«О некоторых применениях алгебры матриц» icon

«О некоторых применениях алгебры матриц»


Смотрите также:
Темы лекции включают в себя: матрицы, операции над матрицами: сложение, умножение на число...
Лекция 10
Программа дисциплины ен. Ф. 01 Математика (012500 (020401...
Программа дисциплины ен. Ф. 01 Математика (030500 (050501...
Лекция №14
С) Пупышев Алексей Валерьевич (alex p@gmx net)...
Специальная (частная) методика алгебры, алгебры и начал анализа...
Решение невырожденных линейных систем. Формулы Крамера...
Лабораторная работа 1 Методы решения задач линейной алгебры...
Рабочая учебная программа дисциплины специальности 1-43 01 02 “Электроэнергетические системы и...
Рабочая учебная программа дисциплины специальности 1-43 01 02 “Электроэнергетические системы и...
Ланкастер П. Теория матриц...



Загрузка...
скачать






МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Х.М. Бербекова


Математический факультет


Кафедра геометрии и высшей алгебры


Лакунова Залина

Дипломная работа


«О некоторых применениях алгебры матриц»


Научный руководитель:

д.ф.-м.н.,проф.каф. Г и В А /В.Н.Шокуев /


Рецензент:

к.ф.-м.н.,доцент /В.М.Казиев/


Допущена к защите 2002г.


Заведующий кафедрой

к.ф.-м.н.,доцент /А.Х.Журтов/


Нальчик 2002


Оглавление

стр.


Введение 3

§1. О правиле Крамера 4


§2. Применение циркулянтов малых порядков в теории чисел 9


§3. Матричный вывод формулы Кардано 17


Литература 21


Отзыв


О дипломной работе «О некоторых применениях алгебры матриц».

Студентки 6 курса МФ специальности «математика» Лакуновой З.


В данной дипломной работе рассматривается новые применения матриц в теории систем линейных уравнений, теории чисел и теории алгебраических уравнений малых степеней.

В §1 дается новый (матричный) вывод правила Крамера для решения любых квадратных систем линейных уравнений с неравным нулю определителем.

В §2 получено тождество (1) , которое используется для доказательства некоторых теоретико-числовых фактов (предложения 1-4); при этом основную роль играют матрицы- циркулянты и их определители. Здесь попутно доказана теорема о среднем арифметическом и среднем геометрическом трех положительных чисел.

В §3 дается новый вывод правила Кардано для решения кубических уравнений; его можно назвать «матричным выводом» , поскольку он опирается на свойства циркулянта (третьего порядка).

Считаю, что результаты получения в дипломной работе студентки Лакуновой З. удовлетворяют требованиям, предъявляемым к дипломным работам, и могут быть допущены к защите.

Предварительная оценка – «хорошо»


д.ф.-м.н., проф.каф. Г и ВА /В.Н.Шокуев/


§1. О правиле Крамера


В литературе известны разные способы решения Крамеровой системы линейных алгебраических уравнений. Один из них – матричный способ – состоит в следующем.

Пусть дана Крамерова система, т.е. квадратная система линейных уравнений с неизвестными


(1)


Определитель которой отличен от нуля:


(2)


Систему (1) можно представить в виде одного матричного уравнения


(3)


где - матрица коэффициентов при неизвестных системы (1),


(4)


- столбец (Матрица-столбец) неизвестных


- столбец свободных членов системы (1)


Так как , то матрица невырожденная и для нее существует обратная матрица . Умножив равенство (3) на (слева), получим (единственное) решение системы в следующей матричной форме (в предположении, что она совместима и - ее решение)

,

где обратная матрица имеет вид:




(-алгебраическое дополнение элемента в определителе )

Другой известный способ можно назвать методом алгебраических дополнений. Его использование предполагает владение понятием алгебраического дополнения как и в матричном способе, теоремой о разложении определителя по столбцу (строке), теоремами о замещении и об аннулировании.

Предлагаемый нами новый метод опирается на теорему Коши-Бине об определителе произведения матриц.

Суть этого метода можно понять легко, если сначала рассмотрим случай . Очевидно, что при выполняются следующие матричные равенства (если задана система (1)):











Переходя к определителям в этих равенствах и обозначив определители правых частей соответственно через получим формулы Крамера:


()

(Правило Крамера)

Переход к общему случаю Крамеровых систем (1) порядка ничего по существу не меняет. Просто следует заметить, что матрица с определителем получается из единичной матрицы заменой -го столбца столбцом неизвестных:


(5)


Теперь из равенств


,


где - матрица, получающаяся заменой - го столбца матрицы столбцом свободных членов системы (1), причем к формулам Крамера, взяв определители от обеих частей в каждом равенстве:


, откуда ввиду имеем


.

(здесь получается из , как и из ).

Другой, еще более короткий способ отыскания решения системы (1) состоит в следующем (по-прежнему ): пусть система (1) совместна и числа (после переобозначений) образуют ее решение. Тогда при имеем, используя два линейных свойства определителя:




Можно начать и с определителя , в котором вместо свободных членов в -м столбце подставлены их выражения согласно (1); используя соответствующие свойства определителя, получим:

(),

откуда и получаются формулы Крамера.


Замечание. Проверка того, что значения неизвестных, определяемые по формуле Крамера удовлетворяют системе (1), (т.е. образуют решение системы), производится одним из известных способов.


§2. Применение циркулянтов малых порядков в теории чисел.


Матрица вида:



- называется циклической матрицей или циркулянтом (третьего порядка), а ее определитель – циклическим определителем. Циклическим определителем некоторые авторы называют также циркулянтом.

Пусть дан циклический определитель (Циркулянт)

.

Прибавив первые две строки к третьей, получим:


.

Вынесем общий множитель из последней строки:


.

Так как


,

то

.

С другой стороны, по определению детерминанта имеем:



Следовательно, выполняется тождество


(1)

Имеет место следующее предложение.

Предложение 1. Уравнение

(2)

не имеет решений в натуральных числах

Доказательство: Если - вещественные положительные числа, не все равные между собой, то


(3)

Пусть - не все равные между собой положительные числа. Тогда существуют положительные числа и , не все равные между собой, такие, что . К этим числам применим тождество (1). Так как не все числа между собой равны, то последний сомножитель правой части тождества (1) есть число положительное и, следовательно,

,


. (4)

Так как , то неравенство (4) дает неравенство (3). (Неравенство (3) можно переписать в виде ; получим известный факт о том, что среднее арифметическое трех положительных, не равных между собой чисел больше их среднего геометрического).

Пусть и - натуральные числа, удовлетворяющие уравнению (2). Представляются две возможности: либо числа все равны между собой, либо не все эти числа равны друг другу.

В первом случае все они должны быть равны 1, так как она положительные и , и мы имели бы:

- противоречие.

Значит, не все три числа равны между собой; поэтому в силу неравенства (3) имеем


,

откуда

.

Таким образом, доказано что уравнение




не имеет решений в натуральных числах .


Предложение 2. Уравнение



разрешимо в натуральных числах .

Доказательство: удовлетворяют нашему уравнению. Если не все три числа между собой равны, то как мы видели в ходе доказательства Предложения (1), выполняется неравенство




- противоречие. Таким образом, должно быть , и из нашего уравнения следует, что каждое из этих чисел равно 1, так что .

Поэтому получаем


.

Итак, мы доказали, что заданное уравнение имеет бесконечно много решений в натуральных числах .


Предложение 3. Произведение двух чисел, каждое из которых является суммой двух квадратов, представимо в виде суммы двух квадратов.

Доказательство: Рассмотрим следующее произведение двух циклических матриц (второго порядка)




где - мнимая единица. Переходя к определителям, получим равенство


. (5)


Предложение 4. Если число представляемое в виде суммы двух квадратов, делится на простое число, являющееся суммой двух квадратов, то частное также является суммой двух квадратов.

Доказательство: Пусть число делится на простое число вида :

.

Требуется доказать, что частное имеет вид .

Предположим, что задача уже решена, т.е.


, (6)

и с помощью анализа попробуем найти искомые числа и . Гипотетическое равенство (6) подсказывает целесообразность рассмотрения матричных равенств.




и



перемножив правые части этих равенств, получим:







отсюда имеем:








(7)


(8)


. (9)


Так как - простое число и делит , то равенство (9) показывает, что или делится на .

Пусть . Тогда из тождества

,

верного в силу (5) следует, что на делится и число , а поскольку - простое, , так что в силу (7) - целое число. Таким образом, в рассматриваемом случае имеем:




и Предложение 4 доказано.

Если же , т.е. в силу (8) - целое, то, рассуждая как и выше, можем написать:


;

отсюда следует, что , т.е. - целое. В этом случае


.


§3. Матричный вывод формулы Кардано


В этом параграфе предлагается новый подход к выводу формулы Кардано для корней кубического произведения уравнения.

Пусть дано любое кубическое уравнение


. (1)

Если - его корень, то , поэтому

, т.е. есть корень уравнения, получающегося из (1) делением всех коэффициентов т правой части на , и обратно. Поэтому (1) эквивалентно уравнению.


. (2)

Таким образом, можно сказать, что решение любого кубического уравнения сводится к решению кубического уравнения со старшим коэффициентом, равным 1, т.е. уравнения вида


, (3)

которое получается из (2) после переобозначения коэффициентов; такое уравнение называется унитарным. Если к уравнению (3) применить подстановку

, (4)

получим:






, т.е.

, (5)

где и определяются по заданным коэффициентам уравнения (3). Уравнение (5) эквивалентно уравнению (3), поэтому достаточно научиться решать уравнения типа (5). В силу этого, обозначив через неизвестное, мы видим, что решение любого кубического уравнения вида


, (6)

называется приведенным или (неполным) кубическим уравнением. Покажем теперь, как можно найти все корни уравнения (6). Для этого заметим, что в силу тождества (1) §2, полученного с использованием циркулянта третьего порядка имеет место тождество


, (7)

где - любые числа, - один из корней третьей степени из единицы, так что (проверка тождества опирается на равенство ). Попробуем теперь отождествить наше уравнение (6) с уравнением

, (8)


т.е. положим




где и пока неизвестны. Чтобы вычислить их, имеем систему




которая показывает (в силу теоремы Виета), что и являются корнями квадратного уравнения



т.е.




и поэтому


(9)

Таким образом, уравнение (6) эквивалентно уравнению (8), в котором и определяются по формулам (9). В свою очередь, уравнение (8) в силу (7) равносильно уравнению




и теперь получаем:

(10)

где и определяются по (9). При этом надо иметь ввиду, что кубические корни из (9) имеют по три значения и их необходимо комбинировать с учетом равенства ; если одна пара значений и выбрана указанным образом, то все три корня определяются по формулам (10). Сказанное можно представить и по другому; можно сказать, что значения неизвестного определяются из равенства




т.е.


(11)

причем остается в силе сказанное относительно комбинаций значений этих кубических радикалов.

Формула (11) и есть знаменитая формула Кардано.


ЛИТЕРАТУРА


  1. Ф. Бахман, Э. Шмидт. n- угольник «Мир», М., 1973 г.

  2. Э. Чезаро. Элементарный учебник алгебраического анализа и исчисления бесконечно малых ч. 1 М.Л., 1936 г.

  3. В. Серпинский. 250 задач по элементарной теории чисел. М., 1968 г.

  4. Р. Курант, Г. Роббинс Что такое математика ? «Просвещение», М., 1967 г.

  5. А.Г. Курош. Курс высшей алгебры. М., Наука, 1976 г.

  6. Эдвардс. Теорема Ферма. Генетическое введение в алгебраическую теорию чисел. «Мир», М., 1980 г.






Скачать 117,25 Kb.
оставить комментарий
Дата29.03.2012
Размер117,25 Kb.
ТипЛитература, Образовательные материалы
Добавить документ в свой блог или на сайт

Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх