Учебно-методический комплекс по дисциплине «информационные технологии в математике» для дневного отделения специальность icon

Учебно-методический комплекс по дисциплине «информационные технологии в математике» для дневного отделения специальность


Смотрите также:
Учебно-методический комплекс по дисциплине «история политических и правовых учений» (для...
Учебно-методический комплекс по дисциплине «проектирование информационых систем» для дневного...
Учебно-методический комплекс по дисциплине «теория и методика обучения математике» (для дневного...
Учебно-методический комплекс для студентов специальности «Реклама» Санкт-Петербург...
Учебно-методический комплекс по дисциплине «информатика» для дневного отделения...
Учебно-методический комплекс по дисциплине «программное обеспечение эвм» для дневного отделения...
Учебно-методический комплекс по поддержке курса «информационные технологии в математике» 2...
Учебно-методический комплекс по дисциплине «Информационные технологии в управлении»...
Учебно-методический комплекс по дисциплине...
Учебно-методический комплекс для студентов дневного и заочного отделения по специальностям...
Учебно-методический комплекс по этнологии для дневного отделения Составитель...
Учебно методический комплекс по истории древнего мира для дневного отделения...



Загрузка...
страницы: 1   ...   6   7   8   9   10   11   12   13   14
вернуться в начало
скачать
^

  ЛЕКЦИЯ №5. ОСНОВЫ РАБОТЫ С MAPLE



Вопросы:

  1. Структура окна.

  2. Арифметические операции, числа, константы и стандартные функции.

  3. Элементарные преобразования математических выражений.

  4. Функции в Maple.

  5. Операции оценивания.

  6. Решение уравнений.



Введение

Maple - это пакет для аналитических вычислений на компьютере, содержащий более двух тысяч команд, которые позволяют решать задачи алгебры, геометрии, математического анализа, дифференциальных уравнений, статистики, математической физики.

Для того, чтобы запустить Maple, необходимо в Главном меню Windows выбрать в группе Программы название данного приложения: Maple.


§1. Структура окна Maple

Maple представляет собой типичное окно Windows, которое состоит из Строки названия, Основного меню, Панели инструментов, Рабочего поля и Строки состояния, а также Линейки и Полос прокрутки.

Пункты Основного меню:

File (Файл) - содержит стандартный набор команд для работы с файлами, например: сохранить файл, открыть файл, создать новый файл и т.д.

Edit (Правка) - содержит стандартный набор команд для редактирования текста, например: копирование, удаление выделенного текста в буфер обмена, отмена команды и т.д.

View (Вид) – содержит стандартный набор команд, управляющих структурой окна Maple.

Insert (Вставка) – служит для вставки полей разных типов: математических текстовых строк, графических двух и трехмерных изображений.

Format (Формат) – содержит команды оформления документа, например: установка типа, размера и стиля шрифта.

Options (Параметры) – служит для установки различных параметров ввода и вывода информации на экран, принтер, например, таких как качество печати.

Windows (Окно) – служит для перехода из одного рабочего листа в другой.

Help (Справка) – содержит подробную справочную информацию о Maple.

Работа в Maple проходит в режиме сессии – пользователь вводит предложения (команды, выражения, процедуры), которые воспринимаются условно и обрабатываются Maple. Рабочее поле разделяется на три части:

  1. область ввода - состоит из командных строк. Каждая командная строка начинается с символа >;

  2. область вывода - содержит результаты обработки введенных команд в виде аналитических выражений, графических объектов или сообщений об ошибке;

  3. область текстовых комментариев - содержит любую текстовую информацию, которая может пояснить выполняемые процедуры. Текстовые строки не воспринимаются Maple и никак не обрабатываются.

Для того, чтобы переключить командную строку в текстовую, следует на Панели инструментов нажать мышью на кнопку Т.

Обратное переключение текстовой строки в командную осуществляется нажатием на Панели инструментов на кнопку [>.


§2. Арифметические операции, числа, константы и стандартные функции


2.1. Математические константы и арифметические операции.

Основные математические константы:

Pi – число ; I – мнимая единица i; infinity – бесконечность; Gamma – константа Эйлера; true, false – логические константы, обозначающие истинность и ложность высказывания.

Знаки арифметических операций:

+ - сложение; – - вычитание;

* - умножение; / - деление;

^ - возведение в степень; ! – факториал.

Знаки сравнения: <, >, >=,<=, <>, =.


2.2. Комплексные, целые и рациональные числа.

Числа в Maple бывают действительные (real) и комплексные (compleх). Комплексное число записывается в алгебраической форме z=x+iy, и в командной строке такая запись должна выглядеть так:

> z:=x+I*y;

Вещественные числа разделяются на целые и рациональные. Целые числа (integer) выражаются цифрами в десятичной записи. Рациональные числа могут быть представлены в 3-х видах:

  1. рациональной дроби с использованием оператора деления, например: 28/70;

  2. с плавающей запятой (float), например: 2.3;

  3. в показательной форме, например: 1,602*10^(-19) означает 1,602× 10-19.

Для того, чтобы получить рациональное число не в точной форме, а в виде приближенного значения (числа с плавающей запятой), следует дописывать к целой части числа .0.

В Maple можно записать буквы греческого алфавита в полиграфическом виде. Для этого в командной строке набирается название греческой буквы. Например, буква получится, если набрать alpha.

Заглавные греческие буквы можно записать, если набирать название греческой буквы с заглавной, например, чтобы получить , следует набрать Omega. Греческие буквы также можно набирать с помощью специального меню.


2.3. Синтаксис команд. Стандартные функции

Стандартная команда Maple состоит из имени команды и ее параметров, указанных в круглых скобках: command(p1, p2, …). В конце каждой команды должен быть знак (;) или (:). Разделитель (;) означает, что в области вывода после выполнения этой команды будет сразу виден результат. Разделитель (:) используется для отмены вывода, то есть когда команда выполняется, но ее результат на экран не выводится.

Символ процента (%) служит для вызова предыдущей команды. Этот символ играет роль краткосрочной замены предыдущей команды с целью сокращения записи.

Для присвоения переменной заданного значения используется знак присвоить (:=).

Когда программа Maple запускается, она не имеет ни одной команды, полностью загруженной в память. Большая часть команд имеют указатели их нахождения, и при вызове они загружаются автоматически. Другие команды находятся в стандартной библиотеке и перед выполнением обязательно должны быть вызваны командой readlib(command), где command – имя вызываемой команды. Остальная часть процедур Maple содержится в специальных библиотеках подпрограмм, называемых пакетами. Пакеты необходимо подгружать при каждом запуске файла с командами из этих библиотек. Имеется два способа вызова команды из пакета:

  1. можно загрузить весь пакет командой with(package) где package – имя пакета;

  2. вызов какой-нибудь одной команды command из любого пакета package можно осуществить, если набрать команду в специальном формате:

package[command](options);

где вначале записывается название пакета package, из которого надо вызвать команду, а затем в квадратных скобках набирается имя самой команды command, и после чего в круглых скобках следуют параметры options данной команды.

К библиотекам подпрограмм Maple относятся, например, следующие пакеты: linalg – содержит операции линейной алгебры; geometry – решение задач планиметрии; geom3d – решение задач стереометрии; student – содержит команды, позволяющие провести поэтапное решение задачи в аналитическом виде с промежуточными вычислениями.

 

Стандартные функции.

Приведем некоторые из них.

Стандартные функции Maple

Математическая запись

Запись в Maple



exp(x)



ln(x)



log10(x)



log[a](x)



sqrt(x)



abs(x)



sin(x)



cos(x)



tan(x)



cot(x)



arcsin(x)



arccos(x)



arctan(x)



arccot(x)

Maple содержит огромное количество специальных функций, таких, как Бесселевы функции, Эйлеровы бета- и гамма – функции, интеграл ошибок, эллиптические интегралы, различные ортогональные полиномы.

С помощью функции exp(x) определяется число е=2.718281828… посредством записи exp(1).


§3. Элементарные преобразования математических выражений

Maple обладает широкими возможностями для проведения аналитических преобразований математических формул. К ним относятся такие операции, как приведение подобных, разложение на множители, раскрытие скобок, приведение рациональной дроби к нормальному виду и многие другие.

 

^ Выделение частей выражений.

Математическая формула, над которой будут производиться преобразования, записывается в следующей форме: > eq:=exp1=exp2; где eq – произвольное имя выражения, exp1 – условное обозначение левой части формулы, exp2 – условное обозначение правой части формулы.

Выделение правой части выражения осуществляется командой rhs(eq), выделение левой части выражения – командой lhs(eq).


^ Тождественные преобразования выражений.

Раскрытие скобок выражения eq осуществляется командой expand(eq).

Разложение многочлена на множители осуществляется командой factor(eq).

Дробь можно привести к нормальному виду с помощью команды normal(eq).

Упрощение выражений осуществляется командой simplify(eq).

Приведение подобных членов в выражении осуществляется командой collect(exp,var), где exp – выражение, var – имя переменной, относительно которой следует собирать подобные. В команде simplify в качестве параметров можно указать, какие выражения преобразовывать. Например, при указании simplify(eq,trig) будет производиться упрощение при использовании большого числа тригонометрических соотношений. Стандартные параметры имеют названия: power – для степенных преобразований; radical или sqrt – для преобразования корней; exp – преобразование экспонент; ln – преобразование логарифмов. Использование параметров намного увеличивает эффективность команды simplify.

Объединить показатели степенных функций или понизить степень тригонометрических функций можно при помощи команды combine(eq,param), где eq – выражение, param – параметры, указывающие, какой тип функций преобразовать, например, trig – для тригонометрических, power – для степенных.

С помощью команды convert(exp, param), где exp – выражение, которое будет преобразовано в указанный тип param. В частности, можно преобразовать выражение, содержащее sinx и cosx, в выражение, содержащее только tgx, если указать в качестве параметра tan, или, наоборот, tgx, ctgx можно перевести в sinx и сosx, если в параметрах указать sincos.

Вообще, команда convert имеет более широкое назначение. Она осуществляет преобразование выражения одного типа в другой. Например: convert(list, vector) – преобразование некоторого списка list в вектор с теми же элементами; convert(expr, string) – преобразование математического выражения в его текстовую запись.

Если вы забыли параметры какой-либо команды, то можно воспользоваться справочной системой Maple. Для вызова справки по конкретной команде, следует выделить набранное имя этой команды и нажать клавишу F1. Если команда набрана правильно, то появится описание этой команды (в большинстве версий Maple помощь на английском языке).


§4. Функции в Maple

В Maple имеется несколько способов представления функции.

  Способ 1. Определение функции с помощью оператора присваивания (:=): какому-то выражению присваивается имя, например:

> f:=sin(x)+cos(x);



Если задать конкретное значение переменной х, то получится значение функции f для этого х.

Чтобы насовсем не присваивать переменной конкретного значения, удобнее использовать команду подстановки subs({x1=a1, x2=a2,…, },f), где в фигурных скобках указываются переменные хi и их новые значения аi (i=1,2,…), которые следует подставить в функцию f .

Все вычисления в Maple по умолчанию производятся символьно, то есть результат будет содержать в явном виде иррациональные константы, такие как, и другие. Чтобы получить приближенное значение в виде числа с плавающей запятой, следует использовать команду evalf(expr,t), где expr – выражение, t – точность, выраженная в числах после запятой.

  Способ 2. Определение функции с помощью функционального оператора, который ставит в соответствие набору переменных (x1,x2,…) одно или несколько выражений (f1,f2,…). Например, определение функции двух переменных с помощью функционального оператора выглядит следующим образом:

> f:=(x,y)->sin(x+y);



Обращение к этой функции осуществляется наиболее привычным в математике способом, когда в скобках вместо аргументов функции указываются конкретные значения переменных.

  Способ 3. С помощью команды unapply(expr,x1,x2,…), где expr – выражение, x1,x2,… – набор переменных, от которых оно зависит, можно преобразовать выражение expr в функциональный оператор.

В Maple имеется возможность определения неэлементарных функций вида



посредством команды

> piecewise(cond_1,f1, cond_2, f2, …).

§5. Операции оценивания

Оценивание вещественных выражений.

В Maple имеются следующие команды оценивания вещественных выражений:

frac(expr) – вычисление дробной части выражения expr;

trunc(expr) – вычисление целой части выражения expr;

round(expr) – округление выражения expr;

 

Оценивание комплексных выражений.

Вещественную и мнимую части комплексного выражения z=x+iy можно найти с помощью команд Re(z) и Im(z).

Если z=x+iy, то комплексно сопряженное ему выражение w=z*=x–iy можно найти с помощью команды conjugate(z).

Модуль и аргумент комплексного выражения z можно найти с помощью команды polar(z), которую необходимо предварительно вызвать из стандартной библиотеки командой readlib.

Если комплексное выражение очень сложное или содержит параметры, то команды Re(z) и Im(z) не дают требуемого результата. Получить вещественную и мнимую части комплексного выражения z можно, если использовать команду преобразования комплексных выражений evalc(z).


§6. Решение уравнений

Решение обыкновенных уравнений.

Для решения уравнений в Maple существует универсальная команда solve(eq,x), где eq – уравнение, x – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появится выражение, которое является решением данного уравнения.

Если уравнение имеет несколько решений, которые вам понадобятся для дальнейших расчетов, то команде solve следует присвоить какое-нибудь имя name. Обращение к какому-либо k–ому решению данного уравнения производится указанием его имени с номером решения k в квадратных скобках: name[k].

 

Решение систем уравнений.

Системы уравнений решаются с помощью такой же команды solve({eq1,eq2,…},{x1,x2,…}), только теперь в параметрах команды следует указывать в первых фигурных скобках через запятую уравнения, а во вторых фигурных скобках перечисляются через запятую переменные, относительно которых требуется решить систему. Если вам будет необходимо для дальнейших вычислений использовать полученные решения уравнений, то команде solve следует присвоить какое-нибудь имя name. Затем выполняется присвоения команда assign(name). После этого над решениями можно будет производить математические операции.

 

Численное решение уравнений.

Для численного решения уравнений, в тех случаях, когда трансцендентные уравнения не имеют аналитических решений, используется специальная команда fsolve(eq,x), параметры которой такие же, как и команды solve.

 

Решение рекуррентных и функциональных уравнений.

Команда rsolve(eq,f) позволяет решить рекуррентное уравнение eq для целой функции f. Можно задать некоторое начальное условие для функции f(n), тогда получится частное решение данного рекуррентного уравнения.

Универсальная команда solve позволяет решать функциональные уравнения.

В результате получается решение в неявном виде. Однако Maple может работать с такими решениями. Неявное решение функционального уравнения можно попытаться преобразовать в какую-либо элементарную функцию с помощью команды convert.

 

Решение тригонометрических уравнений.

Команда solve, примененная для решения тригонометрического уравнения, выдает только главные решения, то есть решения в интервале . Для того, чтобы получить все решения, следует предварительно ввести дополнительную команду _EnvAllSolutions:=true.

  Решение трансцендентных уравнений.

При решении трансцендентных уравнений для получения решения в явном виде перед командой solve следует ввести дополнительную команду _EnvExplicit:=true.






оставить комментарий
страница12/14
Г.С. Сабитова
Дата04.03.2012
Размер1.22 Mb.
ТипУчебно-методический комплекс, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   ...   6   7   8   9   10   11   12   13   14
плохо
  1
хорошо
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх