Пособие предназначено для студентов вузов, аспирантов и преподавателей. Ббк 20я73. icon

Пособие предназначено для студентов вузов, аспирантов и преподавателей. Ббк 20я73.


2 чел. помогло.

Смотрите также:
Учебное пособие предназначено для студентов вузов естественнонаучных...
Учебное пособие Москва 2008 удк 519. 68. 02 Ббк 65 с 51...
Предлагаемое учебное пособие предназначено для студентов...
Учебное пособие Белгород 2009 ббк 67. 400. 7 К 21...
Учебное пособие для студентов специальности 271200 «Технология продуктов общественного питания»...
Социология Учебно-методическое пособие для студентов Казань 2010 удк 005 101 1701841 ббк 60 5 (Я...
Учебное пособие москва 2008 удк ббк федоров И. В., Новикова М. А...
Учебное пособие предназначено для преподавателей, студентов и аспирантов университетов и всех...
Учебно-методическое пособие предназначено для, студентов высших учебных заведений, аспирантов...
Учебно-методическое пособие Сибай 2010 удк ббк аламов И. Л., Аламова С. М...
Психолого-педагогических...
Учебно-методическое пособие по дисциплине Управленческие решения Ярославль, 2011...



страницы: 1   2   3   4   5   6   7   8   9   ...   12
вернуться в начало
скачать

4.2.10. Создание квантовой механики.

Корпускулярно-волновой дуализм

Основанная на уравнениях Максвелла классическая теория излучения нагретых тел противоречила результатам экспериментов. Все попытки объяснить это с позиций классической физики оказались безуспешными.

Эти противоречия разрешил немецкий физик Макс Планк (1858–1947). В 1901 г. он высказал предположение, что энергия излучается малыми порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка. Только после этого удалось построить согласующуюся с опытными данными теорию излучения, которая устранила абсолютно неприемлемую гипотезу (известную как ультрафиолетовая катастрофа), согласно которой все тела должны излучать в коротковолновом диапазоне бесконечную энергию.

В 1911 г. ^ Эрнст Резерфорд (1871–1937) предложил модель строения атома, который ранее считался мельчайшей неделимой частицей.

Квантовая теория вещества и излучения получила подтверждение в экспериментах, обнаруживших, что при облучении твердых тел светом из них выбиваются электроны. При этом оказалось, что энергия вылетающих электронов зависит от частоты падающего света, а не от его интенсивности. Эйнштейн объяснил этот так называемый фотоэффект на основе квантовой теории, доказав, что энергия, необходимая для освобождения электрона зависит от частоты света (светового кванта), поглощаемого веществом.

Было доказано, что свет может вести себя и как частица, и как волна, т.е. обладает дуализмом. Одним из доказательств этого свойства света является интерференция. Интерференция света – это физическое явление, при котором два луча света накладываются друг на друга. При этом на экране возникает картина чередующихся темных и светлых полос. Интерференционную картину можно рассчитывать на основе, как волновых свойств света, так и рассматривая свет как фотоны, т.е. как частицы. Из квантового описания следует, что в одних частях экрана (соответствующих светлым полосам) вероятность найти фотоны больше, а в других частях (темные полосы) – меньше.

Основная идея квантовой механики состоит в том, что в микромире определяющим является представление о вероятности событий. На микроскопическом уровне, (т.е. когда речь идет о фотонах или элементарных частицах вещества) мы не можем точно предсказать результат конкретного эксперимента (например, указать на экране точку, в которую должен попасть фотон). Все что мы можем сделать, – это лишь рассчитать вероятность различных исходов опыта. И только при наличии очень большого количества частиц наши предсказания хода эксперимента обретают необходимую точность. Эта очень глубокая мысль предполагает принципиальную ограниченность наших возможностей предсказывать развитие событий.

Ясность в эту специфическую особенность квантовой теории в 1927 г. внес немецкий физик Гейзенберг (1901–1976), автор знаменитого принципа неопределенности. Согласно этому принципу, невозможно одновременно осуществить точное измерение двух дополняющих друг друга характеристик частиц, например, ее скорости и координаты. Принцип Гейзенберга фундаментален и очень важен. Гейзенберг наглядно объяснял свой принцип на примере гипотетического микроскопа. Если бы мы захотели установить координату электрона, точное значение импульса которого уже известно, то для того, чтобы увидеть электрон и определить его положение, нам пришлось бы осветить его, т.е. направить на него пучок фотонов. Однако фотоны, сталкиваясь с электроном, передадут ему часть своей энергии и тем самым изменят его импульс на неопределенную величину. Таким образом мы измерим точную координату частицы, но ее импульс окажется неопределенным.

В дальнейшем был достигнут существенный прогресс в понимании природы частиц и широком приложении квантовой теории к различным областям физики. В результате синтеза квантовой теории и специальной теории относительности возникла квантовая электродинамика – теория электромагнитных взаимодействий, которая рассматривает процесс взаимодействия заряженных частиц как обмен фотонами.

Создание специальной теории относительности и квантовой теории – это два революционных переворота в физике начала XX в., которые в корне изменили наши представления о пространстве, времени, излучении и веществе.


^ 4.2.11. Теория гравитационного поля Эйнштейна.

Общая теория относительности

В 1916 г. Эйнштейн опубликовал свою общую теорию относительности, совершив еще один переворот в физических представлениях, на сей раз о природе гравитационного взаимодействия. «Фундамент» этой теории был «заложен» в 1907 г., когда Эйнштейн сформулировал принцип эквивалентности. Поясним сущность этого принципа.

Термин «масса», относящийся ко второму закону Ньютона, имеет смысл инертной массы – меры сопротивления тела любому изменению состояния его движения. Но понятие «масса» в ньютоновском законе всемирного тяготения имеет другой смысл – это тяготеющая масса или гравитационная масса. Еще Галилей утверждал, что в гравитационном поле все тела, независимо от их массы, приобретают одинаковые ускорения. Отсюда вытекает равенство инертной и гравитационной масс. Сам факт их равенства и то, что все тела падают в гравитационном поле с одинаковым ускорением, называют иногда слабым принципом эквивалентности. Указанное свойство гравитационных полей дает возможность установить существенную аналогию между движением тел в гравитационном поле и движением тел, не находящихся в каком-либо внешнем поле, но рассматриваемых с точки зрения неинерциальной системы отсчета. Свойства движения в неинерциальной системе отсчета такие же, как и в инерциальной системе при наличии гравитационного поля. Другими словами, неинерциальная система отсчета эквивалентна некоторому гравитационному полю. Это обстоятельство называют принципом эквивалентности. Так, если вы находитесь в закрытой кабине лифта (пример Эйнштейна), то вы не в состоянии отличить влияние тяготения от эффектов ускоренного движения. В такой закрытой кабине невозможны никакие эксперименты, которые позволили бы вам отличить явления, связанные с тяготением, от явлений, характерных для ускоренного движения. Внутри небольшой замкнутой кабины эффект гравитации и ускоренного движения неразличимы.

Одно из следствий принципа эквивалентности – отклонение лучей света (фотонов) вблизи тяготеющих масс, а свет, испускаемый тяготеющей массой, должен испытывать красное смещение. Это было подтверждено экспериментально.

Другим ключевым моментом в общей теории относительности было понятие кривизны пространства-времени. Эйнштейн предположил, что в присутствии массивных тел должно искривляться все пространство-время, (а не только пространство) и что лучи света и частицы будут двигаться в пространстве времени самым коротким путем – по геодезическим линиям. (Геодезическая линия на сфере – это дуга). Иными словами, тяготение есть следствие геометрических свойств пространства-времени вблизи массивных тел. Чем массивнее тело и выше его плотность, тем больше оно искривляет окружающее его пространство-время, и тем большую силу притяжения испытывают соседние тела.

А. Уилер, американский физик-теоретик дал меткую характеристику общей теории относительности: «Вещество говорит пространству, как тому искривляться, а пространство говорит веществу, как тому двигаться». Общая теория относительности в корне изменила наши представления о пространстве, времени, о Вселенной. Она привела к отказу от какого бы то ни было центризма вообще. Метагалактика – или вся наша наблюдаемая астрономическая Вселенная как единое целое стала описываться однородной изотропной безграничной релятивисткой космологической моделью.


^ 4.2.12. Космические модели Вселенной.

Третья естественнонаучная революция

Первой релятивисткой космологической моделью (модель Вселенной) была предложенная самим Эйнштейном. Это была стационарная конечная сферическая замкнутая модель. Затем российский физик, геофизик и космолог Александр Александрович Фридман (1888–1925) в 1922 г. нашел ряд решений для расширяющихся Вселенных, заполненных веществом. Три модели Вселенной Фридмана и поныне служат основой для самых современных космических построений. Фридман сделал два очень простых предположения: во-первых, Вселенная выглядит одинаково, в каком бы направлении мы ее не наблюдали (изотропность Вселенной), и, во-вторых, это утверждение должно оставаться справедливым и в том случае, если бы мы производили наблюдения из какого-нибудь другого места (однородность Вселенной). Эти два предположения составляют так называемый космологический принцип. Не прибегая ни к каким другим предположениям, Фридман показал, что Вселенная не должна быть статической.

Предположение об одинаковости Вселенной во всех направлениях на самом деле, конечно, неверно. Как мы знаем, другие звезды в нашей Галактике образуют четко выделяющуюся световую полосу, которая проходит через все небо – Млечный путь. Но если говорить о далеких галактиках, то их число во всех направлениях примерно одинаково. Следовательно, Вселенная действительно «примерно» одинакова во всех направлениях при наблюдении в масштабе, большем по сравнению с расстоянием между галактиками. Долгое время это было единственным обоснованием гипотезы Фридмана как «грубого» приближения к реальной Вселенной. Но потом выяснилось, что астрономические наблюдения, сделанные в XX в., согласуются с космологическими моделями Фридмана и свидетельствуют о том, что Вселенная расширяется из начальной сингулярности (т.е. из очень малого объема, где плотность материи бесконечна).

Эйнштейн сначала высказывал сомнения относительно теоретической обоснованности космологических моделей Фридмана, но вскоре признал необоснованность своих сомнений.

С другой стороны, американский астроном Хаббл (1889–1953) в 1929 г., сопоставляя наблюдаемое систематическое доплеровское «покраснение» далеких галактик по мере их удаления от нас, установил, что эти галактики равномерно удаляются от нашей Галактики и друг от друга, т.е. вся наша Метагалактика систематически равномерно расширяется. Напомним, что эффект Доплера – это увеличение длины волны света при движении источника этого света от наблюдателя (т.н. «красное смещение»).

Выяснилось, что нашу, в общем достаточно однородную и изотропную Метагалактику, которая равномерно расширяется действительно можно описывать соответствующей релятивисткой космологической моделью Фридмана

Обобщая сказанное, мы можем утверждать, что третья глобальная естественнонаучная революция радикально преобразила научную картину мира, изменив астрономию, космологию и физику и означала полный отказ от всякого центризма.

Если каждую из трех глобальных естественнонаучных революций назвать по имени ученых, завершавших эти революции, то последние две революции можно назвать ньютоновской и эйнштейновской.

Как устроена Вселенная? Как она «живет» и развивается? Конечна она или бесконечна? Возникла ли она какое-то время назад или существовала всегда? Будет ли она существовать вечно или когда-нибудь наступит ее конец?

Вот те ключевые вопросы, которые придают космологии необычайную привлекательность. По существу это фундаментальные вопросы естествознания.

Ньютон представлял Вселенную бесконечной. Его закон всемирного тяготения столкнулся с непреодолимой трудностью, когда речь зашла о Вселенной как о едином целом. Действительно, если бы звездная Вселенная обладала конечными размерами, в гравитационное взаимодействие (т.е. притяжение) вовлеклась бы каждая частица вещества, и Вселенная сколлапсировала бы в единую массу. Чтобы это преодолеть, Ньютон постулировал, что Вселенная бесконечна, так что силы тяготения в данной точке взаимно компенсируются, и нет общего центра, на который могло бы все падать.

Отметим в этой связи один очень важный факт: ночное небо темное. Почему? Вселенная не может представлять собой константное распределение звезд, бесконечных по возрасту и размерам. Действительно, если бы это было не так, то каждый взгляд наблюдателя встречал бы звезду, но небо-то – темное! Объяснение этого факта лежит в космологической модели расширяющейся Вселенной. Чем дальше находится галактика, тем с большей скоростью она удаляется от нас, и тем больше красное смещение линий ее спектра. А красное смещение излучения источника ослабляет его интенсивность. На определенном расстоянии красное смещение становится так велико, что мы уже не видим света источника. Согласно закону Хаббла (закон разбегания галактик) определенную границу имеет по крайней мере наблюдаемая часть Вселенной, т.е. красное смещение порождает космологический «горизонт», за который наш взгляд проникнуть уже не может. Так как след от объектов, лежащих за космологическим горизонтом, не доходит до нас, то нет никаких проблем и с темнотой ночного неба. Какой, казалось бы, простой вопрос, а ответ на него потребовал наших современных знаний о Вселенной.

Попытаемся ответить также на вопрос: существует ли центр Вселенной? На первый взгляд закон Хаббла гласит и том, что мы находимся в центре расширения мира, и все галактики во Вселенной удаляются от нас, т.е. мы как бы находимся в центре мира. Но есть и другой ответ на этот вопрос. Вселенная будет выглядеть одинаково во всех направлениях и в том случае, если смотреть на нее с какой-нибудь другой галактики (гипотеза однородности Вселенной Фридмана). В модели Фридмана все галактики удаляются друг от друга. На самом деле это следствие расширения Вселенной как единого целого. Для пояснения этого важного момента сравним модель Вселенной с воздушным шариком. Нанесем на надутый шарик точки (галактики) и будем его продолжать надувать. Расстояние между любыми двумя точками увеличивается, но ни одну из них нельзя назвать центром расширения. И еще: чем больше расстояние между точками, тем быстрее они удаляются друг от друга. Итак, опять модель Фридмана подсказала нам ответ на поставленный вопрос.

Несмотря на успех этой модели и на согласие ее предсказаний с наблюдениями Хаббла, работа Фридмана оставалась неизвестной на западе, и лишь в 1935 г. американцы Робертсон и Уолкер предложили сходные модели в связи с открытием Хаббла.

Существуют три разные модели Фридмана, для которых выполним космологический принцип. В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинает сжиматься. В остальных моделях сжатия не происходит. В первой модели Фридмана пространство искривляется, замыкаясь на себя, как поверхность Земли. Поэтому размеры его конечны. Во второй же модели, в которой Вселенная расширяется бесконечно, пространство искривлено иначе – как поверхность седла, т.е. в этом случае пространство бесконечно. В третьей модели Фридмана пространство плоское и, значит, тоже бесконечное.

Но какая из моделей Фридмана подходит для нашей Вселенной? Перестанет ли Вселенная расширяться и начнет сжиматься, или же будет расширяться вечно? Чтобы ответить на эти вопросы, нужно знать нынешнюю скорость расширения Вселенной и ее среднюю плотность.

Имеющиеся данные на сегодняшний день говорят о том, что Вселенная, вероятно, будет расширяться вечно. Как говорит знаменитый английский физик-теоретик Стивен Хокинг, единственное в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять тысяч миллионов лет, ибо, по крайней мере, столько времени она расширяется. Но это не должно нас слишком тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет – оно угаснет вместе с Солнцем.

Все варианты модели Фридмана имеют общее: в какой-то момент времени в прошлом (десять-двадцать миллиардов лет назад) расстояние между соседними галактиками должно было равняться нулю. В этот момент (называемый Большим взрывом) плотность Вселенной и кривизна пространства-времени должны были быть бесконечными. Поскольку математики не умеют обращаться с бесконечно большими величинами, это означает, что, согласно общей теории относительности во Вселенной должна быть точка, в которой сама эта теория неприменима. Такая точка называется особой или сингулярной. В этой точке наши теории неверны из-за бесконечной плотности материи и бесконечной кривизны пространства-времени. Следовательно, если перед Большим взрывом и происходили какие-то события, по ним нельзя было спрогнозировать будущее. Следовательно, те события, которые происходили до Большого взрыва, нужно исключить из модели и считать началом отсчета времени момент Большого взрыва.

Итак, если верна общая теория относительности, то Вселенная могла иметь сингулярную точку, Большой взрыв. Но вот следует ли из общей теории относительности, что у Вселенной должно быть начало времени? Ответ на этот вопрос был получен в 1965 г. английским математиком и физиком Роджером Пенроузом. Пенроуз показал, что когда звезда сжимается под действием собственных сил гравитации, она ограничивается областью, поверхность которой сжимается до нуля; то же самое происходит и с ее объемом. Возникает сингулярность в области пространства-времени, она называется черной дырой. Стивен Хокинг заметил, что если в теореме Пенроуза изменить направление времени на обратное, то эта теорема тоже будет верна. В итоге Хокингу и Пенроузу в 1970 г. удалось доказать, что сингулярная точка Большого взрыва должна существовать. Однако, в последние годы, с развитием квантовой теории гравитации, было показано, что эффект сингулярности может исчезнуть. Сейчас ведутся интенсивные работы в области квантовой гравитации, необходимые для соединения единой теории всего происходящего во Вселенной.


^ 4.2.13. Элементарные частицы и силы в природе

Аристотель считал вещество непрерывным, – т.е. любой кусок вещества можно бесконечно дробить на все меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы не делилась. Однако, другие древнегреческие философы, например, Демокрит, придерживались мнения, что материя имеет зернистую структуру и что все в мире состоит из большого числа разных атомов. Проходили века, но продолжался бездоказательный спор как с той, так и с другой стороны. Спор этот длился до начала нашего века, пока английский физик Джозефер Томсон (1856–1940) не открыл в 1897 г. простейшую элементарную частицу материи – электрон. Вскоре стало ясно, что электроны должны вылетать из атомов. В 1911 г. английский физик Эрнст Резерфорд, доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из положительно заряженного ядра и вращающихся вокруг него электронов.

Сначала предполагали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами. Однако в 1932 г. Джеймс Чэдвик обнаружил, что в ядре есть еще и другие частицы – нейтроны, масса которых почти равна массе протона, но которые не заряжены.

Как говорилось выше, частицы могут себя вести, подобно волне (корпускулярно-волновой дуализм). Открытие волновой природы электрона раскрыло новый, своеобразный мир явлений. Изящная теория электрона была предложена выдающимся физиком-теоретиком Полем Дираком в 1928 г. Эта теория дает нам возможность определить, когда электрон сходен с частицей, а когда – с волной. Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица (или античастица) была обнаружена и названа позитроном. Из теории Дирака также следовало, что позитрон и электрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, т.е. квантов электромагнитного излучения. Возможен и обратный процесс (процесс рождения), когда фотон, взаимодействуя с ядром, превращается в пару электрон-позитрон. Кроме того, электрон и позитрон могут возникать и исчезать не только совместно, но и по отдельности – при взаимных превращениях нейтронов и протонов или их античастиц, т.е. антинейтронов и антипротонов.

Характерное для волновой механики (механика, которая рассматривает частицу как волну) вероятностное распределение рассматриваемых частиц (каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружения частицы в определенном объеме) относится не только к электрону. В случае атомных ядер оно позволяет составляющим эти ядра нуклонам (т.е. протонам и нейтронам) «просачиваться» через непреодолимый для них потенциальный барьер наружу – это так называемый квантово-механический туннельный эффект.

Еще лет двадцать пять тому назад протоны и нейтроны считались элементарными частицами, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что на самом деле протоны состоят из еще более мелких частиц. Впервые исследовал эти частицы американский физик-теоретик Гелл-Манн. Он назвал их кварками. Название «кварк» взято из стихотворной строки Джойса: «Три кварка для мистера Марка!».

Известно несколько разновидностей кварков: предполагают, что. существует по крайней мере шесть ароматов, которым отвечают u-кварк, d-кварк, странный кварк, очарованный кварк, b-кварк и t-кварк. Кварк каждого аромата может иметь еще и один из трех цветов – красный, зеленый, синий). Это просто обозначение, т.к. размер кварков значительно меньше длины волны видимого света и поэтому цвета в обычном смысле слова у них нет.



^ ШЕСТЬ “АРОМАТОВ” КВАРКОВ







d-

u-

t-

b-

странный

очарованный




оставить комментарий
страница4/12
Дата31.08.2011
Размер1,48 Mb.
ТипУчебное пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   12
отлично
  3
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх