скачать ^ Методические указания по темеЗадача 1. По условным данным таблицы 10 о стоимости основных фондов х и валовом выпуске продукции у (в порядке возрастания стоимости основных фондов) выявить наличие и характер корреляционной связи между признаками x и y. Таблица 10. Стоимость основных фондов и валовой выпуск по 10 однотипным предприятиям
Решение. Для выявления наличия и характера корреляционной связи между двумя признаками в статистике используется ряд методов. 1 ![]() ^ Рассмотрение параллельных данных (значений x и y в каждой из n единиц). Единицы наблюдения располагают по возрастанию значений факторного признака х и затем сравнивают с ним (визуально) поведение результативного признака у. В нашей задаче в большинстве случаев по мере увеличения значений x увеличиваются и значения y (за несколькими исключениями – 2 и 3, 6 и 7 предприятия), поэтому, можно говорить о прямой связи между х и у (этот вывод подтверждает и эмпирическая линия регрессии). Теперь необходимо ее измерить, для чего рассчитывают несколько коэффициентов. ^ Коэффициент корреляции знаков (Фехнера) – простейший показатель тесноты связи, основанный на сравнении поведения отклонений индивидуальных значений каждого признака (x и y) от своей средней величины. При этом во внимание принимаются не величины отклонений ( ![]() ![]() ![]() Очевидно, что если знаки всех отклонений по каждому признаку совпадут, то КФ=1, что характеризует наличие прямой связи. Если все знаки не совпадут, то КФ=–1 (обратная связь). Если же С=Н, то КФ=0. Итак, как и любой показатель тесноты связи, коэффициент Фехнера может принимать значения от 0 до ![]() В нашей задаче ![]() ![]() В двух последних столбцах таблицы 10 приведены знаки отклонений каждого х и у от своей средней величины. Число совпадений знаков – 9, а несовпадений – 1. Отсюда КФ= ![]() ^ Линейный коэффициент корреляции применяется в случае линейной зависимости между двумя количественными признаками x и y. В отличие от КФ в линейном коэффициенте корреляции учитываются не только знаки отклонений от средних величин, но и значения самих отклонений, выраженные для сопоставимости в единицах среднего квадратического отклонения t: ![]() ![]() Линейный коэффициент корреляции r представляет собой среднюю величину из произведений нормированных отклонений для x и у: ![]() ![]() Числитель формулы (2), деленный на n, т.е. ![]() ![]() Линейный коэффициент корреляции может принимать значения от –1 до +1, причем знак определяется в ходе решения. Например, если ![]() ![]() В нашей задаче для расчета r построим вспомогательную таблицу 11. Таблица 11. Вспомогательные расчеты линейного коэффициента корреляции
В нашей задаче: ![]() ![]() ![]() ![]() ^ Интерпретируя значение коэффициента корреляции, следует иметь в виду, что он рассчитан для ограниченного числа наблюдений и подвержен случайным колебаниям, как и сами значения x и y, на основе которых он рассчитан. Другими словами, как любой выборочный показатель, он содержит случайную ошибку и не всегда однозначно отражает действительно реальную связь между изучаемыми показателями. Для того, чтобы оценить существенность (значимость) самого r и, соответственно, реальность измеряемой связи между х и у, необходимо рассчитать среднюю квадратическую ошибку коэффициента корреляции σr. Оценка существенности (значимости) r основана на сопоставлении значения r с его средней квадратической ошибкой: ![]() Существуют некоторые особенности расчета σr в зависимости от числа наблюдений (объема выборки) – n.
![]() Обычно, если ![]() ![]()
![]() а значимость r проверяется на основе t-критерия Стьюдента, для чего определяется расчетное значение критерия по формуле (2) и сопоставляется c tТАБЛ. ![]() Табличное значение tТАБЛ находится по таблице распределения t-критерия Стьюдента (см. приложение 2) при уровне значимости α=1-β и числе степеней свободы ν=n–2. Если tРАСЧ> tТАБЛ , то r считается значимым, а связь между х и у – реальной. В противном случае (tРАСЧ< tТАБЛ) считается, что связь между х и у отсутствует, и значение r, отличное от нуля, получено случайно. В нашей задаче число наблюдений небольшое, значит, оценивать существенность (значимость) линейного коэффициента корреляции будем по формулам (2) и (2): ![]() ![]() 5. Подбор уравнения регрессии представляет собой математическое описание изменения взаимно коррелируемых величин по эмпирическим (фактическим) данным. Уравнение регрессии должно определить, каким будет среднее значение результативного признака у при том или ином значении факторного признака х, если остальные факторы, влияющие на у и не связанные с х, не учитывать, т.е. абстрагироваться от них. Другими словами, уравнение регрессии можно рассматривать как вероятностную гипотетическую функциональную связь величины результативного признака у со значениями факторного признака х. Уравнение регрессии можно также назвать теоретической линией регрессии. Рассчитанные по уравнению регрессии значения результативного признака называются теоретическими. Они обычно обозначаются ![]() ![]() ![]() ![]() Найти в каждом конкретном случае тип функции, с помощью которой можно наиболее адекватно отразить ту или иную зависимость между признаками х и у, — одна из основных задач регрессионного анализа. Выбор теоретической линии регрессии часто обусловлен формой эмпирической линии регрессии; теоретическая линия как бы сглаживает изломы эмпирической линии регрессии. Кроме того, необходимо учитывать природу изучаемых показателей и специфику их взаимосвязей. Для аналитической связи между х и у могут использоваться следующие простые виды уравнений: ![]() ![]() ![]() ![]() ![]() Обычно зависимость, выражаемую уравнением прямой, называют линейной (или прямолинейной), а все остальные — криволинейными зависимостями. Выбрав тип функции, по эмпирическим данным определяют параметры уравнения. При этом отыскиваемые параметры должны быть такими, при которых рассчитанные по уравнению теоретические значения результативного признака ![]() Существует несколько методов нахождения параметров уравнения регрессии. Наиболее часто используется метод наименьших квадратов (МНК). Его суть заключается в следующем требовании: искомые теоретические значения результативного признака ![]() ![]() Поставив данное условие, легко определить, при каких значениях ![]() ![]() ![]() Исходные данные и все расчеты необходимых сумм представим в таблице 12. Таблица 12. Вспомогательные расчеты для решения задачи
![]() ![]() ![]() ![]() ![]() ![]() ![]() Отсюда искомая линия регрессии: ![]() ![]() Рис.6. График эмпирической и теоретической линий регрессии. ^ Теоретическое корреляционное отношение представляет собой универсальный показатель тесноты связи. Измерить тесноту связи между коррелируемыми величинами – это значит определить, насколько вариация результативного признака обусловлена вариацией факторного признака. Ранее были рассмотрены показатели, с помощью которых можно выявить наличие корреляционной связи между двумя признаками x и y и измерить тесноту этой связи: коэффициент Фехнера и линейный коэффициент корреляции. Наряду с ними существует универсальный показатель – корреляционное отношение (или коэффициент корреляции по Пирсону), применимое ко всем случаям корреляционной зависимости независимо от формы этой связи. Следует различать эмпирическое и теоретическое корреляционные отношения. Эмпирическое корреляционное отношение рассчитывается на основе правила сложения дисперсий как корень квадратный из отношения межгрупповой дисперсии к общей дисперсии, т.е. ![]() Теоретическое корреляционное отношение ![]() ![]() ![]() ![]() ![]() ![]() ![]() Сравнивая вторую дисперсию с первой, получим теоретический коэффициент детерминации: ![]() который показывает, какую долю в общей дисперсии результативного признака занимает дисперсия, выражающая влияние вариации фактора x на вариацию y. Извлекая корень квадратный из коэффициента детерминации, получаем теоретическое корреляционное отношение: ![]() Оно может находиться в пределах от 0 до 1. Чем ближе его значение к 1, тем теснее связь между вариацией y и x. При ![]() ![]() ![]() ![]() ![]() В нашей задаче расчет необходимых сумм для использования в формуле (2) приведен в последних двух столбцах таблицы 12. Тогда теоретический коэффициент детерминации по формуле (2) равен: ![]() Теоретическое корреляционное отношение по формуле (2) равно: ![]() ![]() ^ На основе исходных данных контрольных заданий по теме 2 определить наличие и характер корреляционной связи между признаками x и y 6-ю методами.
|