Конспект лекций по курсу детали машин для механических и машиностроительных специальностей icon

Конспект лекций по курсу детали машин для механических и машиностроительных специальностей


11 чел. помогло.
Смотрите также:
Конспект лекций по курсу детали машин для механических и машиностроительных специальностей...
Конспект лекций по курсу “Начертательная геометрия и инженерная графика” Кемерово 2002...
Методические рекомендации к выполнению курсового проекта по курсу "Детали машин" Разде л...
Программа дисциплины по кафедре Детали машин детали машин и механизмов...
Программа дисциплины по кафедре Детали машин детали машин...
Программа дисциплины по кафедре Детали машин теория механизмов и детали машин...
Конспект лекций по курсу «Организация производства»...
Рабочая программа дисциплины детали машин для специальностей: 260601 Машины и аппараты пищевых...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Конспект лекций удк 651. 5 Ббк 60. 844 Конспект лекций по курсу «Делопроизводство»...
Методическое пособие и контрольные задания для студентов-заочников механических специальностей...
Методическое пособие и контрольные задания для студентов-заочников механических специальностей...



Загрузка...
страницы: 1   2   3   4   5   6   7   8   9   10   ...   19
вернуться в начало
скачать
YF - вбирает в себя все уточнения, поправки и конкретные значения и называется коэффициент формы зуба. Процесс вычисления данного коэффициента весьма трудоёмкий его значения в зависимости от числа зубьев на колесе или шестерне обязательно приводятся в справочной литературе по расчёту зубчатых передач.

KF – коэффициент нагрузки при расчёте на изгиб. Он учитывает точность изготовления и сборки передачи, условия её работы и выбирается по справочной литературе. На этапе проектного расчёта обычно принимают KF =1,5.

Если решить формулу (4.14) относительно модуля : (4.15)

Здесь , z1 – число зубьев шестерни, Т1 – крутящий момент на шестерне.

Влияние числа зубьев на форму и прочность зубьев.

На рис. 4.13 показано изменение формы зуба в зависимости от числа зубьев колёс, нарезанных без смещения с постоянным модулем. При z, стремящемся к бесконечности колесо превращается в рейку, и зуб приобретает прямолинейные очертания. С уменьшением z уменьшается толщина зуба у основания и вершины, а также увеличивается кривизна эвольвентного профиля. Такое изменение формы приводит к уменьшению прочности зуба. При дальнейшем уменьшении z появляется подрезание ножки зуба (штриховая линия на рис. 8.13), прочность зуба существенно снижается. При нарезании инструментом реечного типа для прямозубых передач число зубьев на границе подрезания zmin = 17.







Р
Рис.4.14
ассмотренное влияние числа зубьев на прочность справедливо при постоянном модуле, когда с увеличением z увеличиваются и диаметры колес. При постоянных диаметрах с

и
Рис.4.13
зменением z изменяется модуль т. В этом случае изменяются не только форма, но и размеры зуба. С увеличением z форма улучшается, а размеры уменьшаются (уменьшается т). Уменьшение модуля снижает прочность зуба на изгиб, см. формулу (4.14).

^ Смещение инструмента при нарезании зубьев и его влияние на форму и прочность зубьев. На рис. 4.14 изображено два положения инструмента (рейки) при нарезании зубьев: 1— делительная плоскость рейки (ДП) совпадает с начальной плоскостью (НП) — нарезание без смещения; 2 — инструменту дано положительное смещение хт. При этом основной db и делительный d диаметры колеса не изменяются, так как не изменяется z. Как видно из чертежа, смещение инструмента вызвало значительное изменение формы зуба. Толщина зуба у основания увеличилась, увеличилась и прочность зуба по напряжениям изгиба. Одновременно с этим заострилась головка зуба. Заострение является одной из причин, ограничивающих значение смещения инструмента. Отрицательное смещение инструмента сопровождается явлениями обратного характера.

Применяют два типа передач со смещением:

1. Шестерню изготовляют с положительным смещением x1>0, колесо с отрицательным х2<0, но так, что x1 = x2 или ∑x=x1 +x2=0.

При любом смещении сумма ширины впадины и толщины зуба по делительной окружности равна шагу р. Одинаковые по значению, но разные по знаку смещения вызывают одинаковые увеличения толщины зуба шестерни и ширины впадины колеса. Поэтому в зацеплении зубчатой пары при ∑x =0 делительные окружности соприкасаются и являются начальными, как в передаче без смещения. Не изменяются также межосевое расстояние aw и угол зацепления aw:

aw=a=0,5(dl+d2); aw = а =20°. Изменяется только соотношение высот головок и ножек зубьев.

2. Суммарное смещение ∑x не равно нулю. Обычно ∑x >0, а также x1>0 и х2>0. При положительных x1 и х2 делительная толщина зубьев шестерен и колеса больше р/2. Поэтому делительные окружности не могут соприкасаться. Начальными становятся новые окружности, большие, чем делительные (dw1>d1, dw2>d2), см. рис. 4.4). Межосевое расстояние увеличивается: aw =0,5 (dw1+dw 2)>а=0,5 (d1+ d2).

При этом увеличивается и угол наклона линии зацепления как общей касательной к основным окружностям, т. е. увеличивается угол зацепления, aw>a=20°. Увеличение aw сопровождается уменьшением коэффициента перекрытия εа, что является отрицательным и служит одной из причин, ограничивающих применение больших смещений.

Нарезание со смещением позволяет во многих случаях повысить качество зубчатого зацепления. Применяя смещение, необходимо помнить:

1. ^ Положительное смещение повышает прочность зубьев на изгиб и устраняет подрезание при малом числе зубьев (понижает zmin). Например, при z=25 увеличение х от нуля до +0,8 уменьшает YF в 1,2 раза. Соответственно уменьшаются и напряжения изгиба f.

2. Увеличение aw при x >0 повышает контактную прочность — см. формулу (4.10). Можно увеличить aw с 20 до ~25° и поднять допускаемую нагрузку приблизительно на 20%.

3. При большом числе зубьев у шестерни и колеса смещение малоэффективно, так как форма зуба даже при значительных смещениях почти не изменяется. (У рейки, которая подобна колесу при m>0 и z = бесконечности, смещение совершенно не изменяет форму зуба.)

Передачи со смещением при ∑x =0 применяют при больших и и малых z1. В этих условиях смещения x1>0 и x=<0 выравнивают форму зубьев шестерни и колеса и приближают их к равнопрочности по изгибу.

Смещение при ∑x не равном нулю могут влиять на большее число параметров зацепления. Рекомендации по выбору коэффициентов смещения даны в ГОСТ 16532. Если мы стремимся при расчёте выполнить колесо и шестерню равнопрочными, то практически неизбежно придем к смещению в зацеплении.

4.7. Особенности расчета косозубых и шевронных цилиндрических передач

Геометрические параметры. У косозубых колес зубья располагаются не по образующей делительного цилиндра, а составляют с ней некоторый угол β (рис. 4.15, где а — косозубая передача; б — шевронная, и рис. 4.16). Оси колес при этом остаются параллельными. Для нарезания косых зубьев используют инструмент такого же исходного контура, как и для нарезания прямых. Поэтому профиль косого зуба в нормальном сечении пп совпадает с профилем прямого зуба. Модуль в этом сечении должен быть также стандартным .

В торцовом сечении t t параметры косого зуба изменяются в зависимости от угла Р:

окружной шаг pt=pn/cos, окружной модуль mt=mn/cosβ, делительный диаметр d=mtz=mnz/cosβ.


б)

Индексы п и t приписывают параметрам в нормальном и торцовом сечениях соответственно.













Рис. 4.15

Рис. 4.16

Прочность зуба определяют его размеры и форма в нормальном сечении. Форму косого зуба в нормальном сечении принято определять через параметры эквивалентного прямозубого колеса (Рис.4.16). Нормальное к зубу сечение образует эллипс с полуосями с=г и e=r/cos β, где r=d/2. В зацеплении участвуют зубья, расположенные на малой оси эллипса, так как второе колесо находится на расстоянии cdl2. Радиус кривизны эллипса на малой


А-А
о
Рис.4.17
си (см. геометрию эллипса) В соответствии с этим форма косого зуба в нормальном сечении определяется эквивалентным прямозубым колесом, диаметр которого



Рис.4.18


В соответствии с этим форма косого зуба в нормальном сечении является эквивалентным прямозубым колесом, диаметр которого

Увеличение эквивалентных параметров (dv и zv) с увеличением угла является одной из причин повышения прочности косозубых передач. Вследствие наклона зубьев получается колесо как бы больших размеров или при той же нагрузке уменьшаются габариты передачи. Ниже показано, что косозубые передачи по сравнению с прямозубыми обладают еще и другими преимуществами: многопарность зацепления, уменьшение шума и пр. Поэтому в современных передачах косозубые колеса получили преимущественное распространение.

Многопарность и плавность зацепления. В отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно. Зацепление здесь распространяется в направлении от точек 1 к точкам 2 (см. рис.4.17).

Расположение контактных линий в поле косозубого зацепления изображено на рис. 4. 18, а, б (ср. с рис. 8.5 — прямозубое зацепление). При вращении колес линии контакта перемещаются в поле зацепления в направлении, показанном стрелкой. В рассматриваемый момент времени в зацеплении находится три пары зубьев 1,2 и З. При этом пара 2 зацепляется по всей длине зубьев, а пары 1 и 3 лишь частично. В следующий момент времени пара 3 выходит из зацепления и находится в положении 3'. Однако в зацеплении еще остались две пары 2' и 1/. В отличие от прямозубого косозубое зацепление не имеет зоны однопарного зацепления. В прямозубом зацеплении нагрузка с двух зубьев на один или с одного на два передается мгновенно. Это явление сопровождается ударами и шумом. В косозубых передачах зубья нагружаются постепенно по мере захода их в поле зацепления, а в зацеплении всегда находится минимум две пары. Плавность косозубого зацепления значительно понижает шум и дополнительные ди­намические нагрузки.

Отмеченное преимущество косозубого зацепления становится особенно значительным в быстроходных передачах, так как динамические нагрузки возрастают пропорционально квадрату скорости.

Косозубые колеса могут работать без нарушения зацепления даже при коэффициенте торцового перекрытия εа<1, если обеспечено осевое перекрытие bw>pbt/tgβ (рис. 4.19, б). Отношение

εβ = (4.17)

называют коэффициентом осевого перекрытия. Рекомендуют принимать εβ 1,1.

В косозубом зацеплении нагрузка распределяется на всю суммарную длину контактных линий 1, 2, 3. Удельная нагрузка уменьшается с увеличением суммарной длины контактных линий /Е. С помощью рис. 4.18 нетрудно установить, что при εа, равном целому числу,

lz=bw ε a/cosβ (4.18)

и lz не изменяется при движении, так как уменьшению линий 1 всегда соответствует равное приращение линии 3. Точно так же lz постоянна при любом значении ε a, но при εβ равном целому числу. Если отмеченные



условия не соблюдаются, значение lz периодически измеряется, а формула (4.18) будет определять среднее значение, которое принимают за расчетное.


Рис. 4.19
В соответствии с формулой (4.18) lz растет с увеличением β, что выгодно. Однако во избежание больших осевых сил в зацеплении рекомендуют принимать β=8...2О°. Для шевронных колес допускают β до 30° и даже до 400.На боковой поверхности косого зуба линия контакта располагается под некоторым углом λ (рис. 4.19, б). Угол λ увеличивается с увеличением β. По линии контакта нагрузка распределяется неравномерно. Ее максимум на средней линии зуба, так как при зацеплении серединами зубья обладают максимальной суммарной жесткостью. •

При движении зуба в плоскости зацепления линия контакта перемещается в направлении от1 к 3 (рис. 4 19, б). При этом опасным для прочности может оказаться положение 1, в котором у зуба отламывается угол. Трещина усталости образуется у корня зуба в месте концентрации напряжений и затем распространяется под некоторым углом μ. Вероятность косого излома отражается на прочности зубьев по напряжениям изгиба, а концентрация нагрузки q — на прочности по контактным напряжениям.

С наклонным расположением контактной линии связана целесообразность изготовления косозубой шестерни из материала, значительно более прочного (высокотвердого), чем у колеса. Это объясняется следующим. Ножки зубьев обладают меньшей стойкостью против выкрашивания, чем головки, так как у них неблагоприятно сочетание направления скольжения и перекатывания зубьев. Следовательно, ножка зуба колеса, работающая с головкой зуба шестерни, начнет выкрашиваться в первую очередь. При этом, вследствие наклона контактной линии, нагрузка (полностью или частично) передается на головку зуба колеса, работающую с ножкой зуба шестерни. Слабая ножка зуба колеса разгружается и выкрашивание прекращается. Дополнительная нагрузка ножки зуба шестерни не опасна, так как она изготовлена из более стойкого материала. Применение высокотвердой шестерни позволяет дополнительно повысить нагрузочную способность косозубых передач до 25...30%.

^ Расчет коэффициента торцового перекрытия ε a. Для нефланкированных передач без смещения (для других случаев см. ГОСТ 16532).



(4.19)

Знак «+» для внешнего, а «—» для внутреннего зацепления. Для прямозубых передач рекомендуют ε a 1,2, для косозубых ε a > 1. Значение ε a зависит от числа зубьев z и угла наклона зубьев β.



Рис. 4.20

С увеличением z увеличивается ε a. Поэтому выгодно применять колеса с большими z или, при заданном диаметре d, колеса с малым модулем т. С увеличением β растет окружной шаг рbt а рабочая длина линии зацепления ga остается неизменной (см. выше). При этом ε a уменьшается. Уменьшение ε a является одной из причин ограничения больших β.

Силы в зацеплении. В косозубой передаче (рис. 4.20, а) нормальную силу Fn раскладывают на три составляющие:

окружную силу Ft=:2T1/d1,

осевую силу Fa = Ft tg ,

радиальную силу Fr = (4.20)

в свою очередь сила

Наличие в зацеплении осевых сил, которые дополнительно нагружают опоры валов, является недостатком косозубых колес. Этот недостаток устраняется в шевронной передаче (см. рис. 4.20, б), которая подобна сдвоенной косозубой передаче с противоположным направлением зубьев. Осевые силы здесь уравновешиваются на самом зубчатом колесе.

Расчет прочности зубьев по контактным напряжениям. Для косозубых передач удельная нагрузка с учетом формул (4.20) и (4.18):

,

где КHa — коэффициент неравномерности нагрузки одновременно зацепляющихся пар зубьев — см. ниже.

По аналогии с прямозубым колесом, выражая в формуле (4.9) значение dwl через диаметр эквивалентного колеса dv1 , получаем:

Сравнивая отношение q / pпр в формуле (4.7) для прямозубых [формулы (4.8) и (4.9)] и косозубых колес, находим

, или (4.21)

Обозначим - коэффициент повышения прочности косозубых передач по контактным напряжениям и соответствии с формулой (4.10) находим:

(4.22)


Таблица 4.3


Дополнительный коэффициент K Ha учитывает следующее. В косозубых передачах теоретически зацепляются одновременно не менее


Окружная

Степень







скорость

V, м/с

точности

Кна

К Fa.

До 5

7

1,03

1,07




8

1,07

1,22




9

1,13

1,35

Св. 5 до 10

7

1,05

1,2




8

1,10

1,3

» 10 » 15

7

1,08

1,25




8

1,15

1,40
двух пар зубьев. Практически ошибки нарезания зубьев могут устранить двухпарное зацепление, и при контакте одной пары между зубьями второй пары образуется зазор. Зазор мал, он зависит от степени точности. Под нагрузкой такой зазор устраняется вследствие упругих деформаций зубьев, двухпарное зацепле­ние восстанавливается. Однако пер­вая пара нагружена больше, чем вторая, на размер усилия, необходимого для устранения зазора. Это и учитывают коэффициентом КНа. Ошибки нарезания зубьев уменьшаются с приработкой. Интенсивность приработки зависит от твердости поверхностей зубьев и окружной скорости. Значения коэффициента КHa оценивают приближенно с учётом влияния перечисленных факторов. При этом различают KHa и KFa для расчётов по контактным напряжениям и по напряжениям изгиба (см. таблицу 4.3).

При проектном расчёте значения




Скачать 2,26 Mb.
оставить комментарий
страница7/19
Дата29.09.2011
Размер2,26 Mb.
ТипКонспект, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   10   ...   19
средне
  3
хорошо
  3
отлично
  25
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

наверх