База знаний в области технологий и систем использования низкотемпературных и возобновляемых источников энергии icon

База знаний в области технологий и систем использования низкотемпературных и возобновляемых источников энергии



Смотрите также:
Нормативно-техническое регулирование в области возобновляемых источников энергии...
“Возобновляемые источники энергии”...
Перспективы применения альтернативных источников энергии...
Тема: нетрадиционные источники энергии...
Тема: нетрадиционные источники энергии...
Реферат по экологии тема: Альтернативные источники энергии...
Рабочая программа учебной дисциплины " математические задачи энергетики возобновляемых...
Национальная Программа по использованию возобновляемых источников энергии на 2006-2010 гг...
Новости союза машиностроителей россии...
Рабочая программа учебной дисциплины «нетрадиционные источники энергии» Цикл...
Л. Ю. Хмельницкий Российский Экономический Университет им. Г. В. Плеханова Аннотация...
Программа повышения квалификации профессорско-преподавательского состава высших учебных...



страницы: 1   2   3   4   5   6
вернуться в начало
скачать

а)                                              б)                                         в)
 

Модели ветра. а) Осреднение по времени и пространству, б) Изменение скорости ветра по высоте, в) Турбулентная модель ветра

Рис. 2.2.5


2.3. Вихревые трубки

Содержание

В основе работы вихревой трубы лежит т.н. эффект Ранка-Хилша (1933 г). Вихревая труба представляет собой газодинамическое устройство с тангенциальным входом газа, рис. 2.3.1.



Схема вихревой трубы.

 

Рис. 2.3.1.

 

Как известно, [194] в закрученных потоках вязкого газа при наличии поперечного градиента скорости поверхности тока взаимодействуют между собой из-за наличия касательных сил вязкости. Работа, затраченная на преодоление этих сил преобразуется в тепло. При этом разные струйки могут обладать разными запасами полной энергии . Наличие в потоке градиента температур предопределяет теплообмен между слоями газа. Однако, большой вклад в перераспределение полной энергии принадлежит турбулентному механизму переноса.

Вихревая труба состоит из корпуса, выполненного в виде цилиндрической или диффузорной трубы с диаметром начального сечения и длиной , тангенциально расположенных по отношению к корпусу вводных сопел с площадью проходного сечения , диафрагмы с диаметром отверстия , расположенной вблизи соплового входа, и конического регулировочного вентиля на противоположном от диафрагмы конце корпуса.

Интенсивность энергетического разделения газов в вихревой трубе обычно оценивают по зависимости величин избыточных температур газа и от доли охлажденного потока . При этом







где - температура торможения на входе в вихревую трубу, на выходе из нее охлажденного и горячего потоков соответственно;

и - массовые расходы исходного и охлажденного потоков газа соответственно.



Температура газа на выходе из ВТ.

 

Рис. 2.3.2

Типичные экспериментальные зависимости величин и от относительного расхода холодного потока приведены на рисунке 2.3.2.[195].

Обычно каждой паре кривых соответствуют определенные условия проведения экспериментов: отношение давлений газа на входе в вихревую трубу и выходе охлажденного потока из диафрагмы , температура газа на входе в вихревую трубу , безразмерная площадь вводных сопел и др.

В работах [194, 195] показано, что эффект энергетического разделения газа неразрывно связан с перестройкой затухающего вихревого турбулентного движения и происходит в довольно протяженной области течения, простирающейся от соплового входа на расстояние от одного до нескольких десятков диаметров вихревой трубы. При большой длине области происходящие в ней явления не будут определяться детальной структурой потока на входе в вихревую трубу и должны зависеть от переменных, характеризующих течение в целом. т.е. от интегральных величин, таких как массовый расход поступающего в трубу газа , поток импульса в направлении оси трубы , поток энергии и массовый расход отбираемого через отверстие диафрагмы холодного газа . К этим интегральным характеристикам, необходимо, добавить характерный размер - диаметр трубы .

Следует отметить, что поток газа в вихревой трубе является развитым турбулентным потоком. Можно предположить, что турбулентность, возбуждаемая струями, истекающими из вводных сопел вихревой трубы, имеет высокий уровень, превышающий во всей области энергетического разделения уровень турбулентности, порождаемый в пограничном слое на стенках трубы.

Рабочая величина давления на входе в вихревую трубу может меняться в широких пределах; по имеющимся данным вихревая труба устойчиво работает при полном давлении на входе 0,5-0,7 МПа, известны эксперименты с пропусканием через ВТ газа с давлением до 25 МПа. Температура теплого и холодного потоков зависит от начальной температуры газа на входе; рисунок дает представление о перепаде температур в потоках; этот перепад, как правило, сохраняется. Потери энергии в ВТ связаны с трением высокоскоростного газового потока о стенки.

Таким образом, вихревая труба является весьма удобным инструментом для получения высокотемпературных (+60, +800С) и низкотемпературного (-20, -400С) газовых потоков, которые можно использовать для отопительных целей и холодильной техники.

В настоящее время вихревая техника широко внедрена в промышленность: вихревые управляющие клапаны в системах управления тягой ракетных двигателей, вихревые холодильники, вихревые системы очистки, осушки газа в газовой промышленности, вихревые системы газоподготовки для нужд пневмо-газоавтоматики [198].

 

Преобразование энергии ветра в тепловую. Совместная работа ветроэнергетической установки и вихревой трубы


Принципиальная схема установки по утилизации энергии ветра представлена на рис. 2.3.1.

Энергетическим узлом установки является ВЭУ мощностью N=10кВт, подобно описанной в настоящем отчете. Установка работает в теплофикационном и холодильном режимах. Для организации таких режимов, особенно холодильного, предлагается использовать вихревую трубу (см. п. 2.3).

Принципиальная схема установки представлена на рис. 2.3.2. Установка имеет в своем составе ВЭУ 10 кВт, воздушный компрессор, воздушный ресивер или баллонную рампу, вихревую трубу, теплообменники, аппаратуру управления. Конкретный проект должен быть привязан к конкретным техническим предложениям: ниже произведена общая оценка технологических возможностей такой установки.

Как известно [198], для для нормальной работы вихревой трубы необходимо давление воздуха, превышающее 0,5 - 0,6 МПа.

В настоящем отчете произведен анализ ВЭУ с дизельной установкой для выработки энергии для местной сети. Необходимость дизельной установки вызвана возможными перерывами ветра, потребностью в “качественной” электроэнергии для электротехнических и электронных систем. Обсуждаемая ниже установка служит только для теплофикационных и холодильных устройств. Конечно, она может рассматриваться и в схеме ветродизельной станции, но наличие “качественного” электричества (т.е. электрической энергии стабильного напряжения и частоты) позволяет решить поставленные выше задачи значительно проще.

Если ветроэнергетический агрегат имеет мощность около 10 кВт, то компрессорная установка такой мощности позволяет получить



около 170 кг/час воздуха, сжатого до давления 0,7 МПа. При температуре окружающей среды 00С, считается, что воздух в ресивере также имеет температуру окружающей среды.

Вихревая труба, при коэффициенте разделения масс  (т.е. расходы горячего и холодного потоков примерно равны), производит воздушные потоки с температурой +60-700С и -30-400С соответственно. Выше отмечалось, что если тепло можно достаточно просто получить разными способами, то для получения холода требуется специализированное дорогостоящее оборудование.

Таким образом 170 кг/час воздуха дадут 85 кг/час воздуха с температурой ~ 650С и 85 кг/час воздуха с температурой ~ -350С.


Преобразование энергии ветра в тепловую. Совместная работа ветроэнергетической установки и вихревой трубы.
Рис. 2.3.1.1.


Тепловой поток, при прохождении через теплообменник 6 нагревает теплоноситель (воду) до близкой температуры - напр. +600С, охлаждаясь на выходе до температуры +20-150С. Таким образом теплопередача в теплообменнике 6 составляет в рамках данной задачи

~ 4250 кДж/час (1060 ккал/час),

что достаточно для нагрева 22 кг/час воды от 15 до 600С.

Такое количество тепла вполне достаточно для нужд теплофикации отдельного жилого помещения.

Более привлекательно использование вихревой трубы для получения холода. 85 кг/час холодного воздуха, проходящего через теплообменник 5, произведут 2000-2500 кДж/час холода, т.е. в пересчете на 1 кг удельная холодопроизводительность составит 25 кДж/кгЧ час, что уступает фреоновым холодильникам, но значительно превышает показатели абсорбционных холодильных машин.


^ Энергоагрегат с низкотемпературным двигателем Стирлинга и вихревой трубой

Преобразование низкотемпературной тепловой энергии в промышленное тепло возможно с использованием теплового насоса или двигателя, работающего по циклу Стирлинга. Тепловые насосы с циклом Стирлинга широко освещены в литературе; здесь рассматривается использование вихревой трубы, позволяющее за счет эффекта Ранка-Хилша получить тепло достаточной для обогрева температуры и холод для холодильных установок.

Общая схема установки показана на рис. 2.4.1. В качестве теплоисточника может использоваться теплота сточных вод, теплота водоемов, теплота земли (скважин). Передача тепла в нагретую часть двигателя Стирлинга осуществляется тепловой трубой. Охладителем является низкотемпературная среда - зимой атмосферный воздух, летом - запасенная ледяная масса.

В качестве двигателя с циклом Стирлинга могут быть использованы свободнопоршневая машина Била (Beale) или двигатель с приводной мембраной. Характеристики таких двигателей отличаются от двигателей с кривошипно-шатунным механизмом; они полностью герметичны, что позволяет использовать практически любые рабочие тела.



Рис. 2.4.1

 

Двигатель рис. 2.4.2. состоит из трех основных элементов: тяжелый рабочий поршень, легкий вытеснитель и цилиндр с уплотнениями. Рабочая полость находится над поршнем и разделяется на полость сжатия между рабочим поршнем и вытеснителем и полость расширения - над вытеснителем. Полость расширения взаимодействует с нагревателем, полость сжатия с холодильником.

Двигатель (в настоящей схеме) используется как газовый компрессор, т.е. колеблющийся рабочий поршень выполняет также роль поршня комрессора. Выполненные исследования двигателя такого типа (Agbi, 1971) показали его вполне удовлетворительную работу рис.

Еще более перспективным для данной схемы является двигатель компрессор мембранного типа с абсолютной герметизацией двигательной полости.

Анализ термодинамической эффективности цикла низкотемпературного двигателя Стирлинга в сравнении с обычными условиями выявляет, как и ожидалось, низкие рабочие параметры: так при температуре нагревателя - 300 К и температуре охладителя - 250 К, термический к.п.д. цикла составляет лишь 17%, но с учетом того, что здесь перерабатывается бросовое низкотемпературное возобновляемое тепло, система становится вполне конкурентоспособной.

Двигатель Стирлинга

свободно поршневого типа (схема Била, Beale W.)

 

 

 

 



 







    1. Тепловая труба нагревателя .

    1. Нагреватель.

    2. Вытеснитель.

    3. Корпус.

    4. Охладитель .

    5. Штоке втеснителя.

    6. Поршень.

    7. Выход сжатого воздуха.

    8. Вход воздуха.

    9. Тяжелый поршень

    10. Картер.

 

Рис. 2.4.2

 

 

Особый интерес представляет использование в двигателе двухфазного рабочего тела. Теория двигателя Стирлинга показывает, что для повышения удельной мощности двигателя необходимо повышение среднего давления рабочего процесса. Отношение рабочих объемов у таких двигателей редко превышает 2-2,5 и изменения давления всецело определяется этими цифрами. При нижнем давлении, равном или близком к атмосферному, верхнее давление не превышает 0,3-0,5 МПа. Однако двухфазные рабочие тела - например (Бутадиен-1,3, температура кипения которого - 4,40С; аммиак - 330С; цис- и транс-Бутен-2 соответственно +3 и 00С и др.) позволяют получить более высокое среднее давление цикла.

Для любого рабочего тела удельный объем жидкости значительно меньше объема насыщенного пара. С повышением среднего давления увеличивается выходная мощность и улучшается теплопередача при прохождении процессов испарения и конденсации.

Таким образом, при использовании двухфазного рабочего тела возможно повышение рабочей мощности в 2-3 раза при тех же температурных пределах.

Известные преимущества двигателя Стирлинга - бесшумность работы, отсутствие вредных эмиссий, герметичность, отсутствие вибраций являются особо ценными в данной схеме, так как позволяют разместить энергоблок в непосредственной близости к жилому помещению.

Далее схема установки соответствует описанной в п. 2.3. схеме с использованием в качестве энергоисточника ветроустановки. Как уже было отмечено, вихревая труба является сегодня наиболее простым и изученным инструментом для одновременного получения тепла и холода. Соотношение между горячими и холодными потоками газа достаточно просто регулируется, т.е. зимой большая часть энергии тратится на обогрев, летом - на охлаждение.


^ Энергетические установки на солнечной энергии

Содержание

Использование солнечной энергии сегодня сводится в основном к производству низкопотенциального солнечного тепла с помощью простейших плоских солнечных коллекторов. Например, в США в 1990 г. из 3,6 млн. ГДж энергии, произведенной за счет солнечной радиации, 3,5 млн. ГДж представляет собой низкопотенциальное тепло, использованное для горячего водоснабжения, подогрева воды в плавательных бассейнах и, в меньшей степени, для отопления. В Израиле в соответствии с законом, требующим, чтобы каждый дом был снабжен солнечной водонагревательной установкой, установлено около 800 000 солнечных коллекторов, которые производят около 15 млн. ГДж энергии и обеспечивают 70 % населения горячей водой.

В современных плоских солнечных коллекторах абсорбер чаще всего имеет слой селективного покрытия с коэффициентом поглощения для солнечной радиации 0,94 - 0,96 и коэффициентом излучения при температуре абсорбера 0,09 - 0,12. Во вновь строящихся домах делаются попытки совместить коллекторы с элементами крыши дома, что облегчает и удешевляет установку. Комплектная водонагревательная установка включает кроме коллекторов теплоизолированный бак - аккумулятор, в который встраивается резервный электрический нагреватель, необходимая арматура и автоматика. Коллектор обычно устанавливается неподвижно под углом к горизонту примерно равным широте местности. На индивидуальный дом с площадью около 100 м2 обычно устанавливается 1-2 коллектора, с площадью абсорбера 1-1,5 м2 каждый и бак-аккумулятор емкостью около 150 л. Такая установка на западном рынке сегодня стоит около 500 долл. США/м2 площади коллектора. Теплопроизводительность такой установки существенно зависит от инсоляции, температуры окружающего воздуха и , других климатических параметров. В зависимости от широты местности и климатических условий годовой приход солнечной энергии на 1 м2 поверхности изменяется очень сильно. Для широт около 30° он может составлять 8-10 ГДж/(м2 год), тогда как для широт 50- 60° - падает до 2-4 Гдж/(м2 год).

Коэффициент полезного действия солнечного коллектора определяется его оптическими характеристиками, качеством тепловой изоляции, инсоляцией и температурами теплоносителя и окружающего воздуха. В большинстве существующих установок средний годовой эксплуатационный КПД коллектора оказывается на уровне 40-50 %. Это означает, что для широт около 30° с 1 м2 коллектора можно получить в год 3-5 ГДж тепла с температурой 60-70  С. Стоимость этого тепла при таких показателях и сроке жизни установки в 30 лет оказывается на уровне 3-4 долл/ГДж, что делает эти установки привлекательными для потребителей. Для более высоких широт солнечные водонагреватели оказываются более предпочтительными как сезонные.

Наряду с коллекторами, для использования солнечного тепла для отопления домов применяются пассивные методы, основанные на оптимизации архитектурно-планировочных решений. Кроме того, представляют интерес разработки так называемой прозрачной изоляции для стен домов, селективных пленок для окон и др.

Электроэнергию за счет использования солнечной энергии можно получить либо в теплосиловых установках, в которых тепло от сгорания топлива заменяется потоком концентрированного солнечного излучения, либо в установках прямого преобразования энергии, основанных на применении полупроводниковых фотоэлектропреобразователей (ФЭ П).

Интересный проект разрабатывается в Австралии. Как известно. Олимпийские Игры 2000 г. будут проводиться в Австралии вблизи Сиднея. Местный Олимпийский комитет решил сделать эти Игры “зелеными”, для чего, в частности в Олимпийском комплексе предполагается соорудить солнечную ТЭЦ с термодинамическим циклом преобразования. В основу проекта положены линейные концентраторы, изготавливаемые из плоских или слабо искривленных зеркал и концентрирующие солнечное излучение (степень концентрации 10-15) на ресивере из вакуумированных труб, внутри которых расположена тонкостенная трубка-абсорбер, снабженная тепловоспринимающим ребром и покрытая весьма совершенным селективным покрытием. От абсорбера тепло передается тепловыми трубками к парогенератору, где производится водяной пар. Перегрев пара до температуры 330  С осуществляется путем сжигания некоторого количества природного газа. Тепло после турбины используется для обогрева Олимпийского бассейна и других объектов.

Еще одну разновидность представляет собой СЭС с параболоидным концентратором (ПК), следящим за солнцем по двум осям. Параболоидный концентратор является теоретически наилучшим концентрирующим устройством, позволяющим обеспечить концентрацию в несколько тысяч солнц, а значит и очень высокие температуры нагрева. Однако ПК, в отличие от башенных и СЭС с ПЦК, из конструктивных соображений не позволяют иметь большие единичные мощности в одном модуле. Поэтому область, применения СЭС с ПК - сравнительно малые, не превышающие нескольких десятков киловатт, большей частью автономные, установки. В этом случае такие установки должны конкурировать не с крупными ТЭС, а с дизельными установками малой и средней мощности, которые производят электроэнергию по стоимости в 2-3 раза более высокой.

В модульном исполнении в фокусе ПК чаще всего размещается непосредственно двигатель, преобразующий тепло в механическую, а затем и электрическую энергию. До недавнего времени для этой цели применялся только двигатель Стирлинга, сегодня рассматривается и газовая турбина.

В последнее время в мире повысился интерес к установкам, непосредственно преобразующим солнечную радиацию в электроэнергию с помощью ФЭП. Стоимость электроэнергии, вырабатываемой фото-электрическими установками (ФЭУ), сегодня в несколько раз выше, чем СЭС с тепловым циклом. Тем не менее, ФЭУ активно внедряются как в развитых, так и в развивающихся странах. При этом можно проследить две противоположные тенденции.


Выводы

Потенциальные ресурсы возобновляемых источников энергии составляют существенную долю потребностей человечества в энергетике. Мировое потребление этих источников на сегодняшний день составляет лишь ничтожную долю. Это объясняется в первую очередь тем, что в силу низкой концентрации НВИЭ и их неравномерного распределения по поверхности Земли удельные затраты на единицу мощности и стоимость энергии при современных технологиях очень велики, не могут конкурировать с традиционными источниками энергии.

Использование низкопотенциальных источников энергии для целей теплоснабжения является направлением энергетики.

Перспективными энергетическими установками, использующими низкопотенциальные энергии, являются теплонасосы, в том числе и компании с другими преобразователями низкотемпературной энергии - солнечными батареями, ветроэнами и т.д.

Внедрение тепловых насосов позволяет снизить расходы топлива на единицу выработанной теплоты по сравнению с котельными от 20 до 50% либо обеспечить 3-4-кратную экономию электроэнергии по сравнению с прямым электроснабжением. Источники энергии для ТНУ находятся “непосредственно” у потребителей, что сокращает потери при передаче и сокращает расходы на содержание и строительство теплотрасс и т.п. Время возможной работы ТНУ совпадает со временем потребности потребителями в энергии.

Большинство рассмотренных в данной работе проектов разработаны и внедряются за рубежом, в то время как в нашей стране всё ограничилось несколькими демонстрационными проектами и предложениями, по большей части основанными на практически единственной ТНУ АТНУ-10 производства “Экомаш” (г. Саратов). Совершенно необходимо развивать работы в этом направлении с целью создания конструкций иного ряда современных ТНУ различного назначения.


Библиография

Содержание

  1.  

  2. Рей Д., Макмайкл Д. Тепловые насосы: Пер. с англ. - М.: Энергоиздат, 1982.

  3.  

  1. Янтовский Е.И., Левин Л.А. Промышленные тепловые насосы. - М.: Энергоатомиздат, 1989.

  2.  

  3. Промышленная теплоэнергетика и теплотехника: Справочник / Под общ. ред. В.А.Григорьева, В.М.Зорина - 2-е изд., перераб. - М.: Энергоатомиздат, 1991. (Теплоэнергетика и теплотехника; Кн. 4).

  4.  

  5. Холодильные установки / Чумак И.Г., Чепурненко В.П. и др.; Под ред. д-ра техн. наук, проф. И.Г.Чумака. - 3-е изд., перераб. и доп. - М.: Агропромиздат, 1991.

  6.  

  7. Холодильные машины: Учебн. для втузов по специальности “Холодильные машины и установки” / Н.Н.Кошкин, И.А.Сакун, Е.М.Бамбушбек и др.; Под общ. ред. И.А.Сакуна. - Л.: Машиностроение, 1985.

  8.  

  9. Мартыновский В.С. Циклы, схемы и характеристики термотрансформаторов. / Под ред. В.М.Бродянского. - М.: Энергия, 1979.

  10.  

  11. Воздух. Контроль загрязнений по международным стандартам: Справочник / Г.С. Фомин, О.Н. Фомина., М.: ВНИИстандарт изд. “Протектор”, 1994.

  12.  

  13. Ондриас И.С., Уилсон Д.А., Кавамото М., Хауб Д.Л. Повышение мощности ГТУ за счёт охлаждения воздуха перед компрессором.; Пер. с англ. - Современное машиностроение. 1991. №7 с. 46-57.

  14.  

  15. Янтовский Е.И., Пустовалов Ю.В. Парокомпрессионные теплонасосные установки. -М.: Энергоатомиздат, 1982.

  16.  

  17. Гомелаури В.И., Везиришвили О.Ш. Опыт разработки и применения теплонасосных установок. / Теплоэнергетика, 1978, №4.

  18.  

  19. Розенфельд Л.М., Звороно Ю.В., Оносовский В.В. Применение фреоновой холодильной машины для охлаждения и динамического отопления. / Теплоэнергетика, 1961, №6.

  20.  

  21. Данилевич Я.Б., Боченинский В.П., Евланов В.С. Малая тепловая электростанция с парогазовой установкой / Известия академии наук. 1996. №4.

  22.  

  23. Гельперин Н.И. Тепловой насос. - Л.: ГНТИ, 1931.

  24.  

  25. Быков А.В., Калнинь И.М., Крузе А.С. Холодильные машины и тепловые насосы. - М.: ВО “Агропромиздат”, 1988.

  26.  

  27. Быков А.В., Калнинь И.М., Сапронов В.М. Альтернативные озонобезопасные хладагенты / Холодильная техника. 1989. №3.

  28.  

  29. Гиндлин Н.М. О влиянии фреонов на слой озона (обзорная информация) / Холодильная техника. 1989. №3.

  30.  

  31. Янтовский Е.И., Пустовалов Ю.В., Янков В.С., Теплонасосные станции в энергетике. / Теплоэнергетика, 1978, №4.

  32.  

  33. Михельсон В.А. Проект динамического отопления. Собр. соч., т.1. - М.: Изд-во с.-х. акад. им. К.А. Тимирязьева. 1930.

  34.  

  35. Гохштейн Д.П. Использование отходов тепла в тепловых насосах. - М.-Л.: Госэнергоиздат. 1955.

  36.  

  37. Зысин В.А. Комбинированные парогазовые установки и циклы. - М.-Л.: Госэнергоиздат. 1962.

  38.  

  39. Кошкин Н.Н., Сакун И.А., Бамбушек Е.М. и др. Холодильные машины: Учебн. для втузов. - Л.: Машиностроение. 1985.

  40.  

  41. Каганов М.А., Привин М.Р. Термоэлектрические тепловые насосы. - Л.: Энергия. 1970.

  42.  

  43. Адамович А.Б., Косов А.В., Костылев А.М. и др. Использование энергии солнечного излучения для теплоэлектротехнического оснащеиия загородных жилых строений // Конверсия в машиностроении. 1995. №5.

  44.  

  45. Алексеев Б.А. Международная конференция по ветроэнергетике / Электрические станции. 1996. №2.

  46.  

  47. Аполлонов Ю.А., Миклашевич Н.В., Стоцкий А.Д. Перспективы комплексного использования электростанций и других энергоисточников / Энергетическое строительство. 1995. №2.

  48.  

  49. Баранов H.A., Рябцев Н.И. Повышение эффективности систем пароиспользования / Промышленная энергетика. 1995. № 1.

  50.  

  51. Бахман И. Использование геотермальных вод Германии (опыт эксплуатации первых геотермальных тсплостанций). Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург. 1995.

  52.  

  53. Безруких П.П. Экономические проблемы нетрадиционной энергетики / Энергия: Экон., техн., экол. 1995. №8.

  54.  

  55. Берг Б.В., Батмунх С., Волкова М.В. Повышение эффективности солнечных нагревателей воды в условиях Урала / Сыромятник, чтения: Матер, конференции теплоэнерг. фак. Урал. гос. техн. ун-та. Екатеринбург, 1995.

  56.  

  57. Берковский Б., "Солнечный путь" к экономическому развитию и охране окружающей среды / Теплоэнергетика. 1996. №5.

  58.  

  59. Битюков В.П. Задачи развития малой энергетики и использования нетрадиционных возобновляемых источников энергии / Гидротехническое строительство. 1995. №5.

  60.  

  61. Богатов Б.А. Энергосбережение и интенсификация технологических процессов переработки торфа // Изв. вузов. Энергетика. 1995. №5-6.

  62.  

  63. Богуславский Э.И. Оценка технико-экономических параметров и показателей систем геотермального теплоснабжения в различных условиях России / Международный симпозиум "Проблема геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  64.  

  65. Богуславский Э.И. Перспективы и проблемы освоения геотермальных ресурсов России / Гидротехническое строительство. 1995. №6.

  66.  

  67. Богуславский Э.И., Вайнблат А.Б., Дадькин Ю.В. и др. Геотермальные ресурсы России и стран СНГ / Международный симпозиум "Топливно-энергетические ресурсы России и других стран СНГ". Санкт-Петербург, 1995.

  68.  

  69. Богуславский Э.И., Вайнблат А.Б., Смыслов А.А. и др. Техникоэкономическая целесообразность освоения геотермальных ресурсов низкотемпературных коллекторов Московской синеклизы / Междунар. симп. "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  70.  

  71. Богуславский Э.И., Виссарионов В.И., Елистратов В.В., Кузнецов М.В. Условия эффективности и комплексного использования геотермальной солнечной и ветровой энергии // Международный симпозиум “Топливно-энергетические ресурсы России и др. стран СНГ". Санкт-Петербург, 1995.

  72.  

  73. Бородулин М.Ю., Кадомский Д.Е. Электротехнические проблемы создания термодинамического энергоблока экспериментальной солнечной электростанции в Кисловодске / Энергетической строительство. 1995. №6.

  74.  

  75. Брыслов В.Н., Томашуков В.B., Доброгорский В.А. О применении теплоутилизационньх устройств на основе гравитационных тепловых труб в котельных установках малой мощности / Энергетическое строительство. 1995. №4.

  76.  

  77. Букин П.Я., Филаретов В.Ф., Некоторые вопросы расширения технических возможностей ветроэнергетических установок // Соверш. электрооборуд. и средств автоштиз. технол. процессов пром. предприятий: Тез. докл. 4 Дальневост. науч.- практ. конф. Комсомольск - на Амуре, 1995.

  78.  

  79. Бусаров В.Н. Возможности использования возобновляемых источников энергии в условиях глобального изменения природной среды и климата / Обз.инф. науч. и техн. аспекты окруж. среды. ВИНИТИ, 1995.

  80.  

  81. Бушин П.С. Опытно-промышленная газотурбинная расширительная станция на Среднеуральской ГРЭС // Энергетическое строительство. 1995. № 4.

  82.  

  83. Быков В.А., Безрученко В.A., Батюшко А.А. и др. Опыт создания баз данных по нетрадиционной энергетике // НТИ-95. Конференция с междунар. участием "Инф. продукты, процессы и технол". М., 1995.

  84.  

  85. Варварский B.C., Работы ВНИПИэнергопром в области энергосбережения / Теплоэнергетика. 1995. №6.

  86.  

  87. Варварский В.С., Жуков М.А., Красовский Б.М. Упрощенная методика технико-экономического расчета обоснованности мероприятий по энергосбережению в рыночных условиях // Промышленная энергетика. 1995. №2.

  88.  

  89. Васильев В.А., Крайнов А.В., Геворков И.Г. Расчет параметров унифицированной геотермальной энергоустановки на водоаммиачной смеси / Теплоэнергетика. 1996 №5

  90.  

  91. Ветроэнергетика России / Сел. механизатор. 1996. №2.

  92.  

  93. Виссарионов В.И., Богуславский Э.И., Елистратов В.В., Кузнецов М.В. Комплексное использоваиие геотермальной, солнечной и ветровой энергии / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  94.  

  95. Вихорев Ю.А., Ерёмина А.К. Выставка в Киеве "Энергосберегающая техника и Технология" / Энергетик. 1995. № 3.

  96.  

  97. В научно-технической ассоциации “'Энергопрогресс" // Энергетик. 1995. № 7.

  98.  

  99. Вольфберг Д.В. Основные тенденции в развитии энергетики мира /Теплоэнергетика. 1995. № 9.

  100.  

  101. Воронкин А.Ф., Лисочкина Т.В., Малинина Т.В. и др. Экономическая эффективность энергоустановки с использованием возобновляемых источников энергии / Гидротехническое строительство. 1995. № 6.

  102.  

  103. Гайдаш В.Д. Рапс - источник горюче-смазочных материалов / Проблемы энергосбережения. 1995. № 2-3.

  104.  

  105. Галкин М.П., Горин А.Н. Выбор функциональных схем автономных ВЭУ малой мощности / Энергетическое строительство. 1995. N" 3

  106.  

  107. Гелиоводомёт для СНГ / Экотехнол. и ресурсосбережение. l995. № 5.

  108.  

  109. Гендлер С.Г. Процессы тепломассопереноса в геотермальной технологии / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург. 1995.

  110.  

  111. Доброхотов В.И., Шпильрайн Э.Э. Нетрадиционные возобновляемые источники энергии. Проблемы и перспективы / Теплоэнергетика. 1996. № 5.

  112.  

  113. Довгополов И., Словиковский П., Павленко А. Сушильный агрегат на основе солнечной энергии / Техн. АПК. 1995. N" 3.

  114.  

  115. Докунин И.Я. К проекту создания Диксонской ОТЭС / Теплоэнергетика. 1995. №2.

  116.  

  117. Докунин И. Я. Моретермальная электростанция на острове Диксон / Энергетическое строительство. 1995. №1.

  118.  

  119. Доступный источник энергии / Сел, механизатор. 1996.№2.

  120.  

  121. Дьяков А.Ф. Инструмент решения современных энерготехнологических проблем / Энергетик. 1995. №1.

  122.  

  123. Дьяков А.Ф., Прокуроров Н.С., Перминов Э.М. Калмыцкая опытная ветровая электростанция / Электрические станции 1995. № 2.

  124.  

  125. Дадькин Ю.Д. Нетрадиционные источники энергии и перспективы их освоения / Международный симпозиум “Топливноэнергетические ресурсы России и др. стран СНГ”. Санкт-Петербург, 1995.

  126.  

  127. Иванцев А.С., Мажоров В. О целесообразности использования ветроэнергетических установок в Мордовки / 24 Огарев. Чтения: Тезисы докладов научной конференции. Саранск. 1995.

  128.  

  129. Ильюша А.В. Газовые технологические схемы работы подземных энергокомплексов для производства продуктов теплоснабжения / Промышленная энергетика. 1996. №4.

  130.  

  131. Ильюша А.В. Газогенераторные станции и устройства снабжения синтез-газом бытовых котельных / Промышленная энергетика. 1996. №6.

  132.  

  133. Ильюша А.В. Подземные энергокомплексы на базе шахт с гидродобычей угля / Промышленная энергетика. 1996. № 3.

  134.  

  135. Ильюша А.В. Подземные энергокомплексы с комбинированным использованием угля и ядерного топлива / Промышленная энергетика. 1996. № 1.

  136.  

  137. Ильюша А.В. Производство тепла шахтными теплонасосными станциями / Промышленная энергетика. 1995. №12.

  138.  

  139. Ильюша А.В. Создание энерготехналогических комплексов с подземным сжиганием угля / Промышленная энергетика. 1996. №2.

  140.  

  141. Кабаков В.И. Развитие геотермальной энергетики в мире (Заметки с Всемирного конгресса в Италии) / Теплоэнергетика. 1996. № 5.

  142.  

  143. Каримбаев Т.Д. Оценка стоимости электроэнергии, вырабатываемой малыми ветроэнергетичсскими установками / Конверсия в машиностроении. 1995. № 5.

  144.  

  145. Карло Ля Порта. Возобновляемые виды энергии: последние коммерческие успехи в США и перспективы в будущем / Обзор инф. Науч. и техн. аспекты охраны окружающей среды. ВИНИТИ. 1995. № 2.

  146.  

  147. Квасенков 0.И., Квасенкова Э.И. Энергосберегающая технология производства экстрактов биологического сырья / Промышленная энергетика. 1995. №4.

  148.  

  149. Кирюхин А.В., Кругер П. Характеристики геотермальных резервуаров / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  150.  

  151. Кирюхин В.И., Мильман 0.0., Федоров В.А. и др. Геотермальные электрические и тепловые станции в России / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  152.  

  153. Киселев Я. Г. Анализ возможности применения ветроэлектрических установок / Новые технологии в газовой промышленности: Конф. молодых ученых, спец. и студентов по проблемам газовой промышленности России. М., 1995.

  154.  

  155. Коваленко Э.П. Возобновляемые источники энергии и возможности их использования в Беларуси / ЦНИИ комплекс. использ. вод, ресурсов. Минск, 1995.

  156.  

  157. Козлов С.А. Энергоресурсосбережение в системах теплоснабжения / Тяжелое машиностроение. 1996. №1.

  158.  

  159. Костылев А.М. Энергоснабжение с использованием солнечного излучения / Конверсия и машиностроение. 1995. №1.

  160.  

  161. Коршунов А.П. О роли возобновляемых источников энергии в энергообеспечении сельского хозяйства / Энергетическое строительство. 1995. № 5.

  162.  

  163. Кошкин Н.Л. О некоторых итогах российско-германской конференции "Возобновляемые источники энергии и их роль в энергетической политике России и Германии" / Теплоэнергетика. 1995. №11.

  164.  

  165. Кудрявый В.В. Электроэнергетика: наука, экономия, энергосбережение / Энергетик. 1995. № 4.

  166.  

  167. Кудряшов Б.Б. Нормализация температурного фактора при бурении геотермальных скважин / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  168.  

  169. Куликов Г.Н., Ковылянский Я. А. Первый шаг силикатной энергетики / Энергетик. 1995. №3.

  170.  

  171. Курбанов М.К., Дибиров Д.А., Курбанова Л.М. Гидрогеологические предпосылки комплексного освоения геотермальных энергосырьевых ресурсов Дагестана / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург. 1995.

  172.  

  173. Кустарев Ю.С., Кузнецов В.В., Родькин К..П. Применение энергоаккумулирующих веществ в качестве альтернативного экологически чистого топлива для, транспортных и энергетических ГТУ / Научная конференция по проблемам экологии. Тезисы докладов и сообщений. М.: МАДИ. 1995.

  174.  

  175. Кушнарев Ф.А., Кобзаренко Л.Н. О целесообразности широкого внедрения электротеплоакуумулирующих установок с использованием солнечной энергии / Теплоэнергетика. 1996. №5.

  176.  

  177. Логинов В.Б. Новак Ю.И. Высокоэффективные ветроэнергетические установки / Проблемы машиностроения и автоматизации. 1995. №1-8.

  178.  

  179. Лосюк Ю.А., Седнин В.А. Возможности нетрадиционной энергетики в районах радиоактивного загрязнения Республики Беларусь / Изв. вузов. Энергетика. 1995. №3-4.

  180.  

  181. Макаров А.А., Чупятов В.П. Возможности энергосбережения и пути их реализации / Теплоэнергетика. 1995. №6.

  182.  

  183. Некоторые проблемы энергетики на международных форумах / Теплоэнергетика. 1995. №11.

  184.  

  185. Нетрадиционные возобновляемые источники энергии. Анал. альбом / Под ред. А.И.Гриценко / ВНШ природ. газов и газ. технологий. М, 1996.

  186.  

  187. Новожилов И.А., Пряхин В.В., Федоров В.А. Конверсия производства АО "Калужский турбинный завод" и пути внедрения энергосберегающих технологий по выработке электроэнергии / Энергетик. 1995. №5.

  188.  

  189. Новожилов И.А., Фисенко В.В. Новая энергоресурсосберегающая технология / Энергетик. 1996. № 3.

  190.  

  191. Омаров М.А., Шарафутдинов Ф.Г., Панич Л.И. Перспективы использования геотермальных ресурсов России / Международный симпозиум "Топливно-энергетические ресурсы России и др. стран СНГ. Санкт-Петербург, 1995.

  192.  

  193. Определение технических показателей эффективности использования ветроэлектрических агрегатов на Украине / Энергетика и электрификация. 1995. №2.

  194.  

  195. Осадчий Г. Б. Гелиоэлектростанция для средней полосы России / Промышленная энергетика. 1996. №5.

  196.  

  197. Осадчий Г. Б. Гелиоводомет как альтернативный источник энергии / Энергетик. 1995. №9.

  198.  

  199. Осадчий Г.Б. Гелиоводомет с вакуумированными тепловыми ловушками / Промышленная энергстика. 1995. №11.

  200.  

  201. Панцхава Е.С., Пожарнов В.А., Зысин Л. В. и др. Преобразование энергии биомассы. Опыт России / Теплоэнергетика. 1996. №5.

  202.  

  203. Парийский Ю.М., Пискачёва Т.Ю., Лебедева Ю.С. Актуальные проблемы безотходной технологии освоения геотермальных ресурсов / Международный симпозиум "Топливно-энергетические ресурсы России и др. стран СНГ”. Санкт-Петербург, 1995.

  204.  

  205. Пелецкий В.Э. Фазопереходное тепловое аккумулирование в системах преобразования солнечной энергии и требования к рабочим телам / Тяжелое машиностроение. 1996. №2.

  206.  

  207. Перминов Э.М. Возрождение ветроэнергетики в России / Энергетик. 1995. №9.

  208.  

  209. Перминов Э.М. Калмыцкая ВЭС - в энергосистеме / Промышленная энергетика. 1996. №1.

  210.  

  211. Перминов Э.М. Нетрадиционная электроэнергетика: состояние и перспективы развития / Энергетик. 1996. №5.

  212.  

  213. Перминов Э.М. Освоение нетрадиционных и возобновляемых источников энергии в России / Мировая электроэнергетика. 1995. №2.

  214.  

  215. Попов С.Л., Богуцкая Е.С. Состояние и перспективы развития ветроэнергетики на Украине / Энергетика и электрификация. 1995. №2.

  216.  

  217. Потапенко А.Н., Штифанов А.И., Эль-Хаммудани А. Математическая модель динамических процессов при импульсном нагружении материалов / Meждунар. конф. "Ресурсо- и энергосберегающие технологиии строит, матер, изделий и конструкций". Белгород. 1995.

  218.  

  219. Редькин Ю.О., Богусланмий Э.И., Вайнблат А.Б. Ресурсы геотермального теплоснабжения России и прилегающих территорий (по материалам карты масштаба 1:10 000000) / Международный симпозиум 'Топливно-энергетические ресурсы России и др. стран СНГ". Санкт-Петербург, 1995.

  220.  

  221. Решетник С.П. Использование тепловой энергии при освоении внеземных ресурсов / Комплекс, разраб. руд. месторожд. и вопросы геомех. и слож. и особо слож. условикх. Тр. Meждународного совещания. Аппатиты, 1995.

  222.  

  223. Селезнев И.С. Состояние и перспективы работ МКБ "Радуга" в области ветроэнергетики / Конверсия в машиностроении. 1995. №5.

  224.  

  225. Сомкни Б. В., Стальная М.Н., Свит П.П. Использование возобновляемых энергоресурсов в малой энергетике // Теплоэнергетика. 1996. №2.

  226.  

  227. Сепаратор пара для геотермальных станций / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  228.  

  229. Сидоренко ГЛ., Борисов Г.А., Лазарева И.Г., Митрукова И.в. Возобновляемые энергетические ресурсы Карелии: оценки и перспективы использования / Гидротехническое строительство. 1995. №6.

  230.  

  231. Слюсарев Н.И., Стремня Л.С. Новые материалы для фильтров геотермальных скважин с заданными значениями прочности и проницаемости / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург. 1995.

  232.  

  233. Соболь Я.Г. "Ветроэнергетика" в условиях рынка (1992-1995 гг.) / Энергия: Экон., техн. экол. 1995. №11.

  234.  

  235. Соловьев В.Б., Смирнова Н.Н., Кашеева Н.Г. Технология подземной термохимической переработки угольных пластов

  236.  

  237. Степанов А.В., Сахаров А.Н., Сапрыкипа Н.А. Экологические принципы архитектурного проектирования жилых домов с солнечным энергообеспечением / Изв. вузов. (Строительство). 1995. №12.

  238.  

  239. Стребков Д.С., Кошкин Н.Л. О развитии фотоэлектрической энергетики в России / Теплоэнергетика. 1996. №5.

  240.  

  241. Тарнижевский Б. В. Оценка эффективности применения солнечного теплоснабжения в России / Теплоэнергетика. 1996. №5.

  242.  

  243. Тарнижевский Б.В., Алексеев В.Б., Кабилов 3.А., Абуев И.М. Солнечные коллекторы и водонагревательные установки / Теплоэнергетика. 1995. №6.

  244.  

  245. Токарева С.Е. Об организации энергосбережения в России / Теплоэнергетика. 1995. №6.

  246.  

  247. Федеральный закон "Об энергосбережении" / Теплоэнергетика. 1996. №9.

  248.  

  249. Федоров М.П., Боголюбов А.Г., Масликов В.И. Экологическая безопасность электростанций с возобновляемыми источниками энергии / Гидротехническое строительство. 1995. №6.

  250.  

  251. Федоров В.А., Мильман О.О., Дельцов Ю.Ф., Гольдберг Е.Н. Система подготовки пара для геотермальных электростанций / Энергетическое строительство. 1995. №6.

  252.  

  253. Федоров В.А., Сережкин Н.И., Алексеев В.И. Парогенератор предельной эффективности для геотермальных теплоэлектрических станций / Международный симпозиум "Проблемы геотермальной энергии". Материалы основных докладов. Санкт-Петербург, 1995.

  254.  

  255. Федянин В.Я,, Лавров И.М., Утемесов М.А. и др. Опыт эксплуатации биогазовой установки в условиях Алтайского края / Теплоэнергетика. 1996. №2.

  256.  

  257. Филиппов А.К., Голубев Л. Г. Альтернативное газотеплоснабжение малых фермерских хозяйств на базе модульного биореактора. / Гидромех. отопит. вентиляц. устройств. Казан, гос. архит. строит. акад. Казань, 1995.

  258.  

  259. Хажеев М.И., Фраер И. В, Пути решения проблемы энергосбережения через механизм взаимоотношений энергоснабжающих организации с потребителем / Энергетическое строительство 1995. №2.

  260.  

  261. Харитонов С.А. Принципы построения и расчета систем генерирования постоянного и переменного тока для ветроэнергетических установок и подвижных автономных объектов / Науч. техн. конференция с междунар. участием "Электротехн. систем трансп. средств и их роботизир. пр-в". Суздаль, 1995.

  262.  

  263. Харитонов С.А., Грабовецкий Г. В. Системы генерирования электрической энергии переменного тока для автономных объектов и ветрэнергетических установок / Научи.- техн. конференция с междунар. участием "Электротехн. системы трансп. средст. и их роботизир. пр-в”. Суздаль, 1995.

  264.  

  265. Хаскин Л.Я. Проект №143(1). Высотный ветродвигатель типа "воздушный змей" / Бюл. "Новые технологии". 1995. №4.

  266.  

  267. Хаскин Л. Я. Проект № 144(1). Ветродвигатель башенного типа / Бюл. "Новая технология". 1995. №4.

  268.  

  269. Хрилев Л.С., Васильев В.М., Давыдов Б.A. Энергосбережению экономическую и правовую основу / Теплоэнергетика. 1995.

  270.  

  271. Чмиль А.И. Технология биоконверсии сельскохозяйственных отходов в топливо, удобрения и корма / Экотехнол. и ресурсосбережение. 1995. №4.

  272.  

  273. Шпильрайн Э.Э. VII Международный симпозиум по солнечным тепловым конденсирующим технологиям / Теплоэнергетика. 1995. №11.

  274.  

  275. Шурчков А.Б., Круневич Т. Г. Технологические схемы систем геотермального теплоснабжения и анализ их эффективности / Международный симпозиум "Проблемы геотермальной энергии” Материалы основных докладов. Санкт-Петербург, 1995.

  276.  

  277. Шульга B.Г., Коробка Б.П., Жовлир М.М. Основные результаты внедрения нетрадиционных и возобновляемых источников энергии на Украине / Энергетика и электрификация. 1995. №2.

  278.  

  279. Энергия - даром / Сел, механизатор. 1996. №2.

  280.  

  281. Энергия для завтрашнего мира / Теплоэнергетика. 1995. №9.

  282.  

  283. Акишкин А.И., Григорьев Г.М. О возможности увеличения эффективности кремниевых солнечных элементов при имплантации ионов Н+ и Н- /Физика и химия обработки материалов. 19994. №6

  284.  

  285. Анапиев Э.А., Невенганный Ю.В. Солнечный коллектор с оребрёнными трубками с концентратором типа фоклин (КСОТФ) / Энергетическое строительство. 1994. №2

  286.  

  287. Анохин А.Б., Ситас В.И., Султангузин И.А. и др. Математическое моделирование и оптимизация как метод решения проблем энергосбережения и экологии промышленных районов / Теплоэнергетика. 1994. №6.

  288.  

  289. Байрамов Р.В., Петрова А.А. Нетрадиционная энергетика НПО “Солнце” / Теплоэнергетика. 1994. №2

  290.  

  291. Баркун А.В. Применение энергосберегающих технологий в концерне “Беларусьэнергострой” / Изв. вузов. Энергетика. 1994. №9-10.

  292.  

  293. Безруких П.П. Нетрадиционная энергетика. Мифы, реальность, возможности / Энергия: Экон., техн., экол. 1994. №2.

  294.  

  295. Биотопливо и устойчивое развитие / Бюл. Всемир. метеорол. орг. 1994. Т. 43. №1.

  296.  

  297. Биоэнергетическая система / Теплоэнергетика. 1995. №3.

  298.  

  299. Бычков Н.М., Диновская Н.Д. Характеристики ветродвигателя с использованием эффекта Магнуса / Ветроэнерг., мал. гидроэнерг. и другие нетрадиционные виды электроэнерг. / Новосибирский гос. техн. ун-т, 1994.

  300.  

  301. Васильев Г.П. Использование низкопотенциальной тепловой энергии грунта поверхностных слоёв земли для теплохладоснабжения здания / Теплоэнергетика. 1994. №2.

  302.  

  303. Васильев В.А., Ильенко В.В. Результаты комплекса НИОКР по созданию двухконтурной Ставропольской ГеоТЭС / Теплоэнергетика. 1994. №2.

  304.  

  305. Ветроэнергетика, малая гидроэнергетика и другие нетрадиционные виды электроэнергетики : Тез. докл. научн.-практ. конф. / Новосибирский гос. техн. ун-т, 1994.

  306.  

  307. Возможность совершенствования модульных СЭС / Энергетическое строительство. 1994. №2.

  308.  

  309. Галкин М.П. Выходные электрические параметры ветроэнергетических установок малой мощности / Энергетическое строительство. 1994. №5-6.

  310.  

  311. Галкин М.П. Определение энергоёмкости ветроэнергетических установок / Энергетическое строительство. 1994. №1

  312.  

  313. Геотермия. Геотермальная энергетика: Сб. научных трудов / РАН. Даг. научн. центр. ин-т проблем геотермии. Махачкала, 1994.

  314.  

  315. Гурьянов В.В. Основные направления научно-технического прогресса в топливных отраслях промышленности / Теплоэнергетика. 1994. №11.

  316.  

  317. Дельнов Ю.Ф., Вороновицкий В.Я., Гринман М.И. и др. Транспортабельная энергетическая установка малой мощности на геотермальных источниках / Энергетическое строительство. 1994. №2.

  318.  

  319. Докукин И.Я. Анализ и оптимизация циклов солнечных паротурбинных электростанций / Электрические станции. 1994. №3

  320.  

  321. Докукин И.Я. К проекту создания моретермальной электростанции в Российской Арктике (ОТЭС для порта Диксон) / Электрические станции. 1994. №4.

  322.  

  323. До 20 % электроэнергии от ветровых электростанций / Энергия: экон., техн., экол. 1994. №7.

  324.  

  325. Новые возможности в малой энергетике / Проблемы машиностр.и автоматиз. 1994. №3-4.

  326.  

  327. Еникеев Г.Г., Канатьев Л.И. Ветроэнергетическая установка мощностью 100 кВт / Теплоэнергетика. 1994. № 2.

  328.  

  329. Зысин Л.В., Кошкин Н.Л., Финкер Ф.З. Вопросы энергетического использования биомассы отходов лесного производства / Теплоэнергетика. 1994. №11.

  330.  

  331. Кирюхин В.И., Мильман О.О., Федоров В.Н., Дельнов Ю.Ф. Геотермальные станции электро- и теплоснабжения / Энергетическое строительство. 1994. №2.

  332.  

  333. Коровин Н.В. Электрохимические энергоустановки на основе тепловых элементов: состояние и перспективы / Теплоэнергетика. 1994. №1.

  334.  

  335. Кошкин Н.Л., Фугенфиров М.И. Фотоэнергетика - состояние и перспективы развития / Теплоэнергика . 1994. №2.

  336.  

  337. Леви М., Левитан Р. Аккумулирование, хранение и дальний транспорт солнечной энергии с использованием замкнутого и открытого тепловых химических циклов / Энергетическое строительство. 1994. №2

  338.  

  339. Мануйленко А.Г., Ильенко В.В., Кастун М.М. и др. Кисловодская опытно- экспериментальная солнечная электростанция / Энергетик. 1994. №12.

  340.  

  341. Никонов С.А., Свиридов Н.В. Новые разработки автономных ветроагрегатов фирмы “Ветен” / Теплоэнергетика. 1994. №2.

  342.  

  343. Новожилов И.А., Соломин С.В. Выбор параметров ветроэнергетической установки / Электрические станции. 1994. №8.

  344.  

  345. Обозов А.Дж., Климов И.С. Комбинированная солнечно-теплонасосная установка для системы теплоснабжения индивидуальных жилых домов / Энергетическое строительство. 1994. №2.

  346.  

  347. Панцхава Е.С. Биогазовые технологии - радикальное решение проблем экологии, энергетики и агрохимии / Теплоэнергетика. 1994. №11.

  348.  

  349. Пармон В.Н., Бурдуков А.П., Беляев Л.С. и др. Малая энергетика и нетрадиционные источники энергии: их роль и место в энергетике Сибири в ближайшие годы и на перспективу. Малая энергетика / Рос. хим. ж. 1994. Т. 38. №3.

  350.  

  351. Перминов Э.М. Научно-техническое совещание по проблемам и перспективам развития нетрадиционной электроэнергетики / Энергетик. 1994. №1.

  352.  

  353. Поваров О.А., Томаров Г.В., Кошкин Н.Л. Состояние и перспективы развития геотермальной энергетики России / Теплоэнергетика. 1994. №2.

  354.  

  355. Свиридов Н.В. Некоторые итоги разработки ветроагрегата мощностью 250 МВт / Теплоэнергетика. 1994. №3.

  356.  

  357. Семенков А.В. Важный резерв сбережения топлива / Энергетик. 1994. №12.

  358.  

  359. Серов В.И., Бернштейн А.Е., Тужиков В.Ф. Об опыте и перспективе развития нетрадиционной энергетики в Воркутинском угольном регионе / Уголь. 1994. №4.

  360.  

  361. Стребков Д.С. О развитии солнечной энергетики в России / Теплоэнергетика. 1994. №2.

  362.  

  363. Холодный ветер ..... обогреет / Энергия: Экон. техн. экол. 1994. №7.4.

  364.  

  365. Beurskens, D. Lalas. Review of Europiean Wind Energy Programmes. ECN. Petten.1993.

  366.  

  367. The Deklaration of Madrid. The Participans of the conference “ An Achion Plan For Renewable Energy Sources In Europe” Madrid, Spain, 16-18 March 1994.

  368.  

  369. Редянин В.Я., Утемесов М.А., Федин Л.Н., Горбунов Д.Л. Исследование режимов совместной работы теплового насоса с вертикальным грунтовым теплообменником // Теплоэнергетика № 4, 1997.

  370.  

  371. Васильев Н.А. Теплонасосные системы теплоснабжения для потребителей тепловой энергии в сельской местности // Теплоэнергетика № 4, 1997.

  372.  

  373. Пустовалов Ю.В., А.И. Гладунцов. Предложения по применению крупных ТНУ в системах энергоснабжения.// Теплоэнергетика № 4, 1997.

  374.  

  375. H. J.M. Beurskens. Implementation Strategies of Wind Energy Systems. ECN. Petten. 1994.

  376.  

  377. Beurskens. Wind energy; The state of the art in Europe. Symposium on Solar Energy Applications. Beirut, January 24-25, 1994.

  378.  

  379. R.Hunter, G. Eliot. Wind-Diesel Systems. Cambridge. University press. 1994.

  380.  

  381. J. Beurskens. The Development of the Wind Energy Technology and its Application in the Netherlands. Munchen, 16-17 March 1993.

  382.  

  383. “Экологически чистая энергетика” Концепция и краткое описание проектов Государственной научно-технической программы. ГКНТ СССР. -М: 1990.

  384.  

  385. Дейч М.Е. Техническая газодинамика “Энергия”, М. 1974, 592 с.

  386.  

  387. Гупта, Лилли, Сайрес. Закрученные потоки. “Мир”, 1987, 588 с.

  388.  

  389. Лойцянский Л.Е. Механика жидкости и газов. М., изд-во “Наука”, 1970, 847 с.

  390.  

  391. Меркулов А.П. Вихревой эффект и его применение в технике. М., “Машиностроение”, 1969, 182 с.

  392.  

  393. Райский Ю.Д., Тункель Л.Е. О влиянии конфигурации и длины вихревой трубы на процессы энергетического разделения газа. “Инженерно-физический журнал”, 1974, т.XXVII, №6, с.1128-1138.

 





Скачать 1,22 Mb.
оставить комментарий
страница4/6
Дата29.09.2011
Размер1,22 Mb.
ТипРеферат, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх