Теоретические основы электротехники icon

Теоретические основы электротехники


1 чел. помогло.
Смотрите также:
Методические указания и задания для выполнения домашних контрольных работ №1 и №2 по дисциплине...
Методические указания и задания для выполнения домашних контрольных работ №1 и №2 по дисциплине...
Рабочая программа по дисциплине Теоретические основы электротехники Рекомендуется для...
Рабочая программа по дисциплине Теоретические основы электротехники Рекомендуется для...
Учебно-методический комплекс по курсу «теоретические основы электротехники»...
Учебная программа дисциплины теоретические основы электротехники индекс дисциплины Часы (всего)...
Учебная программа дисциплины теоретические основы электротехники индекс дисциплины Часы (всего)...
Общая электротехника» и«Теоретические основы электротехники» для всех специальностей Волгоград...
Учебная программа дисциплины теоретические основы электротехники индекс дисциплины Часы (всего)...
Г. В. Глебович переходные процессы и основы синтеза линейных радиотехнических цепей...
Теоретические основы электротехники...
Теоретические основы электротехники...



Загрузка...
страницы: 1   2   3   4   5   6   7   8   9   ...   25
вернуться в начало
скачать

изменяющихся величин

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов.

 



Пусть, например, в точке разветвления цепи (рис. 5) общий ток  равен сумме токов  и  двух ветвей:

.

Каждый из этих токов синусоидален и может быть представлен уравнением

и .

Результирующий ток также будет синусоидален:

.

Определение амплитуды  и начальной фазы  этого тока путем соответствующих тригонометрических преобразований получается довольно громоздким и мало наглядным, особенно, если суммируется большое число синусоидальных величин. Значительно проще это осуществляется с помощью векторной диаграммы. На рис. 6 изображены начальные положения векторов токов, проекции которых на ось ординат дают мгновенные значения токов для t=0. При вращении этих векторов с одинаковой угловой скоростью w их взаимное расположение не меняется, и угол сдвига фаз между ними остается равным .

Так как алгебраическая сумма проекций векторов на ось ординат равна мгновенному значению общего тока, вектор общего тока равен геометрической сумме векторов токов:

.

Построение векторной диаграммы в масштабе позволяет определить значения  и  из диаграммы, после чего может быть записано решение для мгновенного значения  путем формального учета угловой частоты: .

 

^ Представление синусоидальных ЭДС, напряжений
и токов комплексными числами


Геометрические операции с векторами можно заменить алгебраическими операциями с комплексными числами, что существенно повышает точность получаемых результатов.

Каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в :

показательной   

тригонометрической      или

алгебраической      - формах.

Например, ЭДС , изображенной на рис. 7 вращающимся вектором, соответствует комплексное число

.

Фазовый угол  определяется по проекциям вектора на оси “+1” и “+j” системы координат, как

 .

В соответствии с тригонометрической формой записи мнимая составляющая комплексного числа определяет мгновенное значение синусоидально изменяющейся ЭДС:

,

(4)

 

Комплексное число  удобно представить в виде произведения двух комплексных чисел:

,

(5)

 

Параметр , соответствующий положению вектора для t=0 (или на вращающейся со скоростью w комплексной плоскости), называют комплексной амплитудой: , а параметр  - комплексом мгновенного значения.

Параметр является оператором поворота вектора на угол wt относительно начального положения вектора.

Вообще говоря, умножение вектора на оператор поворота  есть его поворот относительно первоначального положения на угол ±a.

Следовательно, мгновенное значение синусоидальной величины равно мнимой части без знака “j” произведения комплекса амплитуды  и оператора поворота :

.

Переход от одной формы записи синусоидальной величины к другой осуществляется с помощью формулы Эйлера:

,

(6)

Если, например, комплексная амплитуда напряжения задана в виде комплексного числа в алгебраической форме:

,

- то для записи ее в показательной форме, необходимо найти начальную фазу , т.е. угол, который образует вектор  с положительной полуосью +1:

.

Тогда мгновенное значение напряжения:

,

где .

При записи выражения для определенности было принято, что , т.е. что изображающий вектор находится в первом или четвертом квадрантах. Если , то при  (второй квадрант)

,

(7)

а при  (третий квадрант)



(8)

или



(9)

Если задано мгновенное значение тока в виде , то комплексную амплитуду записывают сначала в показательной форме, а затем (при необходимости) по формуле Эйлера переходят к алгебраической форме:

.

Следует указать, что при сложении и вычитании комплексов следует пользоваться алгебраической формой их записи, а при умножении и делении удобна показательная форма.

Итак, применение комплексных чисел позволяет перейти от геометрических операций над векторами к алгебраическим над комплексами. Так при определении комплексной амплитуды результирующего тока  по рис. 5 получим:


где
;

.

 

^ Действующее значение синусоидальных ЭДС, напряжений и токов

В соответствии с выражением (3) для действующего значения синусоидального тока запишем:

.

Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в  раз:

.

(10)

Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения

.

 

Литература

1.                 Основы теории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2.                 Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1.     Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?

2.     Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?

3.     В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?

4.     Для заданных синусоидальных функций ЭДС и тока  записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.

5.     На рис. 5 , а . Определить .

Ответ: .

Лекция N 4. Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них.

1. Резистор

Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение  (см. рис. 1), то ток i через него будет равен

.

(1)

Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и  i, то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.

Из (1) вытекает:

;

.   

 

    



Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

;

,

- разделим первый из них на второй:



или

.

(2)

Полученный результат показывает, что отношение двух  комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.

 

2. Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение  (см. рис. 4), то ток i  через него будет равен 

.

(3)

 

Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u  и  i, то на его экране будет иметь место картинка, соответствующая рис. 5.

Из (3) вытекает:

;

 



 

  



Введенный параметр  называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление,  имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при  конденсатор представляет разрыв для тока, а при   .

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

;

,

- разделим первый из них на второй:



или

.    

(4)

 

В последнем соотношении  - комплексное сопротивление конденсатора. Умножение на  соответствует повороту вектора на угол  по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.

 

^ 3. Катушка индуктивности

Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением . Тогда для напряжения на зажимах катушки индуктивности можно записать

.    

(5)

Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i, то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.

Из (5) вытекает:



 













.

Введенный параметр  называют реактивным индуктивным сопротивлением катушки; его размерность – Ом. Как и у емкостного элемента этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при  катушка индуктивности не оказывает сопротивления протекающему через него току, и при   .

Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам:

;

,

разделим первый из них на второй:



или

.    

(6)

В полученном соотношении  - комплексное

сопротивление катушки индуктивности. Умножение на  соответствует повороту вектора на угол  против часовой стрелки. Следовательно, уравнению (6) соответствует векторная диаграмма, представленная на рис. 11

 

. 4. Последовательное соединение резистивного и индуктивного элементов

 

Пусть в ветви на рис. 12   . Тогда

где

, причем пределы изменения .

Уравнению (7) можно поставить в соответствие соотношение

,




которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на рис. 13 образуют фигуру, называемую треугольником напряжений. Аналогично выражение



графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.

 

^ 5. Последовательное соединение резистивного и емкостного элементов

 

Опуская промежуточные выкладки, с использованием соотношений  (2) и  (4) для ветви на рис. 15 можно записать

.    ,  

(8)

где

,  причем пределы изменения .













На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16) и сопротивлений (см. рис. 17), которые являются подобными.


^ 6. Параллельное соединение резистивного и емкостного элементов

    

Для цепи на рис. 18 имеют место соотношения:

            ;

, где  [См] – активная проводимость;

                       , где  [См] – реактивная проводимость конденсатора.














Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена на рис. 19. Ей соответствует уравнение в комплексной форме

,

где

       - комплексная проводимость;

      .

^ Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20.

Для комплексного сопротивления цепи на рис. 18 можно записать

.

Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов.

^ 7. Параллельное соединение резистивного и индуктивного элементов

    

Для цепи на рис. 21 можно записать

;

           , где  [См] – активная   проводимость;

, где  [См] – реактивная проводимость катушки индуктивности.

Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме

,

где

       - комплексная проводимость;

      .

^ Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.















оставить комментарий
страница3/25
Дата20.04.2012
Размер3,56 Mb.
ТипРеферат, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   25
отлично
  2
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх