Основные сведения о трении и смазке icon

Основные сведения о трении и смазке


1 чел. помогло.
Смотрите также:
Указания по заполнению форм федерального статистического...
Бакрадзе И. И., Шилакадзе М. Е...
Программа вступительного экзамена в аспирантуру по специальности 05. 26...
1. Основные сведения об оценке общеобразовательной подг отовки выпускников по физике в 2010 году...
Как правило, начальный книжный лист изданий, на котором размещают основные выходные сведения...
Как правило, начальный книжный лист изданий, на котором размещают основные выходные сведения...
Деформация и разрушение модифицированных ионными пучками материалов при трении...
Доклад подготовлен управленческой командой школы, в нём представлены общие сведения о школе...
Основные сведения...
Отделения российской академии наук основные направления исследований...
Государственный стандарт гост 83-2001 «Электронные издания. Основные виды и выходные сведения»...
Курс физики: учеб пособие для техн спец вузов / Т. И. Трофимова. 7-е изд., стер. М.: Высш школа...



страницы:   1   2   3   4   5
Содержание


Введение………………………………………………………………………...4

  1. Основные сведения о трении и смазке……………………………….5

  2. Устройство маслосистем………………………………………………20

2.1. Типичные схемы циркуляционных систем………………….….….25

  1. Условия работы авиационных масел…………………………….……27

3.1. Общие требования к маслам………………………………………..28

3.2. Основные сведения о производстве масел ……………………......29

3.3. Получение основ нефтяных масел…………………………………29

3.4. Синтетические базовые масла………………………………………35

3.5. Кремнийорганические соединения…………………………………37

  1. Присадки к авиационным маслам и механизмы их поведения

в составе товарных продуктов……………………………………………….41

4.1. Вязкостные свойства масел…………………………………….…..41

4.2. Смазывающая способность масел…………………………………46

4.3. Стабильность масел………………………………………………...48

  1. Условия работы масел в ТРД…………………………………………51

  2. Особенности смазки ТВД………………………………………….....53

  3. Масла для вертолетов…………………………………………………54

  4. Изменение физико-химических свойств масла во время рабо-

ты в реактивном двигателе…………………………………………..…….54

9. Масла для авиационных поршневых двигателей. Условия работы масла в поршневом двигателе……………………………………………....57

9.1. Изменение свойств масла при работе поршневого двигателя…....58

10. Ассортимент авиационных масел для ГТД отечественного производства……………………………………………………….………..63

10.1. Минеральные масла………………………………………………..63

10.2. Синтетические масла………………………………………………64

11. Зарубежные аналоги отечественных авиамасел, использующиеся

на рынке…………………………………………………………………..66

12. Унификация ассортимента авиационных масел………….………..68

13. Комплекс методов квалификационной оценки масел для ГТД…...70

  1. Гидравлические жидкости…………………………………….….....72

14.1. Общие требования и свойства…………………………………….73

Литература……………………………………………................................…81


Введение

Главным назначением смазки любого механизма является уменьшение износа трущихся деталей и уменьшение мощности, которая затрачивается на это. Кроме этого смазывающие материалы отводят тепло от нагретых узлов двигателя, предохраняют детали машин от коррозии, очищают пространство между трущимися поверхностями от продуктов износа, механических примесей и т.д.

Чтобы правильно подобрать и применить масло, необходимо прежде всего знать основные закономерности процессов трения и изнашивания деталей машин, знать условия , в которых работают масла, их качество, состав и возможные изменения качества и состава масел при работе двигателя и других машин и агрегатов.

В начале ХХ века, когда разработка автомобильных и авиационных двигателей носила революционный характер, главной заботой конструкторов двигателей было обеспечить их работоспособность хотя бы на короткое время. Вопрос обеспечения долговечности двигателей в тот период не был первоочередным, так как даже к моменту окончания первой мировой войны, где двигатели прошли апробацию и вполне обеспечили решение боевых задач, ресурс авиационных двигателей составлял всего 18-24 часа, а максимальный у американского двигателя «Либерти» - 100 часов. Ресурс автомобильных двигателей был выше, но не превышал 300 часов. В 1934 г Советское правительство поставило задачу разработать двигатель ГАЗ А ( его прототип Форд А) с межремонтным ресурсом 10 000 км.

Ресурс двигателей того периода ограничивался износом коленчатого вала и гильз цилиндров, а закономерности износа выявлялись с трудом. Так, известный исследователь Х. Риккардо в 1933 г. Говорил о том, что наиболее неприятной и наименее понятной неполадкой является выкрашивание баббита в шатунных подшипниках. Загадочно для автора не само выкрашивание, а массовость и непостоянство этого явления. Трудно объяснимым является не столько выкрашивание подшипников, сколько полное отсутствие подобных неполадок у некоторых фирм, и чем глубже исследовать экспериментальный материал, тем загадочнее и противоречивее представляется вся эта проблема. Теоретическое обоснование процесса всех видов износа тогда отсутствовало, и А.К. Зайцев, поставив задачу обобщить весь известный материал по этому вопросу, писал о том, что если по гидродинамической теории трения и смазки имеется ценный и оригинальный материал, то проблема трения и износа машин и механизмов еще совершенно не объединены; имеются лишь отдельные разрозненные работы и статьи в периодической литературе и в сборниках трудов специальных конференций.

«Загадочность» проблемы износа двигателей во многом объясняется тем, что она выходит за рамки звена конструктор двигателя – производитель масел. Большое, а в рассматриваемый период, возможно, решающее значение имели особенности эксплуатации техники. Недостаточная квалификация специалистов в области эксплуатации, их слабые знания в вопросах смазки деталей и механизмов, недостаточное техническое обслуживание двигателей и т.п. – один из потенциальных источников возникновения проблемы. Не обобщая опыт эксплуатации, конструктор двигателя не имел обратной связи и не мог учесть при разработке его эксплуатационные особенности. Сколь велики «накладки», обусловленные некачественной эксплуатацией двигателей, можно судить по некоторым публикациям рассматриваемого периода. Файнгар М. заместитель редактора научно-технического бюллетеня Органефти отмечал, что не всегда получается удовлетворительный результат эксплуатации. Здесь главная причина кроется в малоквалифицированном обращении с машинами, подчас в безобразной эксплуатации этих машин и в большей степени – в неумении правильно хранить и применять нефтепродукты. Мы имеем многочисленные факты того, как аварии тракторов, автомашин и другой автомобильной техники с легкостью объясняются только низким качеством нефтепродуктов.

Главная беда не в том, что технические нормы (на нефтепродукты) у нас недостаточно жестки, главная беда в другом, - что как керосин, так и автолы заправляются в плохо отремонтированные трактора, в подшипники которых залиты суррогатным баббитом, в трактора, картеры которых даже после ремонта остаются грязными, т.е содержат большое количество грязи, песка, волокон от обтирочных материалов и т.п.

Беда в том, что автолы перед заправкой не фильтруются и вместе с ними в мотор попадает грязь, вода, солома, кусочки тряпок, бумаги и т.п. Сетки для масла для ускорения фильтрации пробиваются гвоздями.

В 1937 г. А.Г. Попич рекомендовал перед заливом автола в картер двигателя масло обязательно профильтровывать через сетку во избежание попадания в двигатель механических примесей, могущих привести к прекращению подачи масла к подшипникам и ускоренному износу как подшипников, так и поршневой группы.

Интересный случай описал К.К. Папок, ссылаясь на конструктора А.С. Яковлева. Он пишет, что известный конструктор Ильюшин на яковлевском самолете потерпел аварию. При свидании с конструктором он сказал: «Саша, к тебе претензий нет. Самолет замечательный, но, оказывается, мотор без масла не работает. Авария произошла по вине техника, который забыл заправить самолет маслом.


^ 1. Основные сведения о трении и смазке


По мере накопления опыта эксплуатации двигателей и совершенствования их конструкций появились более четкие критерии оценки качества авиационных масел, которые были призваны обеспечить увеличение рабочего ресурса двигателя и его работы в форсированных, более напряженных условиях, которые были необходимы для создания современных летательных аппаратов как с использованием турбовинтовых, так и турбореактивных двигателей.

Для решения всего комплекса задач, стоящих перед конструкторами и эксплуатационниками двигателей летательных аппаратов (ЛА) следует как можно точнее знать условия работы масла в двигателе и агрегатах ЛА, режимы, характерные для условий их трения, поведение масел в условиях взаимодействия с конструкционными материалами в широком интервале рабочих параметров.

Одним из основополагающих направлений изучения работы масел в двигателях является определение основных закономерностей процессов их трения и износа.

При работе деталей машин различают три принципиально отличные друг от друга вида трения: жидкостное, граничное и сухое трение.

Когда две движущиеся друг по другу поверхности разделены слоем масла, возникает жидкостное трение, т.е. трение между слоями и молекулами масла. Коэффициент жидкостного трения лежит в пределах 0,001-0,010. К пленке масла, разделяющей движущиеся детали, могут быть применимы законы гидродинамики, причем вязкость масла является в данном случае основным фактором.

Петров Н.П, основываясь на законе И.Ньютона (для трения жидких тел) и на своих многочисленных опытах, впервые математически описал закон жидкостного трения и предложил для практического пользования упрощенную формулу:

η S v где: F – сила жидкостного трения, Н;

(1) F= --------- η – абсолютная вязкость масла, Н•сек/м2;

h v - скорость перемещения трущихся

поверхностей, м/сек;

S – площадь соприкасающихся трущихся

тел, м2 ;

h –толщина смазочного слоя, м.

Из приведенной формулы видно, что при жидкостной смазке (гидродинамический режим смазки), трение в подшипнике зависит, в основном, от вязкости масла и не зависит ни от материала деталей подшипника, ни от состояния трущихся поверхностей.

При жидкостном трении надежность смазки возрастает с увеличением скорости вращения трущихся поверхностей и с увеличением вязкости масла, что можно видеть, подставив в уравнение 1 величину силы трения, выраженную через коэффициент трения и приложенную нагрузку:

(2) F=Nf, где: N- приложенная сила, нормальная к поверхности тре-

ния Н;

f – коэффициент трения.


Тогда выражение (1) примет следующий вид:

η S v

N = ---------.

hf

С другой стороны, с увеличением скорости движения трущихся поверхностей и вязкости масла увеличивается и сила трения [уравнение (1)], т.е. возрастают потери мощности на трение. Это противоречие разрешается путем подбора масла надлежащей вязкости: для быстро вращающегося вала в подшипнике берут масло меньшей вязкости, для медленно вращающегося – большей вязкости. Гидродинамический режим смазки является наиболее приемлемым для трущихся деталей, т.к. он обеспечивает малый износ деталей и малые потери мощности на трение.

При повышении нагрузки на масляную пленку при понижении вязкости масла или снижении скорости движения поверхностей уменьшается толщина пленки.

С уменьшением толщины масляной пленки наступает момент, когда через пленку начнут проступать отдельные неровности, имеющиеся на поверхности, приводящие к контакту трущихся поверхностей. Наступает граничный режим смазки. С увеличением числа контактируемых точек область граничной смазки будет постепенно расширяться за счет уменьшения жидкостной смазки. Такое состояние, когда наряду с жидкостной смазкой имеет место и граничная смазка, принято называть полужидкостной или смешанной смазкой.

В условиях граничной смазки основные характеристики трения износа определяются состоянием тонкой, адсорбированной на поверхностях трения масляной пленки. Устойчивость таких граничных слоев масла при трении зависит от свойства, называемого маслянистостью, природа которого еще недостаточно изучена. Это тончайшие слои смазки очень прочно связаны с металлическими поверхностями адсорбционными силами.

Исследование тонких смазочных слоев показали, что масло в этих слоях коренным образом отличается от масла в объемных условиях. Эти пленки ведут себя как пластичные тела, имеющие определенную величину напряжения сдвига. Они обладают способностью расклинивающего действия. Эффект расклинивания состоит в том, что в тонких граничных слоях развивается давление не только препятствующее сближению поверхностей, на которые нанесена пленка, но и стремящееся его раздвинуть. Давление это растет с уменьшением зазора. Расклинивающее действие увеличивается со скоростью, т.е. имеет не только статический, но и динамический характер, что особенно важно, так как смазке подвергаются поверхности, имеющие относительное перемещение. Формирование граничных смазочных слоев рассматривается как одно из явлений кристаллизации. Они представляют собой моно или поликристаллические тела, возникающие за счет зародышевой функции первичного слоя.

В очень тонких слоях масляные пленки под двусторонним воздействием трущихся поверхностей обнаруживают исключительный антифрикционный эффект. Молекулы смазочных веществ в граничных слоях, обеспечивают достаточно большую прочность на сжатие и легкость сдвигов в горизонтальном направлении. Этим и объясняются небольшие коэффициенты трения при скольжении смазанных поверхностей. Причем, как показали исследования П.А. Рибиндера, во многих случаях смазка, достаточно интенсивно снижающая трение, может значительно увеличить износ.

Необходимо помнить о двойственной роли смазки. Выяснилось, что эта двойственная роль находит достаточно определенное теоретическое объяснение в том, что смазочное действие всегда проявляется как на наружной поверхности металла, на границе металла с окружающей средой, так и внутри металла в его наружном слое. Активные полярные компоненты смазки, т.е. высшие жирные кислоты, органические соединения, содержащие галогены и серу, способствуют резкому повышению возможности для масел проникать в металл, на чем основан механизм действия противоизносных и противозадирных присадок, использующихся в композициях масел. Дело в том, что в пластически деформированном поверхностном слое металла появляются микро- и ультрамикрощели между кристалликами и в отдельных кристалликах по плоскостям скольжения. По этим микротрещинам смазка проникает тем активнее, чем выше ее маслянистость.

При трении металлов поверхностные слои разогреваются до значительных температур. Количество тепла, выделяющегося при трении, зависит от скорости скольжения, нагрузки на трущиеся поверхности, свойств металлов, из которых изготовлены детали и свойств смазки. При увеличении скорости скольжения или нагрузки увеличивается количество тепла, выделяемого в процессе трения, - повышается температура граничной пленки масла. При достижении критической температуры, характерной для каждого сорта смазки, граничная пленка теряет смазывающую способность. Происходит разрыв граничной пленки и резко увеличивается износ металла. При постоянных значениях нагрузки и скорости скольжения аналогичная закономерность проявляется при повышении температуры окружающей среды.

Исследования Б.И. Костецкого показали, что возникновение и характер протекания процессов схватывания металлов зависит от природы масел. Большое влияние на процесс граничного трения оказывают окислительные процессы, т.к. продукты окисления углеводородных масел и поверхностных слоев металлов существенно изменяют интенсивность износа и величину коэффициента трения. Окисные слои играют важнейшую защитную роль, предотвращая интенсивное схватывание металлов. Однако при легких режимах трения интенсивное протекание процессов окисления ведет к усилению износа – развивается химический окислительный износ.

Предотвращение схватывания металлов при трении может быть достигнуто, если на их поверхности образуются защитные слои химических соединений, отличные по своей природе от окисных. Это могут быть слои сульфидов, хлоридов, фосфидов металлов, слои металлических мыл и других веществ, присутствующих в составе противоизносных присадок к маслам.

Существенное влияние на процессы, происходящие в пленках масел, оказывает и состав газовой среды зоны трения. В газовой среде, не содержащей кислород, происходит схватывание и заедание металлических поверхностей, а там, где кислород присутствует, изнашивание при граничной смазке происходит без схватывания и заедания.

Как было отмечено выше, при эксплуатации двигателей и механизмов наблюдается износ деталей и узлов трения агрегатов топливно-масляной системы, обусловленный процессами трения, абразивным воздействием топливной, масляной среды и кавитацией.

Трение (внешнее) представляет собой сопротивление относительно к перемещению, возникающее между телами в зонах их соприкосновения по касательной к ним. Различают трение движения, т.е трение твердых тел, находящихся в движении друг относительно друга, и трение покоя, под которым понимается сопротивление относительному перемещению двух тел в процессе микросмещения, но без макросмещения (т.е. до начала перемещения одного тела относительно другого). Трение в значительной степени определяет энергетические потери при работе машин и механизмов, поглощая до 30-40% всей вырабатываемой в мире энергии. В то же время работа ряда агрегатов современной техники основана на использовании явления трения (механические тормоза, фрикционные устройства, движители ряда мобильных машин и т.д.), так же как и некоторые технологические процессы, например, сварка трением и т.д.

Сила трения – это сила сопротивления относительному перемещению одного тела по поверхности другого под действием внешней силы, тангенциально направленная относительно по отношению общей границы между этими телами. Сила трения покоя, как правило, выше чем трение движения.

В силу неизбежно возникающих в процессе обработки волнистости и шероховатости поверхностей контактирующих деталей их механический контакт представляет собой совокупность точек (пятен) контакта, через которые передаётся давление, прижимающее эти тела друг к другу. Иначе говоря, механический контакт реальных твердых тел дискретен и осуществляется в результате деформирования вершин поверхностей и волн. Различают номинальную площадь контакта , т.е. геометрическую площадь со-прикосновения деталей, контурную площадь контакта , т.е площадь контакта, образовавшаяся при деформации обычно упругих вершин волн, фактическую площадь контакта , которую составляют деформированные приложенной нагрузкой сопряженные вершины микронеровностей, расположенных в пределах контурной площади контакта, т.е. на вершинах волн (рис. 1).




Рис. 1. Схема контакта рабочих поверхностей твердых тел:

  1. Номинальная площадь контакта; 2- контурная площадь контакта; 3- фактическая площадь контакта; А- граничное трение; Б – жидкостное трение


Фактическая площадь контакта составляет незначительную долю ( от сотых и тысячных долей до 20-40%) от номинальной.

Взаимодействие трущихся тел осуществляется по изолированным друг от друга пятнам фактического контакта, и сила трения является равнодействующей элементарных сил трения, возникающих на пятнах фактического контакта. Сила трения направлена противоположно относительному движению тел.

По кинематическому признаку внешнее трение подразделяют на трение скольжения и трение качения.

Трение скольжения – это трение движения, при котором скорости тел в точке касания различны по значению или направлению. На рис. 2 скорость подвижного тела А (Va) отлична от скорости неподвижного тела В (Vb=0).

^ Трение качения - это трение движения, при котором скорости соприкасающихся тел одинаковы по значению и по направлению, по крайней мере, в одной точке контакта. Так, на рис. 2 приведена схема сил, действующих на цилиндр А, катящийся по поверхности В (например, колесо по дороге). В зоне контакта (в точке а) Va = Vв . Если при той же схеме контакта Va не равна Vв , то имеет место трение качения со скольжением (как в зубчатой передаче, кроме трения в зоне зацепления).

При рассмотрении процесса трения скольжения в первом приближении используют экспериментально установленные закономерности, известные в литературе как законы Амонтона:

  1. Сила трения F пропорциональна усилию N, сжимающему трущиеся тела в направлении нормальном по отношению к поверхности трения (номинальной поверхности, по которой осуществляется взаимодействие твердых тел при внешнем трении), т.е F=f · N, где коэффициент пропорциональности f называется коэффициентом трения. Этот коэффициент является важнейшей сравнительной характеристикой, позволяющей сопоставить трение различных тел в различных условиях безотносительно к нагрузке на узел трения.




Рис.2. Схема контакта тел А и В при трении:

а – скольжения и б – качения: N – нормальная нагрузка; Т – тангенциальное усилие;

F – сила трения; R – радиус цилиндра

  1. Сила трения не зависит от номинальной площади контакта. Этот закон является следствием того, что трение осуществляется по фактической площади контакта, слабо зависящей от номинальной.

В настоящее время установлено, что сила трения F складывается из двух составляющих: механической Fмех и молекулярной Fмол . Механическая составляющая силы обуславливается деформированием контактирующих тел на узлах фактического контакта в процессе трения. Молекулярная составляющая, обусловленная межмолекулярными и межатомными взаимодействиями, в свою очередь делится на адгезионную (силу прилипания между поверхностными слоями двух разнородных тел, приведенных в соприкосновение) и когезионную (сцеплению одного и того же тела, обусловленное действием сил межмолекулярного взаимодействия) составляющие. Адгезионная составляющая силы трения – это сила сопротивления перемещению твердых тел, обусловленная адгезией между ними на участках фактического контакта. По мере относительного перемещения трущихся тел, происходит образование и разрушение адгезионных связей между контактирующими телами на участках фактического контакта.

Когезионная составляющая силы трения проявляется в тех случаях, когда адгезия контактирующих твердых тел выше,чем когезионные силы, обеспечивающие целостность менее прочного из контактирующих тел. В таких случаях по мере относительного движения происходит не разрушение адгезионных связей, а разрыв когезионных связей в менее прочном материале, в результате чего имеют место вырывы и перенос частиц одного тела на поверхность другого, т.е. внешнее трение твердых тел переходит во внутреннее трение в менее прочном теле. Согласно И. В. Крагельскому, внешнее трение твердых тел осуществляется в том случае, когда имеет место положительный градиент механических свойств материалов контактирующих свойств по глубине. В этом случае деформации сосредотачиваются в тонком поверхностном слое. Практически все методы снижения трения сводятся к обеспечению существования положительного градиента механических свойств.

^ Процессы, обусловленные трением. Трение твердых тел неизбежно сопровождается рядом явлений – изнашиванием сопряженных тел, их нагревом (и нагревом окружающей среды), структурными превращениями в поверхностных слоях контактирующих тел, активацией поверхностных слоев контактирующих тел и рядом других явлений (электрических, акустических и т.д.). Наибольший интерес представляют для нас процессы изнашивания, нагрева и активирования контактирующих поверхностей.

Изнашивание. Это процесс отделение материала с поверхности твердого тела при трении и увеличения его остаточной деформации. Результатом изнашивания, определяемым в установленных единицах (длины, массы, объема и др.), является износ. Износ является причиной выхода из строя более 80% деталей машин и механизмов. Порой, даже незначительный износ является причиной потери работоспособности машин. Так, при потере одного килограмма массы вследствие износа автомобиля весом 1000 кг, он уже подлежит ремонту. Процесс изнашивания характеризуется интенсивностью изнашивания, т.е. отношением значения износа к интервалу времени, в который он изработан.

В зависимости от материалов трущихся тел, их геометрии, различных технологических факторов, геометрии контакта трущихся тел, режимов нагружения, окружающей среды и т.д., могут осуществляться различные типы изнашивания, классифицируемые по характеру воздействия на поверхности трения и протекающих в ней процессов при эксплуатации деталей машин. Различают три группы видов изнашивания: механическое, коррозионно-механическое (механо-химическое) и молекулярно- механическое. Рассмотрим подробнее некоторые виды изнашивания.

  1. ^ Абразивное изнашивание – это механическое изнашивание, которое происходит вследствие режущего или царапающего действия твердых тел или твердых частиц, находящихся в закрепленном или свободном состоянии. Абразивное действие осуществляют абразивные частицы, более твердые, чем изнашиваемый материал (пыль, проникающая в трущиеся сопряжения из окружающей среды, выкрашивающиеся твердые частицы оксидов и карбидов металлов и т.д.), микровыступы более твердой сопряженной поверхности и т.д. Если абразивное действие осуществляется в результате действия твердых частиц, увлекаемых потоком жидкости или газа, то такой вид изнашивания называется гидроабразивным (газоабразивным). Характер абразивного действия зависит от твердости абразивных частиц и изнашиваемого материала, от формы этих частиц и меняется от микрорезания, т.е. определения продуктов износа в виде стружки за один проход, до отделения этих продуктов в виде крупинок или чешуек, вследствие многократного упруго-пластического деформирования поверхностей притупленными абразивными частицами.

  2. ^ Усталостное изнашивание – это механическое изнашивание, возни-кающее в результате усталостного разрушения после многократного повторного деформирования микрообъемов материала поверхностного слоя трущихся тел. Встречается как при трении скольжения, так и при трении качения, а также может быть составляющим других видов изнашивания (например, абразивного). Процесс имеет скрытый (латентный) период, в течение которого происходит накопление повреждений внутри материала, а только затем наступает отделение частиц износа различной формы (например, чешуек). Типичный пример этого износа – питтинг (выкрашивание), возникающий при трении качения в подшипниках качения, опорно-поворотных кругах, катках и т.д.

  3. ^ Изнашивание при схватывании (заедании) – это молекулярно-механическое изнашивание, возникающее в результате схватывания, т.е. локального соединения двух твердых тел вследствие действия молекулярных сил, последующего глубинного вырывания материала с одной детали и переноса его на другую. Имеет место при разрыве смазывающей пленки, разделяющей трущиеся тела, при сухом трении и т.д. При скольжении на локальных участках контакта может распространяться на всю площадь контакта (лавинное распространение заедания), вызывающее глубинное вырывание материала, задиры и заедание узла трения вплоть до сваривания контактирующих тел. В зарубежной литературе этот вид изнашивания называют тяжелым видом адгезионного изнашивания (в отличие от мягкого адгезионного изнашивания).

  4. Координационно-механическое изнашивание - это группа видов изнашивания, протекающих в той или иной активной среде, которая в результате химического или электрохимического взаимодействия с поверхностными слоями трущихся поверхностей образует на них слои продуктов этого взаимодействия, механически разрушаемые в процессе трения и вновь возобновляемые при контакте со средой. Может быть достаточно интенсивным, например, в присутствии сероводорода, и оказывать значительное влияние на долговечность деталей машин. В том случае, когда химически активным компонентом среды является кислород (например кислород, растворенный в смазочной среде), то такой вид изнашивания называется окислительным.

  5. ^ Изнашивание при фреттинг- коррозии – это такой вид коррозионно-механического изнашивания соприкасающихся тел при вибрации в коррозионной среде. В результате имеет место усталостное изнашивание поверхностных слоев материала, их окисление, абразивное изнашивание твердыми продуктами окисления (поскольку продукты изнашивания узлов трения, подверженных этому виду изнашивания, не удаляются из контакта) при взаимном интенсифицировании этих (и других) видов изнашивания.

  6. ^ Водородное изнашивание – это явление разрушения поверхностного слоя контактирующих тел водородом, выделяющимся из смазочных материалов, топлив и неметаллических материалов вследствие разложения в процессе трибохимических реакций, который диффундирует в поверхностный слой материала и вызывает охрупчивание. Наблюдается в насосах, перекачивающих нефтепродукты, водородсодержащие продукты, при трении по полимерсодержащим тормозным колодкам и т.д. Изнашивание в зависимости от режима процесса трения, вида изнашивания, окружающей среды может быть нормальным (установившимся) и патологическим (интенсивным). Переход от нормального к патологическому процессу характеризуется резким повышением коэффициента трения, ростом интенсивности изнашивания (табл. 1) и заметным огрублением поверхнсти (ростом размеров поверхностных микронеровностей).

Поэтому путем оптимизации конструкции узла трения, рациональным выбором материалов трущихся деталей и технологии их изготовления, а также правильным назначением смазочных материалов, следует не допустить перехода к патологическим видам изнашивания (например, к интенсивному абразивному или коррозионно-механическому изнашиванию и тем более – к изнашиванию при схватывании).


Таблица 1.

^ Характеристики нормального и патологического трибологических процессов (по Б.И. Костецкому)

Характеристика

Нормальное трение

Патологические процессы

Коэффициент трения

0,005-0,15

0,3-0,4

Износ (мкм на 1000 м пути)

Менее 0,01

100 и более

Максимальная высота неровности Rmax.мкм

0,1-1,2

Более 100


При постоянных условиях нагружения процесс изнашивания проходит три стадии:

  1. приработка, в течение которой параметры шероховатости и волнистости изнашиваемых тел изменяются до установления оптимального, воспроизводимого в дальнейшем уровня, а коэффициент трения и интенсивность изнашивания также меняются (снижаются) до установленных значений, не изменяющихся в дальнейшем;

  2. установившееся изнашивание, при котором воспроизводятся значения указанных факторов;

  3. катастрофическое изнашивание, когда значение некоторого предельного износа превышено и начинается интенсивное изнашивание, приводящее к выходу из строя узла трения (рис. 3).




Рис. 3. Зависимость износа (И) трущихся тел от продолжительности (τ) процесса изнашивания: I – стадия приработки; II – стадия установившегося изнашивания; III – стадия катастрофического изнашивания


^ Фрикционный разогрев трущихся тел. Значительная часть сил трения выделяется в виде тепла. На микроплощадках фактического контакта при этом генерируются кратковременные «температурные вспышки», достигающие 1000°С. За счет теплопроводности выделившееся тепло частично отводится вглубь тела, а частично затрачивается на нагрев окружающей среды, (например, слоя масла).

В твердых телах создается определенный температурный градиент, так что объемная температура тела отличается от температуры на отдельных участках физического контакта. Фрикционный подъем температуры, в свою очередь, оказывает на фрикционное поведение твердых тел, вызывая разупрочнение их поверхностных слоев, повышение их склонности к схватыванию при совместном пластическом деформировании и образование фрикционных связей между трущимися поверхностями, стимулируя разрушение смазочных слоев, разделяющих трущиеся тела, и переход к патологическим видам изнашивания. В двигателе внутреннего сгорания при перегреве может возникнуть задир зеркала цилиндра, выплавление подшипника скольжения, схватывание с последующей поломкой и т.д. Объемную температуру трущихся деталей оценивают экспериментально, установившуюся величину нагрева ΔТ (в °С) для стационарного источника фрикционного нагрева и равномерного распределения теплового потока рассчитывают, используя уравнение типа:

fNVR

ΔТ = ----------------,

λА

где: f –коэффициент трения;

N – нормальная нагрузка на узел трения;

V – скорость относительного перемещения трущихся тел;

R – радиус единичного пятна контакта;

λприведенная теплопроводность трущихся тел;

А – фактическая площадь контакта.

Активация поверхностей при трении. Основным активирующим фактором при трении выступают упругопластические деформации поверхностных слоев контактирующих тел в трибологическом процессе. Работа сил трения в основном затрачивается на генерирование теплоты, являющейся мощным активирующим фактором, и на структурные превращения в поверхностных слоях металла, приводящим к измельчению их структуры вплоть до аморфизации, увеличению в поверхностных слоях различных дефектов в результате искажения и частичного разрушения кристаллических решеток, к образованию в поверхностных слоях микротрещин и обнажению участков ювенильной поверхности металла, приводящих, в свою очередь, к эмиссии электронов (электронов низкой энергии) и электронов высоких энергий, оказывающих большое влияние на процессы происходящие в зоне трения. Наклеп отдельных участков трущихся поверхностей обуславливает их гетерогенность, а отсюда и протекание электрохимических процессов. Резко интенсифици-руются диффузионные процессы. Оксиды металлов и, особенно свежеобнажающийся в процессе изнашивания металл, оказывает каталитическое воздействие на химические превращения в зоне трения (так называемый трибокатализ). Вследствие этого каталитические реакции и адсорбционно – десорбционные процессы при трении значительно отличаются от аналогичных статических термически активируемых процессов. В зоне трения протекают такие химические реакции, которые в статических условиях характеризуются более высокими энергиями активации и требуют значительно более высоких температур. Во многих случаях в статических условиях такие реакции маловероятны и даже термодинамически невозможны (так называемые трибохимические реакции). Такие реакции играют особую роль при трении в режиме граничной смазки.

Смазка. Наиболее распространенным и доступным методом снижения потерь на трение в машинах и механизмах, увеличения их долговечности и надежности является использование смазочных материалов . Смазочные материалы – это продукты органического или неорганического происхождения, которые наносят на поверхность трения (процесс смазки) для уменьшения силы трения и интенсивности изнашивания. Смазка, при которой осуществляется полное разделение трущихся поверхностей сопряженных деталей жидким смазочным материалом, называется жидкостной. При ее реализации полностью исключен непосредственный контакт трущихся тел, а внешнее трение этих тел заменяется много меньшим внутренним трением смазочной среды, разделяющей эти тела.

Условия реализации жидкостной смазки – существование слоя смазочного материала, толщина которого при прилагаемых нагрузках превышает суммарную высоту микронеровностей сопряженных поверхностей. Этот слой может быть образован путем поступления жидкости в зазор под внешним давлением. В этом случае имеет место гидростатическая смазка, которую осуществляют ,например, в опорах и направляющих металлорежущих станков. Но в большинстве узлов трения жидкостная смазка, обеспечивающая полное разделение работающих поверхностей контактирующих деталей в процессе эксплуатации осуществляется под действием давления, самовозбуждаемого в слое жидкости, ограниченном этими поверхностями, при их относительном перемещении. Для возбуждения этого давления необходимо, чтобы указанный слой жидкости имел клиновидную форму, обеспечиваемую формой зазора между телами. При достаточной скорости относительного перемещения и обеспечении указанной геометрии в слое развивается давление, обеспечивающее несущую способность смазочному слою. Такой режим смазки называется гидродинамическим.

Разделение контактирующих поверхностей и устранение (или, по крайней мере, локализацию) металлического контакта обеспечивают граничные слои, образующиеся на поверхностях трения в результате взаимодействия активных компонентов смазочного материала с поверхностными слоями трущихся тел. Такой режим смазки называется граничным. Коэффициенты трения при граничной смазке, как правило, существенно выше, чем при гидродинамической. При граничной смазке имеет место изнашивание трущихся тел. Поэтому в узлах трения механизмов и машин стремятся обеспечить режим жидкостной смазки (чаще всего гидродинамической), когда малы потери на трение, а износ практически отсутствует. Области реализации гидродинамической и граничной смазки в смазываемых узлах трения скольжения определяют диаграммы Герси – Штрибека (рис. 4), представляющей собой зависимость коэффициента трения f от безразмерного критерия нагруженности, называемого обычно числом Зоммерфельда Z:

ή · V

Z=---------,

Рпог


где: V – скорость относительного перемещения тел;

Рпог - погонная нагрузка (т.е. нагрузка, отнесенная к длине сопряжения);

ή – динамическая вязкость.



Рис. 4. Диаграмма Герси – Штрибека (зависимость коэффициента трения f от критерия Z.

Зоны смазки: I – граничной; II – смешанной; III - гидродинамической


Между областями реализации граничной и гидродинамической смазки лежит область реализации смешанной смазки, когда на одних участках контакта реализуется жидкостная смазка, а на других – граничная, причем по мере увеличения величины критерия Z возрастает доля гидродинамической смазки. Этот режим смазки наиболее часто наблюдается в смазанных узлах трения. Тем не менее, подбором вязкости смазочного материала и оптимизацией конструкции узла трения следует стремиться расширить диапазон применения жидкостной смазки. Следует также иметь в виду, что масла, имеющие высокую вязкость, с одной стороны, обеспечивают высокую несущую способность, а, с другой стороны, заметно повышают потери энергии на трение в слое жидкости.

^ Смазочное действие компонентов топлив, смазочных материалов и присадок наиболее полно проявляется при трении в режиме граничной смазки. Оно состоит в образовании на поверхности трения тонкого слоя продуктов взаимодействия (физико-химического, коллоидно-химического, химического) активных компонентов смазочного материала с материалом поверхностного слоя трущихся тел. Этот слой предотвращает (или минимизирует) непосредственный металлический контакт сопряженных деталей, приводящих к интенсивному изнашиванию этих деталей и к заеданию узла трения. Иначе говоря, активные компоненты смазочного материала, активированные в процессе трения в результате изменения физической адсорбции, хемосорбции или химической реакции, образуют на поверхностях трения граничный слой, обеспечивающий пассивирование (частичное или полное) активированных в процессе трения поверхностей, экранирует силовое поле твердых тел и, тем самым, обеспечивает снижение коэффициента трения (по сравнению с трением без смазочного материала) и умеренный износ.

Продуктами износа могут быть как продукты взаимодействия металла со смазочным материалом, так и частицы самого металла, поскольку имеет место контакт по вершинам отдельных неровностей. На других участках происходит контакт металлических поверхностей через модифицированный слой продуктов химических реакций. Остальная часть контакта покрыта адсорбированным слоем молекул смазочного материала. В самом общем случае коэффициент трения f в режиме граничной смазки может быть оценен из уравнения:

f = fm · ά + fχm ·β + fI · [1 – (ά + β)],

где: fm, fχm, fI - коэффициенты трения соответственно на участках металлического контакта, контакта через слой продуктов химической реакции (модифицированный слой), контакта через адсорбированный слой (как моно, так и полимолекулярный);

ά – доля металлического контакта;

β – доля поверхности контакта, покрытой модифицированным слоем.

Таким образом, для того чтобы обеспечить минимальные потери на трение, необходимо максимально уменьшить величину ά, вплоть до полного устранения металлического контакта. При умеренных режимах трения молекулы смазочного материала могут обеспечить достаточную прочность граничного слоя и достаточно малое значение ά, вплоть до устранения металлического контакта и образования полимолекулярного граничного слоя на всей площади граничного контакта (поскольку химически активные компоненты в чистых маслах отсутствуют, здесь β=0). При ужесточении режима трения возросшие нагрузки приводят к уменьшению толщины граничного слоя, увеличению доли металлического контакта, так что коэффициент трения возрастает. Это увеличивает фрикционный разогрев, и эффективность смазочного слоя снижается. Поэтому при жестких режимах граничной смазки в смазочный материал добавляют присадки, повышающие его смазывающую способность. Такие присадки бывают двух типов – поверхностно активные и химически активные. Поверхностно активные присадки (например, высшие жирные кислоты, мыла этих кислот, амины и т.д.) обеспечивают увеличение прочности граничного слоя, его несущей способности, препятствуя выдавливанию молекул смазочной среды из контакта. Причем длинноцепные молекулы ПАВ, обеспечивают утолщение смазочного слоя, что ведет к более полному разделению трущихся поверхностей, более полному экранированию силовых полей этих поверхностей и, тем самым, к снижению адгезионной составляющей силы трения. Однако ПАВ обеспечивают эффективное смазочное действие лишь в достаточно узком интервале температур и нагрузок.

В смазочные материалы, работающие в жестких условиях, добавляют химически активные присадки, представляющие собой малорастворимые соединения, включающие такие химические компоненты, как сера, фосфор, хлор и азот или их сочетания. Более подробно химический состав присадок описан ниже в этой главе. Молекулы этих соединений при достижении жестких режимов трения разлагаются, выделяя химически активные агенты. Они вступают в химическое взаимодействие с молекулами поверхностно активного слоя контактирующих тел, образуя на поверхности трения модифицированные слои продуктов взаимодействия металлов с активными компонентами этих смазок. Указанные слои покрывают поверхности фактического контакта трущихся тел слоем, достаточно толстым (обычно, десятки молекулярных слоев), чтобы надежно разделить контактирующие поверхности, так что изнашивание металла заменяется изнашиванием этих модифицированных слоев, постоянно восстанавливаемых по мере изнашивания.

Образование граничных слоев на поверхностях трения происходит в процессе взаимодействия трущихся тел со смазочной средой, сопровождающейся трибоактивизацией этих поверхностей и механоактивацией компонентов смазочных сред. Основными факторами, активирующими процессы поверхностных взаимодействий при трении, являются механически активируемая электронная эмиссия, каталитическое влияние свежеобнаженной поверхности металла, фрикционный подъём температуры и высокие контактные давления.



  1. ^ Устройство маслосистем


Маслосистема ГТД объединяет в себе системы смазки и суфлирования. В некоторых двигателях в ее состав входят также гидравлические устройства, использующие масло, как рабочую жидкость.


Типы маслосистем


По способу использования масла различают циркуляционные маслосистемы с однократной подачей масла к потребителям (разомкнутые).

В разомкнутой системе масло после прокачки через потребителя удаляют из двигателя, выводя в камеру сгорания или выходное устройство. Вместо насосной подачи масла в них часто используют вытеснительную. Такие системы весьма просты, имеют минимально возможное число элементов и малый вес, однако отличаются большим расходом масла. Поэтому их главным образом применяют в ГТД однократного действия.

В циркуляционных системах масло используют многократно. После прокачки через двигатель и восстановления свойств (охлаждения, очистки) его вновь подводят к потребителям. Системы смазки такого типа имеют малый расход масла, в связи с чем получили основное применение в ГТД. По характеру циркуляции масла относительно двигателя и маслобака эти системы подразделяют на замкнутые и короткозамкнутые. В замкнутых системах, (которые иногда называют нормально замкнутыми), циркуляция масла происходит через бак, после прокачки через потребителей оно поступает в бак с последующим возвратом в двигатель. В короткозамкнутых системах основное количество масло циркулирует через двигатель, минуя бак, из которого происходит восполнение циркулирующего контура с помощью специального подкачивающего маслонасоса (насоса подпитки), подводящего масло к нагнетательному насосу с повышенным давлением и обеспечивающего, вследствие этого, увеличение высотности системы. Благодаря более короткому циркуляционному контуру, в короткозамкнутых системах прогрев масла в начале работы ГТД происходит быстрее, чем в замкнутых, что особенно важно для маслосистем большой емкости (свойственных обычно для ТВД). Однако по сравнению с замкнутыми системами короткозамкнутые сложнее и имеют больший вес.

В зависимости от избыточного давления в системе суфлирования различают маслосистемы открытого и закрытого типов. В открытых системах масляные полости двигателя и воздушная полость маслобака, объединенные системой суфлирования сообщают с атмосферой, а в закрытых системах указанные полости наддувают, поддерживая в них постоянное избыточное давление небольшой величины с целью увеличения высотности системы, достигаемой снижением интенсивности кавитации масла на входе в нагнетающий и откачивающий насосы.


Структура циркуляционных маслосистем


Данные системы независимо от их разновидностей имеют три характерных магистрали – подпитки, нагнетания и откачки (образующие циркуляционную систему смазки двигателя) – и дополнены системой суфлирования.

Магистраль подпитки служит для подвода необходимого количества масла из бака к нагнетательному насосу. Чтобы высотность системы смазки была по возможности наибольшей, давление масла на входе в нагнетающий насос при его работе не должно быть чрезмерно низким (ниже 0,04…0,06Мпа), когда из масла происходит выделение пузырьков воздуха, т.е. возникает кавитация. Для создания необходимого статического давления перед нагнетающим насосом бак располагают возможно выше относительно насоса, а в закрытых маслосистемах его воздушную полость надувают. В магистрали подпитки короткозамкнутых систем устанавливают подкачивающий насос, редукционный клапан которого поддерживает постоянное давление масла перед нагнетающим насосом в пределах 0,06-0,08 МПа, что обеспечивает автоматическое восполнение циркуляционного контура системы и существенно увеличивает высотность.

Магистраль нагнетания обеспечивает подвод масла к потребителям под давлением 0,35-0,5 МПа. Такой диапазон давлений определен опытным путем и является оптимальным для маслосистем ГТД. При давлении масла меньше 0,35 МПа трубопроводы магистрали нагнетания необходимо выполнять увеличенного диаметра, что приведет к возрастанию веса маслосистемы. При давлении больше 0,5 МПА возможно существенное увеличение гидродинамического нагрева потребителей от высокоскоростной струи масла из форсунок.

В состав магистрали нагнетания входят следующие элементы:

1. Нагнетающий насос с редукционным клапаном, автоматически поддер-живающим заданное давление масла в магистрали. Производительность насоса в расчетных условиях (на земле) принимают в 1,5-2,5 раза выше потребной прокачки масла через двигатель, чтобы с увеличением высоты полета не происходило снижение фактической прокачки масла из-за уменьшения производительности насоса. Избыточное количество масла, подаваемого насосом на малых высотах, редукционный клапан перепускает с выхода из насоса на его вход и за счет этого поддерживает постоянное давление в магистрали нагнетания на всех высотах полета;

2. Запорный (или обратный) клапан, препятствующий перетеканию масла из бака в систему при неработающем двигателе. Пружина запорного клапана удерживает его в закрытом положении при давлении масла, не превышающем 0,02-0,05 МПа. В начале работы двигателя клапан открывается давлением, создаваемым нагнетающим насосом;

3. Основной маслофильтр тонкой очистки с перепускным клапаном, который в случае засорения фильтра и возрастании вследствие этого перепада давления на нем, перепускает масло в двигатель, минуя фильтрующий элемент. Натяжение пружины перепускного клапана регулируют таким образом, чтобы перепуск масла происходил при повышении перепада давления на фильтре до 0,13-0,16 МПа;

4. Дополнительные фильтры грубой очистки, установленные перед масляными форсунками и предохраняющие их от засорения крупными посторонними частицами в случае засорения или разрыва сеток основного фильтра;

5. Масляные форсунки потребителей, обеспечивающие струйную подачу масла на наиболее нагруженные поверхности трения;

6. Датчики систем измерения и сигнализации параметров масла на входе в двигатель;

7. Трубопроводы, соединяющие элементы магистрали между собой. Диаметры трубопроводов подбирают из условия, чтобы скорость движения в них не превышала 3,0 м/с.

Магистраль откачки необходима для отвода отработанного масла от потребителей и восстановления его свойств – отделения воздушно-масляной смеси, фильтрации и охлаждения. В зависимости от типа маслосистемы магистраль откачки обеспечивает подвод масла в бак или на вход в нагнетающий маслонасос. Данная магистраль содержит следующие элементы:

1. Маслосборники, в которые стекает масло от потребителей. Их размещают в нижних полостях корпусов опор, переходных корпусов ТРДД, лобовых картеров ТВД, на нижних коробках приводов агрегатов и т.п. В маслосборниках часто устанавливают пеногасящие и фильтрующие сетки;

2. Откачивающие маслонасосы, выводящие масло из малосборников. Число откачивающих насосов и маслосборников принимают не меньше числа опор двигателя. Это необходимо для того, чтобы не допустить возможного в случае применения одного общего насоса скопления масла в отдельных подшипниках ротора из-за различной прокачки масла через них. Такое скопление может вызвать сильный перегрев подшипников и выброс масла через уплотнения опор. Суммарная производительность откачивающих насосов должна быть в 2-3 раза выше, чем производительность нагнетающего насоса, чтобы они могли поддерживать маслосборники сухими при увеличенном объеме отработанного масла в результате его нагрева, вспенивания и насыщения воздухом. Принцип «сухого маслосборника» должен быть реализован при любых эволюциях воздушного судна и высоты полета. Выполнение вышеотмеченных требований обеспечивает возможность непрерывной прокачки свежего масла через потребители маслосистемы и их надежного охлаждения при всех условиях эксплуатации;

  1. Воздухоотделитель, который выделяет из вспененного откачиваемого масла воздушно-масляную смесь (смесь воздуха и других газов с частицами распыленного и испаренного масла). Чистое масло поступает из воздухоотделителя к другим элементам магистрали откачки (фильтру, маслорадиатору), а воздушно-масляная смесь отводится либо к центробежному суфлеру системы суфлирования, либо в бак для подогрева имеющегося в нем масла (последнее характерно главным образом для короткозамкнутых систем). Для короткозамкнутых систем наличие воздухоотделителя в магистрали откачки обязательно, т.к. в данных системах отсутствует возможность отстоя масла в баке, а подача к нагнетающему насосу вспененного масла недопустима из-за его склонности к кавитации. Основное применение для них получили приводные центробежные воздухоотделители, которые иногда используют и в замкнутых системах с целью уменьшения пенообразования в баке;

  2. Фильтр, очищающий масло от продуктов износа деталей двигателя и других механических примесей. На этом фильтре часто устанавливают перепускной клапан, обеспечивающий перепуск масла помимо фильтрующих элементов при их засорении, сигнализатор перепада давления или стружкосигнализатор;

  3. Радиатор, необходимый для охлаждения масла. В ТРД и ТРДД обычно применяют топливомасляные радиаторы (ТМР), а в ТВД – воздушно-масляные радиаторы (ВМР). На радиаторах устанавливают перепускные клапаны, которые при увеличении давления масла перед ними до предельно допустимого значения (0,2-0,3 МПА) перепускают его по параллельному обводному каналу. Повышение давления масла перед радиатором возможно при запуске двигателя в условиях низких температур, когда радиатор имеет повышенное сопротивление из-за большой вязкости холодного масла. Применение перепускных клапанов предохраняет радиаторы от разрушения повышенными давлениями и позволяет быстрее прогреть масло в двигателе при запуске. В ТМР некоторых ГТД применяют так называемые термостатические клапаны, которые предотвращают большой нагрев топлива путем его перепуска мимо ТМР при возрастании температуры топлива до 80-90°С;

  4. Датчики систем измерения и сигнализации параметров масла на выходе из двигателя;

  5. Трубопроводы, соединяющие элементы магистрали между собой.

Система суфлирования служит для поддержаний в масляных полостях двигателя и воздушной полости бака определенного избыточного давления путем удаления воздуха, а также для обеспечения заданных перепадов давлений между надуваемыми воздухом предмасляными полостями уплотнений и масляными полостями опор. Суфлирование указанных полостей следует понимать как сообщение их с атмосферой каким-либо способом, за счет чего достигаются отмеченные цели.

При работе двигателя в масляных полостях опор, коробок приводов агрегатов, редуктора и других, возможно повышение давления за счет постоянного проникновения воздуха через надуваемые маслоуплотнения опор или понижении давления из-за отсасывания воздуха откачивающими насосами, имеющие большие запасы производительности. Чрезмерно высокое давление в масляных полостях двигателя может стать причиной выброса масла через маслоуплотнения опор и его повышенного расхода. При низких давлениях в этих полостях возможно увеличение пенообразования и ухудшение откачки масла вследствие кавитации. Поэтому все масляные полости двигателя сообщают при помощи суфлера с атмосферой или наружным контуром ТРДД, что позволяет создать оптимальный избыток давления в них над атмосферным ( в открытых маслосистемах ризб =0, а в закрытых – 0,02-0,04 МПа). Воздушную полость маслобака, в которой тоже нужно стабилизировать давление, обычно соединяют с суфлируемыми полостями двигателя или сообщают с атмосферой отдельным суфлером.

Суфлер, соединяющий полости суфлирования с атмосферой, выделяет из подведенной к нему под действием избыточного давления воздушно-масляной смеси воздух и другие газы, выпуская их в атмосферу (обычно через выходное устройство двигателя) и возвращая в систему смазки выделенное из указанной смеси масло. Основное применение в системах суфлирования получили центробежные суфлеры, обеспечивающие существенное уменьшение расхода масла за счет его почти полного возврата в циркуляционный контур маслосисиемы.

В предмасляные полости опор двигателя обычно подводят воздух от компрессора для наддува уплотнений масляных полостей подшипников. Эффективность наддува зависит от перепадов давления воздуха между предмасляными и масляными полостями. При малых перепадах давления или их отсутствии будет происходить выброс масла через уплотнение опор, а при чрезмерно больших возможен сдув масла с подшипников потоком воздуха, проникающего в масляные полости. Регулирование рассматриваемых перепадов давления осуществляют путем суфлирования предмасляных полостей опор, сообщая их с атмосферой специальными трубопроводоми, через которые происходит частичный сброс воздуха, подведенного на наддув уплотнений, и выброс утечек масла, чтобы они не попадали в тракт двигателя. Количество сбрасываемого воздуха определяют подбором сечения жиклеров, устанавливаемых в трубопроводы суфлирования.

Таким образом систему суфлирования можно разделить на две функциональные группы, одна из которых предназначена для суфлирования масляных полостей двигателя и воздушной полости бака, а вторая обеспечивает суфлирование предмасляных полостей опор.

^ 2.1. Типичные схемы циркуляционных систем


Схема замкнутой системы смазки, соответствующая требованиям ГОСТ 2.704-76, ГОСТ 2.782-68, приведены на рис.5.

Магистраль подпитки данной системы включает в себя маслобак Б с заливной горловиной ГЗ, фильтрующей сеткой ФС, и сливным краном К, а также трубопровод подвода масла к нагнетающему насосу. Магистраль подпитки оснащена системой измерения уровня масла в баке Н/П (уровнемером поплавкового типа). Возможно также применение сигнализатора уровня масла в баке, который обычно осуществляет сигнализацию трех характерных уровней: минимального, нормального и максимального. Такие сигнализаторы необходимы в случае применения системы централизованной заправки ГТД маслом. Системы измерения и сигнализации уровня масла в баке позволяют контролировать в эксплуатации важный диагностический параметр маслосистем – расход масла, с помощью которого можно установить течь в трубопроводах, выброс масла через уплотнения или суфлер и т.п.

Магистраль нагнетания содержит следующие элементы:

нагнетающий насос НН с редукционным клапаном КР; обратный клапан КО, выполняющий функции запорного клапана; основной маслофильтр тонкой очистки ФО с перепускным клапаном КП; дополнительные фильтры ФД, установленные перед масляными форсунками подшипников опор. В данной магистрали предусмотрено измерение температуры tвх /П и давления рвх /П масла на входе в двигатель, а также установлен сигнализатор перепада давления на фильтре Δр/сг ,с помощью которого можно обнаружить засорение фильтра. Измерение температуры масла tвх позволяет контролировать работу маслорадиатора, а по величине давления рвх устанавливают сигнализатор минимального давления масла на входе в двигатель, повышающий эффективность контроля нагнетателя.




Рис. 5. Схема маслосистемы замкнутого типа:

Б- бак; ГЗ-заливная горловина; ФС-фильтрующая сетка; К-кран; РР-нагнетательный насос; КР-редукционный клапан; КО-обратный клапан;; ФО-основной фильтр; КП-перепускной клапан; ФД-дополнительный фильтр; МС-маслосборники; НО-откачивающие насосы; ЦВО-центробежный воздухоотделитель; Ф-фильтр; ТМР-топливомасляный радиатор; ЦС-центробежный суфлер; Ж-жиклер; Н/П, tвх /П, рвх /П, tвых /П – системы измерения уровня масла в баке Н; температуры tвх и давления рвх масла на входе в двигатель, температуры масла tвых на выходе из двигателя; Δр/сг – сигнализатор перепада давления на фильтре; tcтг - термостружкосигнализатор


В магистрали откачки рассматриваемой схемы ( рис. 5 ) установлены маслосборники МС, откачивающие насосы НО, воздухоотделитель ЦВО, фильтр Ф, топливомасляный радиатор ТМР с перепускным клапаном КП и сливным краном К, термостружкосигнализатор tcтг на линии откачки масла от подшипника передней опоры турбины, измеритель температуры масла на выходе из двигателя tвых /П. Откачиваемое масло содержит ценную информацию, позволяющую оценивать техническое состояние находящихся с ним в контакте деталей двигателя. Оно выводит из двигателя продукты износа деталей, испытывает перегрев от узлов трения в случае их повреждений, приводящих к повышенному внутреннему тепловыделению. Отмеченные обстоятельства учитывают, устанавливая в магистралях откачки для контроля загрязнения масла продуктами износа фильтры-стружкоанализаторы, магнитные пробки, термостружкосигнализаторы. Основным элементом системы суфлирования в приведенной на рисунке маслосистеме является центробежный суфлер ЦС, который сообщает с атмосферой масляные полости двигателя и воздушную полость бака и выделяет масло из подведенной к нему воздушно-масляной смеси с возвратом масла в циркуляционный контур

(в магистраль откачки). Суфлирование предмасляных полостей средней и задней опор двигателя осуществляется путем сообщения этих полостей с атмосферой трубопроводами через жиклеры Ж, стравливающих подведенный на наддув маслоуплотнении воздух. Предварительно подобранные проходные сечения жиклеров обеспечивают оптимальные перепады давления между предмасляными и масляными полостями.


  1. ^ Условия работы авиационных масел


Смазочные масла по роду исходного сырья подразделяются на минеральные и синтетические. С развитием авиационного двигателестроения повысились тепловые напряжения, скорости движения и нагрузки на трущиеся детали двигателей. Масло в двигателе подвергается воздействию высоких температур, каталитическому влиянию конструкционных материалов, из которых состоит двигатель и смазываемые агрегаты, большим давлениям, окислительному действию кислорода воздуха. Условия работы масла значительно меняются в зависимости от типа двигателя, его конструктивных особенностей. В некоторых случаях для смазки одного и того же двигателя, работающего в различных климатических условиях, требуются различные по качеству масла. Для различных типов авиационных двигателей, а также для агрегатов и приборов требуются прежде всего масла различной вязкости. Вязкость обычно является основным определяющим показателем классификации масел.

По целевому назначению авиационные масла делятся на следующие группы:

  1. Масла для авиационных турбореактивных двигателей, маловязкие, с низкой температурой застывания;

  2. Масла для авиационных турбовинтовых двигателей, мало- и средневязкие, с низкой температурой застывания и высокой смазывающей способностью;

  3. Масла для поршневых авиационных двигателей, высоковязкие, подвергнутые глубокой очистке;

  4. Масла для редукторов вертолетов (трансмиссионные масла), высоко-и средневязкие, с хорошей смазывающей способностью.

Агрегатные и приборные масла, маловязкие, подвергнутые глубокой очистке, с низкой температурой застывания.





оставить комментарий
страница1/5
Дата04.03.2012
Размер1.24 Mb.
ТипРеферат, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4   5
плохо
  2
отлично
  2
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

Рейтинг@Mail.ru
наверх