скачать ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» Обсуждена на заседании кафедры информационного обеспечения ОВД УрЮИ МВД России (протокол №2 от 20 февраля 2012 г.) Екатеринбург 2012 Пояснительная записка Программа вступительных испытаний составлена в соответствии с требованиями Государственного образовательного стандарта среднего (полного) общего образования на основе действующего федерального законодательства, отражает дидактические единицы, изучаемые в рамках школьных дисциплин «Алгебра и начала анализа» и «Геометрия» и предназначена для абитуриентов, поступающих в Уральский юридический институт МВД России. ^ Действительные числа. Арифметические действия. Алгебраические дроби. Признаки делимости. Проценты. Пропорции. Арифметическая и геометрическая прогрессии. Степень с натуральным показателем. Одночлены и многочлены. Формулы сокращенного умножения. Разложение многочлена на множители. Корень n-й степени из действительного числа. Действия с корнями. Модуль действительного числа. ^ Уравнение с одной переменной. Основные определения. Линейные уравнения. Квадратное уравнение. Частные виды квадратных уравнений. Теорема Виета. Биквадратное уравнение. Уравнения n-й степени. Рациональные уравнения. Уравнения, содержащие переменную под знаком модуля. Иррациональные уравнения. Уравнения с параметром. Системы алгебраических уравнений. ^ и системы уравнений Показательная функция и ее свойства. Тождественные преобразования показательных выражений. Показательные уравнения. Определения логарифма. Свойства логарифмов. Логарифмирование и потенцирование. Тождественные преобразования логарифмических выражений. Логарифмические уравнения. Системы показательных и логарифмических уравнений. ^ Линейные неравенства. Неравенства второй степени. Рациональные неравенства. Решение неравенств методом интервалов. Неравенства, содержащие переменную под знаком модуля. Иррациональные неравенства. Показательные неравенства. Логарифмические неравенства. Системы неравенств. ^ Тригонометрические функции числового аргумента. Графики тригонометрических функций. Основные тригонометрические соотношения. Формулы приведения. Теоремы сложения. Тригонометрические функции двойного и тройного угла. Соотношения между функциями половинного и целого угла. Преобразования произведения тригонометрических функций в сумму и суммы в произведение. ^ и системы уравнений Простейшие тригонометрические уравнения. Тригонометрические уравнения, сводящиеся к квадратному уравнению. Однородные тригонометрические уравнения. Решение тригонометрических уравнений с помощью разложения на множители. Решение тригонометрических уравнений с помощью введения дополнительного угла. Решение тригонометрических уравнений с помощью понижения степени. Решение тригонометрических уравнений с отбором корней. Решение тригонометрических неравенств. Решение систем тригонометрических уравнений. ^ Треугольники. Замечательные линии и точки в треугольнике. Формулы для вычисления площади. Признаки подобия треугольников. Метрические соотношения в треугольнике. Окружность и круг. Основные соотношения. Измерение углов в круге. Вписанные и описанные окружности. Свойство касательной к окружности. Площадь круга. Многоугольники. Виды многоугольников. Правильные многоугольники. Их признаки и свойства. Формулы для вычисления площади. Подобие. ^ Многогранники: призма, параллелепипед, пирамида. Правильные многогранники. Формулы для вычисления объема и поверхности многогранников. Тела вращения: цилиндр, конус, шар. Усеченный конус. Формулы для вычисления объемов и поверхностей тел вращения. Конические сечения. Вписанные и описанные поверхности. Сечения. ^ Понятие функции. Область определения и множество значений. Линейная функция, ее свойства, график, угловой коэффициент. Уравнения прямой на плоскости. Условия параллельности и перпендикулярности прямых. Векторы. Линейные операции над векторами. Разложение вектора на составляющие. Координатная форма задания вектора. Операции с векторами, заданными в координатной форме. Скалярное произведение двух векторов. Условия коллинеарности и перпендикулярности векторов. ^ Понятие производной. Производные элементарных функций. Таблица производных. Правила дифференцирования. Приложения производной. Исследование функций с помощью производных. Уравнение касательной. Типовые задачи на использование уравнения касательной. Задачи на нахождение экстремумов функции. Задачи на нахождение наибольшего и наименьшего значений функции на отрезке. ^ Случайные события, операции над событиями. Классическое определение вероятности события. Элементы статистики: среднее арифметическое, мода, медиана. ^ Основная учебная литература
|