отложений. Использование загрязненных ртутью вод для орошения сельскохозяйственных угодий приводило к ее накоплению в сельхозпродукции до уровней, превышающих ПДК.

Типичные фоновые уровни валовой ртути (растворенные формы) в природных пресных водах составляют 0,03-0,07 мкг/л; в донных отложениях рек и пресноводных озер – 0,05-0,1 мг/кг, в пресноводных растениях – 0,04-0,06 мг/кг сухой массы. Обычно там, где нет указаний на загрязнение ртутью, ее уровни в питьевых водах редко превышают 0,1 мкг/л. Ртуть, прежде всего метилртуть, относится к веществам, которые накапливаются в пищевой цепи, простым образцом которой может быть, например, следующий ряд: личинка – пескарь – окунь – щука - кошка. Это значит, что в каждом последующем организме содержание метилртути обычно многократно выше, нежели в предыдущем. Пищевые продукты, выращенные и полученные при соблюдении необходимых условий, обычно характеризуются допустимым содержанием ртути.


^ 1.3. Добыча, производство и использование ртути


Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс. т, количественно учтенные запасы – в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшились более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11-12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг.

В конце 1990-х гг. добыча и производство первичной ртути осуществлялись в 11 странах, из которых 27% приходилось на Испанию, 19% - на Китай, 15% - на Киргизию, 15% - на Алжир. Мировое производство ртути в 1990-е гг. колебалось в пределах 2,3-2,8 тыс. т/год. Качественное состояние минерально-сырьевой базы ртутной промышленности сейчас оценивается как неудовлетворительное. Дело в том, что в большинстве стран содержания ртути в рудах не превышают 0,55%, что при сложившемся уровне цен не обеспечивает их рентабельную отработку. Это, с одной стороны, отчасти явилось причиной закрытия многих рудников, в том числе в России, Украине, Словении, Турции. С другой стороны, наряду с экологическими причинами, способствует развитию производства попутной и вторичной ртути. Например, в США с 1991 г. ртуть выпускается только как попутный продукт, получаемый при производстве золота. Попутная ртуть извлекается также из руд цветных металлов на месторождениях Финляндии, Италии, Норвегии, Словакии, Марокко. Мировой выпуск ртути из этих источников составляет порядка 400-500 т в год. Попутное получение ртути осуществляется даже из природного газа в Нидерландах и Германии. Развивается получение вторичной ртути из отходов производства и потребления.

Тем не менее, несмотря на снижение производства первичной ртути, объем международной торговли ртутью (экспорт+импорт), в первой половине 1990-х гг. медленно увеличивался и составил в 1995 г. 8,5 тыс. т. Спрос на ртуть удовлетворялся за счет имевшихся в ряде стран складских и стратегических запасов ртути. Сейчас ртуть экспортируют 28 стран, из которых лишь в 8 производится первичный металл. Наиболее значимыми экспортерами ртути являлись Гонконг (перепродажа ртути), Испания, США, Россия и Алжир. Некоторые страны продают вторичную ртуть (Нидерланды, США) или реализовывают складские запасы (Россия, США). В последние годы США отказались от продаж ртути из своих стратегических запасов. Импортируют ртуть 52 страны. Крупнейшими импортерами в 1990-х гг. являлись Гонконг, Китай, Индия, Испания, Нидерланды. Значительную часть испанского импорта составляла ртуть из российских складских запасов: компания Альмаден закупала ее, рафинировала и перепродавала. В 1990-х гг. наблюдалась ситуация, когда предложение ртути заметно отставало от ее спроса.

Эксперты считают, что в ближайшие годы не произойдет резкого изменения конъюнктуры рынка ртути. В ряде отраслей ее применение будет медленно сокращаться. Однако в некоторых производствах, в силу различных причин, например, в приборостроении, электротехнике, оборонной промышленности потребление ртути, видимо, останется на прежнем уровне. Химическая промышленность ряда стран, связанная с производством хлора, каустика, ацетальдегида, винилхлорида ртутным способом, также будет оставаться важным потребителем этого металла. Такие предприятия есть и в России.

В свое время СССР был одним из ведущих в мире производителей первичной ртути (Никитовка в Украине, Хайдаркан в Киргизии и другие, менее крупные месторождения). Например, в 1970-е гг. только в Никитовке выпускалось до 1 тыс. т ртути в год. В 1970-80-е гг. в России – на Сев. Кавказе, Алтае, Чукотке – действовало 4-5 небольших рудников, которые сейчас закрыты. Производственными мощностями, не обеспеченными в настоящее время достаточно качественной сырьевой базой, располагают ТОО «Краснодарский рудник» на Сахалинском месторождении и Акташское предприятие в Алтайском крае на одноименном месторождении. В России известно 24 месторождения ртути. Самые крупные из них - Тамватнейское и Западнопалянское - расположены на Чукотке. Их освоение требует крупных капиталовложений.

В 1970-е гг. мировое потребление ртути составляло 7-8 тыс. в год; в середине 1990-х гг. оно снизилось до 3,5 тыс. т/год. Заметно уменьшается потребление ртути в Японии и особенно в США, где резко – с 930 т в 1980 г. до 1 т в 1996 г. – сократилось использование ртути в производстве бытовых сухих батареек. Но в это количество не входит красный оксид ртути, применяемый при производстве ртутно-цинковых элементов для медицины и военной техники. Снижается использование ртути в хлорно-щелочном электролизном производстве. В электротехнике в три раза уменьшено (до 25 мг) количество ртути в расчете на стандартную в США четырехфутовую (1,22 м) флуоресцентную лампу-трубку. В 1996 г. структура потребления ртути в США была следующей: 37% - хлорно-щелочная промышленность, 21% - электротехническая промышленность, 11% - производство контрольно-измерительных приборов, 8% - стоматология, 23% - прочие отрасли, включая оборонную промышленность. В других странах темпы уменьшения использования ртути намного ниже, нежели в США и Японии. В ряде стран (в Индии, Индонезии, Бразилии, Мексике, Китае, ЮАР, Танзании и др.) наблюдается даже рост потребления ртути, что связано с развитием хлорно-щелочной промышленности и добычи золота.

В 1980-х гг. в СССР ежегодно использовалось примерно 1250 т ртути в год, из которых около 39 т применялось в светотехнической промышленности. Потребление ртути в России в конце 1980-х гг. составляло 500 т в год; в начале 1990-х гг. было примерно таким же – 400-500 т/год, а к концу 20 в. сократилось до 250-300 т в год. Эксперты считают, что, при должной организации производства, Россия в существенной мере способна обеспечить себя попутной и вторичной ртутью, что позволит также решить многие экологические проблемы.

Ртуть всегда находила широкое применение в различных сферах практической, научной и культурной деятельности человека. К началу 1980-х гг. было известно свыше тысячи разнообразных областей ее применения. Вот основные из них, в которых ртуть и ее соединения в той или иной мере используются и сейчас: 1) химическая промышленность - производство хлора и каустика, ацетальдегида, хлорвинила, полиуретанов, антракинола, ртутьорганических пестицидов, красок; 2) электротехническая промышленность – производство различных ламп, реле, сухих батарей, переключателей, выпрямителей, игнитронов и др.; 3) радиотехническая промышленность и приборостроение - производство контрольно-измерительных приборов (термометры, барометры, манометры, полярографы, электрометры), радио- и телеаппаратуры; 4) медицина и фармацевтическая промышленность - изготовление глазных и кожных мазей, веществ бактерицидного действия, производство витамина В12, изготовление зубных пломб (амальгамы серебра и меди); 5) сельское хозяйство (ядохимикаты, антисептики); в) машиностроение и вакуумная техника – производство вакуумных насосов и др.; 6) военное дело – изготовление детонаторов, управляемых снарядов; 7) металлургия - получение сверхчистых металлов, точное литье, амальгамирование благородных металлов; 8) горное дело (гремучая ртуть); 9) лабораторная практика и аналитическая химия. В энергетике ртуть использовалась как рабочее тело в мощных бинарных установках промышленного типа, где для генерации электроэнергии на первых ступенях применялись ртутно-паровые турбины, а также в ядерных реакторах для отвода тепла. Элементарную ртуть используют в процессах разделения изотопов лития. Ртутью иногда легируют другие металлы. Небольшие ее добавки увеличивают твердость сплава свинца со щелочноземельными металлами. Ее даже использовали при паянии. Цианид ртути применяли в производстве антисептического мыла.





Скачать 0.81 Mb.
оставить комментарий
страница1/3
Дата29.09.2011
Размер0.81 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3
отлично
  4
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх