Российская федерация федеральная служба по интеллектуальной собственности, патентам и товарным знакам icon

Российская федерация федеральная служба по интеллектуальной собственности, патентам и товарным знакам


Смотрите также:
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...
Российская федерация федеральная служба по интеллектуальной собственности...



Загрузка...
скачать













РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ


(19)

RU

(11)

2370517

(13)

C2




(51)  МПК

C09K11/54   (2006.01)
C09K11/02   (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 05.11.2009 - действует













(21), (22) Заявка: 2007139049/04, 23.10.2007

(24) Дата начала отсчета срока действия патента:
23.10.2007

(43) Дата публикации заявки: 27.04.2009

(46) Опубликовано: 20.10.2009

(56) Список документов, цитированных в отчете о
поиске: SOOKLAL, KELLY et al. A blue-emitting CdS/dendrimer nanocomposite. Advanced Materials. - Weinheim, Germany, 1998, 10 (14), s.1083-1087. RONG, MIN ZHI et al. Surface derivatization of nano-CdS clusters and its effect on the performance of CdS quantum dots in solvents and polymeric matrices. - Applied Surface Science, 2004, 228(1-4), p.176-190. CHU,YUAN-CHIH ET AL. Synthesis of luminescent and rodlike CdS nanocrystals dispersed in polymer templates. Nanotechnology (2005), 16(1), 58-64. LIU, S.H. et al. Preparation and characterization of polymer-capped CdS nanocrystals. Journal of Physics and Chemistry of Solids 2002, 64(3), p.455-458. SU 1820912 A3, 07.06.1993. RU 2008317 C1, 28.02.1994.

Адрес для переписки:
119991, Москва, ул. Вавилова, 28, ИНЭОС РАН, И.А. Хотиной

(72) Автор(ы):
Хотина Ирина Анатольевна (RU),
Кушакова Наталья Сергеевна (RU),
Логинова Татьяна Петровна (RU),
Шаповалов Алексей Владимирович (RU),
Паньков Петр Николаевич (RU)


(73) Патентообладатель(и):
Институт элементоорганических соединений имени А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) (RU),
Государственное образовательное учреждение высшего профессионального образования "Московский физико-технический институт (государственный университет)",RU (RU)


(54) ^ СПОСОБ ПОЛУЧЕНИЯ ЛЮМИНЕСЦЕНТНЫХ НАНОЧАСТИЦ СУЛЬФИДА КАДМИЯ, СТАБИЛИЗИРОВАННЫХ ПОЛИМЕРНЫМИ МАТРИЦАМИ

(57) Реферат:

Изобретение относится к способу получения люминесцентных наночастнц сульфида кадмия, используемых при производстве дисплеев, в электрофотографии и других отраслях промышленности. Описывается способ получения люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, включающий выращивание наночастиц сульфида кадмия непосредственно в полимерных матрицах. Полимерное соединение, выбранное из ряда, включающего полистирол-блок-полиэтиленоксид, полистирол-блок-4-винилпиридин или полифенилен, подвергают растворению, вносят в полученный раствор анионное поверхностно-активное вещество с последующим добавлением соединения, содержащего катионы кадмия, а затем соединения, содержащего анионы серы, и после выращивания наночастиц сульфида кадмия удаляют избыток анионного поверхностно-активного вещества. Изобретение обеспечивает повышение качества люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, в том числе яркости и чистоты света, за счет контролируемого проведения процесса роста наночастиц и снижения их агрегации. 2 з.п. ф-лы, 3 ил.



Изобретение относится к химической и электронной отраслям промышленности, а конкретно к способу получения люминесцентных наночастиц сульфида кадмия (CdS), стабилизированных полимерными матрицами. Изобретение может быть использовано при производстве дисплеев, в электрофотографии, при изготовлении осветительных источников, фотодетекторов, сенсоров, полевых транзисторов, диодных лазеров и в других областях, когда необходимо обеспечить люминесценцию при преобразовании электрической энергии в световую.

Одним из направлений конструирования дисплеев является использование органических материалов для светоизлучающих диодов (OLED), которые значительно более дешевы, чем на основе неорганических. Известно, что полупроводниковые узкодисперсные нанокристаллы определенного размера (от 2 до 8) нм эффективно излучают свет в видимой области спектра, однако решающим фактором при их использовании в качестве активных слоев OLED является органический материал, который стабилизирует эти наночастицы. Одним из путей стабилизации является выращивание наночастиц (или нанокристаллов) в матрицах полимеров. В случае использования полимеров в качестве матриц для полупроводниковых наночастиц материал активного слоя (наночастица, стабилизированная органическим веществом) может рассматриваться как гибридный органический/неорганический материал, где каждый компонент вносит свой вклад и может усиливать суммарный эффект эффективности излучения. Качество люминесцентных наночастиц (или полупроводниковых нанокристаллов) определяется в большей степени их размерами и дисперсностью. Удовлетворительная эффективность синего излучения, например, проявляется у частиц с размером 2 нм и дисперсностью не более 10%. Такие нанокристаллы можно вырастить высокотемпературным методом, но чтобы предотвратить агрегацию (и потерю свойств) они стабилизируются ПАВ, в основном, с фосфатными группами. Эти группы, находясь в структуре нанокомпозита, в значительной степени тушат люминесценцию. Другим путем является выращивание нанокристаллов непосредственно в матрицах полимеров, не содержащих групп, которые были бы ответственны за ухудшение эффективности излучения. Однако в таких матрицах практически невозможно вырастить кристаллы с узким распределением по размерам.

Наиболее распространенный подход, определяющий ряд способов получения нанокомпозита сульфид кадмия/полимер, это высокотемпературный синтез нанокристаллов сульфида кадмия из неорганических солей кадмия и сульфидов в оболочке анионного сурфактанта и последующая модификация поверхности оболочки нанокристалла группами мономера с последующей полимеризацией (Rong, Min Zhi; Zhang, Ming Qiu; Liang, Hai Chun; Zeng, Han Min. Surface derivatization of nano-CdS clusters and its effect on the performance of CdS quantum dots in solvents and polymeric matrices Applied Surface Science (2004), 228(1-4), 176-190).

Метод требует проведения синтеза в несколько стадий, включающих энергетически затратные, а эффективность люминесценции полученных наночастиц невысока из-за пассивирущего действия оболочки.

Другим способом получения указанных частиц было выращивание нанокристаллов непосредственно в полимерной матрице. Стабилизация осуществлялась или за счет хелатирующих групп блок-сополимеров (Chu, Yuan-Chih; Wang, Cheng-Chien; Chen, Chuh-Yung. Synthesis of luminescent and rodlike CdS nanocrystals dispersed in polymer templates. Nanotechnology (2005), 16(1), 58-64) или координирующих анионы соли аминогрупп поливинилпирролидона (Liu, S.H.; Qian, X.F.; Yin, J.; Ma, X.D.; Yuan, J.Y.; Zhu, Z.K, Preparation and characterization of polymer-capped CdS nanocrystals. Journal of Physics and Chemistry of Solids (2002), 64(3), 455-458).

Однако указанные способы имели два существенных недостатка. Первый - это неконтролируемый рост наночастиц и, следовательно, их высокая дисперсность, оказывающая отрицательное влияние на чистоту света. И второй - это тенденция к агрегации, т.е. слипанию частиц за счет недостаточной стабилизации, также приводящая к снижению параметров яркости и чистоты света.

Известен, принятый за прототип, способ получения люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, включающий выращивание наночастиц сульфида кадмия непосредственно в полимерных матрицах. Стабилизация частиц при этом осуществлялась дендримерами на основе звездообразного полиаминоамина третьей - пятой генерации, где аминогруппы выступали в качестве стабилизатора (Sooklal, Kelly; Hanus, Leo H.; Ploehn, Harry J.; Murphy, Catherine J., A blue-emitting CdS/dendrimer nanocomposite, Advanced Materials (Weinheim, Germany) (1998), 10(14), 1083-1087).

Однако этот способ имеет те же недостатки: неконтролируемый рост наночастиц и, следовательно, их высокая дисперсность, оказывающая отрицательное влияние на чистоту света. И второе - это тенденция к агрегации, т.е. слипанию частиц за счет недостаточной стабилизации, также приводящая к снижению параметров яркости и чистоты света.

Предлагаемое изобретение решает задачу повышения качества люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, в том числе яркости и чистоты света.

Поставленная задача достигается тем, что в способе получения люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, включающем выращивание наночастиц сульфида кадмия непосредственно в полимерных матрицах, новизна заключается в том, что полимерное соединение, выбранное из ряда, включающего полистирол-блок-полиэтиленоксид, полистирол-блок-4-винилпиридин или полифенилен, подвергают растворению до образования раствора сферических частиц, вносят в полученный раствор анионное поверхностно-активное вещество с последующим добавлением соединения, содержащего катионы кадмия, а затем соединения, содержащего анионы серы, и после выращивания наночастиц сульфида кадмия удаляют избыток анионного поверхностно-активного вещества.

В данной заявке под термином «сферические частицы» понимаются как мицеллы, образующиеся при растворении амфифильных блок-сополимеров, так и «макромолекулы сферической формы», образующиеся при растворении разветвленных полимеров.

Проведение процесса предлагаемым способом позволяет выращивать узкодисперсные частицы в полимерной матрице.

Указанные нами исходные полимеры не содержат реакционноспособных функциональных групп, и поэтому образуемые на их основе растворением в известных подходящих для каждого полимера растворителя глобулярные полимерные системы «не тушат» люминесценцию образованных впоследствии в них, как в матрицах, нанокристаллов сульфида кадмия.

Введение анионных поверхностно-активных веществ (ПАВ) в «инертные», не содержащие функциональных групп, полимерные матрицы позволяет использовать эти матрицы как надежную стабилизационную систему для формирования наночастиц CdS размером 2-8 нм.

После осуществления химических операций анионный ПАВ вымывается из полимерной матрицы, чтобы в дальнейшем не оказывать влияния на оптические свойства нанокомпозита.

В качестве анионного поверхностно-активного вещества наиболее часто в настоящее время используют додецилсульфат натрия (ДСН).

Чаще всего в качестве соединения, содержащего анионы серы, берут сульфид натрия или сероводород.

Доступный в промышленных масштабах полистирол-блок-полиэтиленоксид (ПС-ПЭО), является амфифильным блок-сополимером, образующим в воде сферические частицы - мицеллы с неполярными ядрами. Анионное ПАВ вводится для индуцирования заряда на поверхности гидрофобных ядер блок-сополимерных мицелл, что стабилизирует соль кадмия и в дальнейшем наночастицы.

Блок-сополимер, образующий мицеллы в неводных средах, это - полистирол-блок-4-винилпиридин. В таких растворителях, как толуол, этот блок-сополимер образует мицеллы с ядром поли-4-винилпиридина. Ядро хорошо координируется с ДСН, вводимым в спиртовом растворе.

Полифенилен с объемными ароматическими заместителями, растворимый в органических растворителях, где при растворении образует сферические частицы, хорошо совмещается с ДСН, вводимым в небольшом количестве спиртового раствора, кроме того, он и сам является люминесцентным.

Технический результат предлагаемого изобретения проявляется в контролируемом проведении процесса роста наночастиц и снижении агрегации получаемых частиц.

В зависимости от условий реакции - концентрация полимера, концентрация солей, температурный режим (от 20 до 30°С), скорость перемешивания - можно контролировать рост наночастиц, т.е. получить наночастицы сульфида кадмия с варьируемыми размерами и дисперсностью, при этом главный результат от применения предлагаемого изобретения: излучение света в узком диапазоне длин волн и стабильность свойств во времени, практически не меняются.

На фиг.1 представлена схема формирования гибридных мицелл амфифильного блок-сополимера с анионным ПАВ (например, додецилсульфат натрия).

На фиг.2 представлена схема ионного обмена противоионов ДСН в гибридной системе ПС-ПЭО/ДСН на ионы кадмия.

На фиг.3 представлена схема формирования наночастиц CdS.

В качестве исходных веществ были использованы стандартные блок-сополимер полистирол-блок-полиэтиленоксид (ПС-ПЭО) ПС-ПЭО (PS-b-PEO, SE1030 PS-1000, РЕО-3000, Mn=4000, Mw=6200), додецилсульфат натрия (ДСН, 80%), ацетат кадмия (кадмий ацетат дигидрат, C4H6CdO4×2H2O, 98,0%), сульфид натрия (Na2S×9H2O, 99%) и сероводород (H2S, 99,5%), выпускаемые отечественными и иностранными фирмами.

Пример 1.

Для приготовления водного раствора полимера с концентрацией 10 г/л рассчитанное количество дистиллированной воды наливали в пробирку Шленка, оборудованную магнитной мешалкой, вакуумировали и заполняли аргоном, затем туда же помещали навеску ПС-ПЭО и оставляли перемешиваться на сутки. Далее к раствору добавляли ПАВ до концентрации 0.8×10-3 моль/литр и оставляли перемешиваться на 2 суток. (см. фиг.1).

Затем к мицеллярному раствору приливали эквивалентное по концентрации количество соли кадмия и сразу же вводили десятикратный мольный избыток сульфида натрия. В нашем случае, используя катионы кадмия, полученные диссоциацией ацетата кадмия дигидрата (C4H6CdO4×2H2O), был осуществлен ионный обмен противоионов ДСН в гибридной системе полимер/ДСН на ионы кадмия. (см. фиг.2).

Далее раствор перемешивали в течение суток. Дальнейшее введение сульфида натрия или сероводорода приводит к насыщению полимерной глобулярной структуры наночастицами CdS с регулируемым размером в зависимости от условий реакции. (см. фиг.3).

Образец отмывали от избытка ПАВ достаточным количеством дистиллированной воды при помощи ультрацентрифугирования и доводили раствор до первоначального объема.

По данным просвечивающей электронной микроскопии размер частиц составлял 6-8 нм. Дальнейшее введение сульфида натрия или сероводорода приводит к насыщению образованных сферических частиц наночастицами CdS с регулируемым размером в зависимости от условий реакции (фиг.3). Квантовый выход фотолюминесценции в растворе 7% (относительно хининсульфата).

Пример 2. К мицеллярному раствору по примеру 1 приливали эквивалентное по концентрации количество соли кадмия и затем пропускали в течение трех часов газообразный сероводород. Размер наночастиц по данным ПЭМ 6 нм.

Квантовый выход люминесценции в растворе 11% (относительно хининсульфата).

Пример 3. К мицеллярному раствору по примеру 1 приливали 0,5 эквивалентное количество соли кадмия и затем пропускали в течение трех часов газообразный сероводород. Размер наночастиц по данным ПЭМ 2 нм. Получаемые наночастицы сульфида кадмия, стабилизированные полимерными матрицами, не изменяли свою структуру в течение всего времени наблюдения (1 год). Квантовый выход люминесценции в растворе 13% (относительно хининсульфата).

Пример 4.

Для получения мицеллярного раствора полистирол-блок-поли-4-винилпиридина (ПС-b-П-4-ВП) в толуоле помещали 0.05 г (1.34·10-4 М) блок-сополимера в 3-горлую круглодонную колбу, приливали 20 мл растворителя, перемешивали и оставляли на ночь. Далее в колбу помещали при перемешивании в атмосфере аргона раствор ДСН (анионный ПАВ) в 0,5 мл спирта до концентрации 0.8×10-3 моль/литр и оставляли перемешиваться на 2 суток. В атмосфере аргона при комнатной температуре, предварительно вакуумировав мицеллярный раствор ПС-b-П-4-ВП в толуоле, добавляли 0.0089 г (3.86·10-4 М) дигидрата ацетата кадмия C4H6CdO4·2H2O и перемешивали в течение 2 суток.

Получение наночастиц сульфида кадмия в мицеллах ПС-b-П-4-ВП проводили путем обработки комплексов ацетата кадмия в блок-сополимере сероводородом при температуре 30°С в течение 1 часа. Образец отмывали от избытка ПАВ достаточным количеством дистиллированной воды при помощи ультрацентрифугирования и доводили раствор до первоначального объема.

Для определения содержания кадмия и серы в блок-сополимерном образце удаляли растворитель на вакуумном роторном испарителе при 40°С в течение 30 минут при 16 mBar и далее с помощью вакуумного масляного насоса в течение 6 часов при 0.6 mBar.

Квантовый выход люминесценции в растворе 25% (относительно хининсульфата).

Пример 5. В раствор 0.05 г (1.5·10-4 М) полифенилена с объемными фениленовыми заместителями (ПФ), представляющими собой сферические частицы, распределенные в 20 мл толуола, помещали при перемешивании в атмосфере аргона раствор ДСП (анионный ПАВ) в 0,2 мл спирта до концентрации 0.8×10-3 моль/литр и оставляли перемешиваться на 2 суток. Затем добавляли 0.0089 г (3.86·10-4 М) дигидрата ацетата кадмия C4H6CdO4·2H2O (в 0,5 мл спирта) и перемешивали в течение 1 суток.

Получение наночастиц сульфида кадмия в матрицах ПФ проводили путем обработки комплексов ацетата кадмия в растворе сероводородом при температуре 30°С в течение 3 часов. Образец отмывали от избытка ПАВ достаточным количеством дистиллированной воды при помощи ультрацентрифугирования и доводили раствор до первоначального объема.

Полимер высаживали в спирт и отмывали спиртом от ДСП. Для определения содержания кадмия и серы в образце, удаляли растворитель на роторном испарителе при 40°С в течение 30 минут при 16 mBar и далее сушили с помощью вакуумного масляного насоса в течение 6 часов при 0.6 mBar.

Квантовый выход люминесценции в растворе 45% (относительно хининсульфата).

Таким образом, проведение способа получения люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами в соответствии с предлагаемым изобретением, позволяет достичь повышения качества люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, в том числе квантового выходя люминесценции.


Формула изобретения

1. Способ получения люминесцентных наночастиц сульфида кадмия, стабилизированных полимерными матрицами, включающий выращивание наночастиц сульфида кадмия непосредственно в полимерных матрицах, отличающийся тем, что полимерное соединение, выбранное из ряда, включающего полистирол-блок-полиэтиленоксид, полистирол-блок-4-винилпиридин или полифенилен, подвергают растворению, вносят в полученный раствор анионное поверхностно-активное вещество с последующим добавлением соединения, содержащего катионы кадмия, а затем соединения, содержащего анионы серы, и после выращивания наночастиц сульфида кадмия удаляют избыток анионного поверхностно-активного вещества.

2. Способ по п.1, отличающийся тем, что в качестве анионного поверхностно-активного вещества используют додецилсульфат натрия.

3. Способ по п.1, отличающийся тем, что в качестве соединения, содержащего анионы серы, используют сульфид натрия или сероводород.























Скачать 124.71 Kb.
оставить комментарий
Дата04.03.2012
Размер124.71 Kb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх