Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа 2006 icon

Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа 2006


1 чел. помогло.

Смотрите также:
Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа-2006...
Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа-2006...
Учебное пособие Часть 3 Рекомендовано учебно-методическим советом угаэс уфа-2006...
Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа-2006...
Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа-2010...
Учебное пособие Рекомендовано учебно-методическим советом по анатомии и гистологии...
Учебное пособие Рекомендовано Дальневосточным региональным учебно-методическим центром...
Учебное пособие для студентов специальности 5B050200 «Политология» Павлодар...
Учебное пособие Часть I рекомендовано научно-методическим советом университета белгород...
Учебное пособие Изд. 2-е, перераб и доп. Петрозаводск Издательство Петргу 2006...
Учебное пособие Изд. 2-е, перераб и доп. Петрозаводск Издательство Петргу 2006...
Учебное пособие Рекомендовано Учебно-методическим объединением по образованию в области водного...



страницы: 1   2   3   4   5
вернуться в начало
скачать
^

3.4. Равновесия в системах «хищник – жертва» и «паразит – хозяин»


Рассмотрим характер популляционного равновесия на примере охоты

волков на зайцев. Когда численность зайцев невелика, каждый из них может найти достаточное количество пищи и убежищ для себя и детенышей. Сопротивление   среды оказывается небольшим и численность зайцев увеличивается, несмотря на присутствие хищников-волков. Однако с увеличением численности популляции зайцев уменьшается количество корма и убежищ. Изобилие зайцев облегчает для волков охоту и выращивание детенышей. В результате численность популяции волков начинает расти. Вскоре популяция зайцев начинает испытывать усилившееся сопротивление среды: нехватка корма, убежищ, усиление хищничества. В результате численность ее начинает снижаться. При этом и количество пищи, и количество доступных для каждой "жертвы" убежищ вновь возрастает. К тому же, как правило, выживают наиболее сильные и "хитрые" зайцы, для которых шансы спастись от хищников заметно превышают средний уровень. Охотиться волкам становится труднее, они начинают испытывать нехватку пищи и их численность начинает падать. Но это означает снижение сопротивления среды для зайцев, их численность вновь начинает увеличиваться. В результате весь цикл повторяется вновь и вновь, что и приводит к периодическим колебаниям численности популяций зайцев и волков вокруг некоторого среднего уровня. Крупные хищники очень редко бывают главным фактором, контролирующим численность травоядных. Различные паразиты, начиная от глистов и кончая многочисленными бактериями, грибками, вирусами значительнее многообразнее и важнее. Они также поддерживают популяционное равновесие подобно хищникам. Если плотность популляции растет, то паразиты легко находят себе новых хозяев, соответственно повышается заболеваемость и смертность хозяев, создаются условия для возникновения эпидемических заболеваний, что ведет к быстрому сокращению численности популяции. Если же плотность популяции "хозяев" низка, распространение паразитов затруднено, сокращается число пораженных особей.

В реальных пищевых целях и сетях каждый вид связан и зависит от нескольких паразитов и хищников. Можно говорить о равновесии между видом и его естественными врагами. В сложной пищевой сети равновесие значительно более устойчиво и менее подвержено резким колебаниям. Дело в том, что разные враги начинают снижать численность вида-жертвы при разной плотности популяции. Когда она достаточно снижается, хищники могут переключиться на другие виды пищи, на другие жертвы. В результате колебания и сдвиги по времени между численностями хищника и жертвы сокращаются. Резкие колебания численности популяции жертвы характерны для простых экосистем с небольшим количеством видов.

Принцип стабильности экосистем: видовое разнообразие обеспечивает стабильность экосистем.

Равновесие в системах «хищник–жертва» и «хозяин – паразит» не устанавливается мгновенно и автоматически. Оно устанавливается в результате длительной «притирки», адаптации видов друг к другу и к среде своего обитания, так что естественные враги не уничтожают полностью популяцию своей жертвы. В тех случаях, когда в экосистеме появляются виды из других сообществ, равновесие между популяциями, зачастую, оказывается невозможным. Подобное явление, называемое интродукция, часто является следствием вмешательства человека. Так, пышная растительность на многих островах в Атлантическом и Тихом Океанах была уничтожена, когда на эти острова завезли коз. Этот всеядный фиотфаг, интенсивно разрушающий своими острыми копытцами корневую систему растений, нарушил сложившиеся экосистемы.

В 1859 г. в Австралию для спортивной охоты завезли кроликов. Природные условия для них оказались благоприятными, а местные хищники – не опасными, поскольку не обладали необходимой быстроходностью. В результате кролики расплодились настолько, что на больших территориях уничтожили растительность пастбищ. Многолетняя борьба с кроликами лишь сравнительно недавно позволила сократить рост их численности. Учеными был найден паразит кроликов, позволяющий решить эту проблему. Именно отсутствие в экосистемах естественных врагов для интродуцированных видов приводит к бурному распространению непарного шелкопряда, причиняющего максимальный ущерб лесам. По этой же причине победно шествует по Европе колорадский жук. Равновесие может нарушиться и при искусственном введении в экосистему слишком эффективного врага. Исключительно активный хищник - домашняя кошка - завезенная на острова полностью истребила многие, уникальные виды местной фауны. Не менее трагическим оказался завоз в Южную Америку и на острова южной части Тихого Океана стрептококка и вируса кори. Общение с европейцами, с детства адаптированными к ангине и кори, привело к массовой гибели туземцев, которые не прошли подобной адаптации. На некоторых островах южных морей погибло более 99% населения.


^ 3.5. Передача энергии в экосистемах


Энергия определяется как способность производить работу и выражается в джоулях (Дж) или килоджоулях (кДж). Один грамм сухого органического вещества растения в среднем соответствует 18,7 кДж (4,5 ккал) энергии. В более богатых белками и жирами семенах растений энергетический эквивалент выше – около 20 кДж/кг. Один грамм сухого вещества позвоночного животного (мяса) заключает 23,5 кДж (5,6 ккал).

Организмы потребители (консументы), питаясь органическим веществом продуцентов, получают от них энергию, частично идущую на построение собственного органического вещества и связывающуюся в молекулах соответствующих химических соединений, а частично расходующийся на дыхание, теплоотдачу, выполнение движений в процессе поиска пищи, ускользания отврагов и т.п.




Рис. 3.3. Трофические уровни передачи энергии


Таким образом, в экосистеме имеет место непрерывной поток энергии, заключающийся в передаче ее от одного пищевого уровня к другому. В силу второго закона термодинамики этот процесс связан с рассеиванием энергии на каждом последующем звене, то есть с ее потерями и возрастанием энтропии.

В процессе жизнедеятельности сообщества создается и расходуется органическое вещество. Это значит, что каждая экологическая система обладает определенной продуктивностью. Продуктивность оценивают, соотнося массу вещества (продукцию) с некоторой единицей времени, то есть, рассматривая ее как скорость образования вещества (биомассы). Основная, или первичная, продуктивность системы определяется как скорость, с которой лучистая энергия солнца усваивается организмами-продуцентами, то есть зелеными растениями в процессе фотосинтеза.

Продуктивность экологических систем и соотношение в них различных трофических уровней принято выражать в форме пирамид. Первая пирамида - пирамида Элтона или пирамида чисел, которая наглядно иллюстрирует соотношение биомасс и эквивалентных им количеств энергии в каждом звене пищевой цепи.




------------------третичные консументы (IV троф. уровень)

-------------------вторичные консументы (III троф. уровень)

-------------------первичные консументы (II троф. уровень)

-------------------первичные продуценты (I троф. уровень)


Пирамиды энергии отражают скорость образования биомассы в отличие от пирамид численности и биомассы, описывающих только текущее состояние организмов в отдельный момент времени. Каждая ступенька пирамиды энергии отражает количество энергии (на единицу площади или объема), прошедшей через определенный трофический уровень за определенный период.

Пирамида энергии водной экосистемы


-----------------88 от хищников к вторичным хищникам

------------1603 от травоядных к хищникам

---------14096 от продуцентов к травоядным

------87110 первичные продуценты


Различные экологические системы характеризуются различной продуктивностью, что следует учитывать при освоении тех или иных территорий, например под сельскохозяйственное пользование. Продуктивность экосистемы зависит отряда факторов, в первую очередь от обусловленной климатическими

условиями обеспеченности теплом и влагой.

Продуктивность – важнейшее для человека свойство биосферы, зависящее от продуктивности слагающих ее естественных и антропогенных экологических систем. Благодаря способности экосистемы производить биомассу человек получает необходимые ему пищевые и многие химические ресурсы.


^ 3.6. Динамические процессы в экосистемах


Важнейшими свойствами биогеоценоза является его устойчивость, сбалансированность происходящих в нем процессов обмена веществом и энергией между всеми компонентами, вследствие чего биогеоценозу свойственно состояние так называемого подвижного равновесия, или гомеостаза. Пример: олень-волк.

Стабильность сообщества определяется числом связей между видами в трофической цепи.

Гомеостаз – это, в сущности, подвижное равновесие, и в любой экосистеме идут процессы, меняющие ее во времени и пространстве. При этом изменяется состав биоты, структура экосистемы и ее продуктивность.

Последовательная смена биоценозов, приемственно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека, называется сукцессией.

Природные биотические сообщества наследственно формируют закономерный ряд экосистем, ведущий к наиболее устойчивому в данных условиях состоянию климакса.

Сукцессия – постепенный процесс изменения структуры и состава биоценоза и связан с внутренними процессами экосистемы, с динамикой экотопа, с постепенными изменениями растительности, экологических ниш для консументов, а также внешними воздействиями на экосистему (в том числе и антропогенными). Циклические скцесси имеют длительный период смены биоценозов.

В определенных условиях  подвижно стабильное состояние – климакс (лестница). некоторые таежные леса, ковыльные степи.

Внешним проявлением сукцессии экосистемы является изменение численности популяций растений, животных, популяции могут быть большими и малыми.

Для сравнения численности популяции в разные отрезки времени пользуются плотностью, то есть численность популяции, отнесенная к единице занимаемого его пространства.


^ ГЛАВА 4. КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ


4.1. Большой и малый круговорот веществ в природе


Основных круговоротов веществ в природе два: большой (геологический) и малый (биогеохимический).

Большей круговорот веществ в природе (геологический) обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли.

Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму – источник новых магматических пород. После поднятия этих пород на земную поверхность и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы (рис. 4.1). Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.



Рис. 4.1. Большой круговорот веществ


Большой круговорот – это и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности Мирового океана (на что затрачивается почти половина поступающей к поверхности Земли солнечной энергии), переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока. Круговорот роды происходит и по более простой схеме: испарение влаги с поверхности океана – конденсация водяного пара – выпадение осадков на эту же водную поверхность океана.

Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды.

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 млн. лет (см. рис. 4.4).

Этот круговорот для жизни биосферы – главный, и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей пла­нете, обеспечивая биогеохимический круговорот веществ.




Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. Эта энергия довольно неравномерно распределяется по поверхности земного шара. Например, на экваторе количество тепла, приходящееся на единицу площади, в три раза больше, чем на архипелаге Шпицберген (80° с.ш). Кроме того, она теряется путем отражения, поглощается почвой, расходуется на транспирацию воды и т. д. (рис. 6.8) а, как мы уже отмечали, на фотосинтез тратится не более 5 % от всей энергии, но чаще всего 2–3 %.

В ряде экосистем перенос вещества и энергии осуществляется преимущественно посредством трофических цепей.

Такой круговорот обычно называют биологическим. Он предполагает замкнутый цикл веществ, многократно используемый трофической цепью. Безусловно, он может иметь место в водных экосистемах, особенно в планктоне с его интенсивным метаболизмом, но не в наземных экосистемах, за исключением дождевых тропических лесов, где может быть обеспечена передача питательных веществ «от растения к растению», корни которых на поверхности почвы.

Однако в масштабах всей биосферы такой круговорот невозможен. Здесь действует биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ (СО2, Н2О) с веществом атмосферы, гидросферы и литосферы. Круговорот отдельных веществ В.И.Вернадский назвал биогеохимическими циклами. Суть цикла в следующем: химические элементы, поглощенные организмом, впоследствии его покидают, уходя в абиотическую среду, затем, через какое-то время, снова попадают в живой организм, и т. д. Такие элементы называют биофилъными. Этими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере. В.И.Вернадский выделяет пять таких функций.





Рис. 4.2. Поступление и распределение солнечной энергии

в пределах биосферы Земли


1. Газовая – основные газы атмосферы Земли, азот и кислород, биогенного происхождения, как и все подземные газы – продукт разложения отмершей органики;

2. Концентрационная – организмы накапливают в своих телах многие химические элементы, среди которых на первом месте стоит углерод, среди металлов — первый кальций, концентраторами кремния являются диатомовые водоросли, йода – водоросли (ламинария), фосфора – скелеты позвоночных животных;

3. Окислительно-восстановительная – организмы, обитающие в водоемах, регулируют кислородный режим и создают условия для растворения или же осаждения ряда металлов (V, Mn, Fe) и неметаллов (S) с переменной валентностью;

4. Биохимическая – размножение, рост и перемещение в пространстве («расползание») живого вещества,

5. Биогеохимическая деятельность человека – охватывает все разрастающееся количество веществ земной коры, в том числе таких концентраторов углерода, как уголь, нефть, газ и другие, для хозяйственных и бытовых нужд человека.

В биогеохимических круговоротах следует различать две части, или как бы два среза: 1) резервный фонд – это огромная масса движущихся веществ, не связанных с организмами; 2) обменный фонд – значительно меньший, но весьма активный, обусловленный прямым обменом биогенным веществом между организмами и их непосредственным окружением. Если же рассматривать биосферу в целом, то в ней можно выделить: 1) круговорот газообразных веществ с резервным фондом в атмосфере и гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре (в геологическом круговороте).

В связи с этим, следует отметить, лишь один-единственный на Земле процесс, который не тратит, а, наоборот, связывает солнечную энергию и даже накапливает ее – это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция живого вещества на Земле.


^ 4.2. Биогеохимические циклы наиболее жизненно важных

биогенных веществ


Наиболее жизненно важными можно считать вещества, из которых в основном состоят белковые молекулы. К ним относятся углерод, азот, кислород, фосфор, сера.

Биогеохимические циклы углерода, азота и кислорода (рис. 4.3) наиболее совершенны. Благодаря большим атмосферным резервам, они способны к быстрой саморегуляции. В.круговороте углерода, а точнее – наиболее подвижной его формы – СО2, четко прослеживается трофическая цепь: продуценты, улавливающие углерод из атмосферы при фотосинтезе, консументы – поглощающие углерод вместе с телами продуцентов и консументов низших порядков, редуцентов – возвращающих углерод вновь в круговорот. Скорость оборота СО2 составляет порядка 300 лет (полная его замена в атмосфере).

В Мировом океане трофическая цепь: продуценты (фитопланктон) – консументы (зоопланктон, рыбы) – редуценты (микроорганизмы) – осложняется тем, что некоторая часть углерода мертвого организма, опускаясь на дно, «уходит» в осадочные породы и участвует уже не в биологическом, а в геологическом круговороте вещества.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд. т этого элемента, что составляет 2/3 его запаса в атмосфере. Вмешательство человека в круговорот углерода приводит к возрастанию содержания СО2 в атмосфере.

Скорость круговорота кислорода – 2 тыс. лет (рис. 4.3), именно за это время весь кислород атмосферы проходит через живое вещество. Основной поставщик кислорода на Земле – зеленые растения. Ежегодно они производят на суше 53–109 т кислорода, а в океанах – 414–109 т.

Главный потребитель кислорода – животные, почвенные организмы и растения, использующие его в процессе дыхания. Процесс круговорота кислорода в биосфере весьма сложен, так как он содержится в очень многих химических соединениях.







Рис. 4.3. Схема биогеохимического круговорота веществ на суше


Подсчитано, что на промышленные и бытовые нужды ежегодно расходуется 23 % кислорода, который освобождается в процессе фотосинтеза.

Предполагается, что в ближайшее время весь продуцированный кислород будет сгорать в топках, а следовательно, необходимо значительное усиление фотосинтеза и другие радикальные меры.





Рис.4.4. Круговорот азота в биосфере


Биогеохимический круговорот азота не менее сложен, чем углерода и кислорода, и охватывает все области биосферы. Поглощение его растениями ограничено, так как они усваивают азот только в форме соединения его с водородом и кислородом. И это при том, что запасы азота в атмосфере неисчерпаемы (78 % от ее объема). Редуценты (деструкторы), а конкретно почвенные бактерии, постепенно разлагают белковые вещества отмерших организмов и превращают их в аммонийные соединения, нитраты и нитриты. Часть нитратов попадает в процессе круговорота в подземные воды и загрязняет их.

Опасность заключается также и в том, что азот в виде нитратов и нитритов усваивается растениями и может передаваться по пищевым (трофическим) цепям.

Азот возвращается в атмосферу вновь с выделенными при гниении газами. Роль бактерий в цикле азота такова, что если будет уничтожено только 12 их видов, участвующих в круговороте азота, жизнь на Земле прекратится. Так считают американские ученые.

Биогеохимический круговорот в биосфере, помимо кислорода, углерода и азота, совершают и многие другие элементы, входящие в состав органических веществ, - сера, фосфор, железо и др.

Биогеохимические циклы фосфора и серы, важнейших биогенных элементов, значительно менее совершенны, так как основная их масса содержится в резервном фонде земной коры, в «недоступном» фонде.

Круговорот серы и фосфора – типичный осадочный био­геохимический цикл. Такие циклы легко нарушаются от раз­личного рода воздействий и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом биофильных компонентов.

Фосфор содержится в горных породах, образовавшихся в прошлые геологические эпохи. В биогеохимический круговорот (рис. 4.5) он может попасть в случае подъема этих пород из глубины земной коры на поверхность суши, в зону

выветривания. Эрозионными процессами он выносится в море в виде широко известного минерала – апатита.

Общий круговорот фосфора можно разделить на две части – водную и наземную. В водных экосистемах он усваивается фитопланктоном и передается по трофической цепи вплоть до консументов третьего порядка – морских птиц. Их экскременты (гуано) снова попадают в море и вступают в круговорот, либо накапливаются на берегу и смываются в море.

Из отмирающих морских животных, особенно рыб, фосфор снова попадает в море и в круговорот, но часть скелетов рыб достигает больших глубин и заключенный в них фосфор снова попадает в осадочные породы.

В наземных экосистемах фосфор извлекают растения из почв и далее он распространяется по трофической сети. Возвращается в почву после отмирания животных и растений и с их экскрементами. Теряется фосфор из почв в результате их водной эрозии. Повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение» водоемов и их эвтрофикацию. Большая же часть фосфора уносится в море и там теряется безвозвратно.

Последнее обстоятельство может привести к истощению запасов фосфорсодержащих руд (фосфоритов, апатитов и др.). Следовательно, надо стремиться избежать этих потерь и не ожидать того времени, когда Земля вернет на сушу «потерянные отложения».

Сера имеет основной резервный фонд в отложениях и почве, но в отличие от фосфора имеет резервный фонд и в атмосфере (рис. 4.6). В обменном фонде главная роль принадлежит микроорганизмам. Одни из них восстановители, другие – окислители.





Рис. 4.5. Круговорот фосфора в биосфере


В горных породах сера встречается в виде сульфидов (FeS2 и др.), в растворах — в форме иона (SO42-), в газообразной фазе в виде сероводорода (H2S) или сернистого газа (SO2). В некоторых организмах сера накапливается в чистом виде (S2) и при их отмирании на дне морей образуются залежи самородной серы.

В морской среде сульфат-ион занимает второе место по содержанию после хлора и является основной доступной формой серы, которая восстанавливается автотрофами и включается в состав аминокислот.

Круговорот серы, хотя ее требуется организмам в небольших количествах, является ключевым в общем процессе продукции и разложения (Ю.Одум, 1986). Например, при образовании сульфидов железа фосфор переходит в растворимую форму, доступную для организмов.

В наземных экосистемах сера возвращается в почву при отмирании растений, захватывается микроорганизмами, которые восстанавливают ее до H2S. Другие организмы и воздействие самого кислорода приводят к окислению этих продуктов. Образовавшиеся сульфаты растворяются и поглощаются растениями из поровых растворов почвы – так продолжается круговорот.




Рис. 4.6. Круговорот серы в природе


Однако круговорот серы, так же как и азота, может быть нарушен вмешательством человека (рис. 4.6). Виной тому прежде всего сжигание ископаемого топлива, а особенно угля. Сернистый газ (SO2↑) нарушает процессы фотосинтеза и приводит к гибели растительности.

Биогеохимические циклы легко нарушаются человеком. Так, добывая минеральные удобрения, он загрязняет воду и воздушную среду. В воду попадает фосфор, вызывая эвтрофикацию, азотистые высокотоксичные соединения и др. Иными словами, круговорот становится не циклическим, а ациклическим. Охрана природных ресурсов должна быть, в частности, направлена на то, чтобы ациклические биогеохимические процессы превратить в циклические.

Таким образом, всеобщий гомеостаз биосферы зависит от стабильности биогеохиминеского круговорота веществ в природе. Но, являясь планетарной экосистемой, она состоит из экосистем всех уровней.


^ ГЛАВА 5. ВОЗДЕЙСТВИЕ ОСНОВНЫХ ЗАГРЯЗНИТЕЛЕЙ

НА ОКРУЖАЮЩУЮ СРЕДУ


5.1. Антропогенное воздействие на атмосферу


Крупнейшие глобальные экологические проблемы современности – «парниковый эффект», нарушение озонового слоя, выпадение кислотных дождей, связаны именно с антропогенным загрязнением атмосферы.

Охрана атмосферного воздуха – ключевая проблема оздоровления окружающей природной среды. Атмосферный воздух занимает особое положение среди других компонентов биосферы. Значение его для всего живого на Земле невозможно переоценить. Человек может находиться без пищи пять недель, без воды – пять дней, а без воздуха всего лишь пять минут. При этом воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья.

Атмосферный воздух выполняет и сложнейшую защитную экологическую функцию, предохраняя Землю от абсолютно хо­лодного Космоса и потока солнечных излучений. В атмосфере идут глобальные метеорологические процессы, формируются климат и погода, задерживается масса метеоритов.

Атмосфера обладает способностью к самоочищению. Оно происходит при вымывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязненных веществ на поверхности земли и т.д. Однако в современных условиях возможности природных систем самоочищения атмосферы серьезно подорваны. Под массированным натиском антропогенных загрязнений в атмосфере стали проявляться весьма нежелательные экологические последствия, в том числе и глобального характера. По этой причине атмосферный воздух уже не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.

Под загрязнением атмосферного воздуха следует понимать любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем.

Загрязнение атмосферы может быть естественным (природным) и антропогенным (техногенным).

Естественное загрязнение воздуха вызвано природными процессами. К ним относятся вулканическая деятельность, выветривание горных пород, ветровая эрозия, массовое цветение растений, дым от лесных и степных пожаров и др. Антропогенное загрязнение связано с выбросом различных загрязняющих веществ в процессе деятельности человека. По своим масштабам оно значительно превосходит природное загрязнение атмосферного воздуха.

В зависимости от масштабов распространения выделяют различные типы загрязнения атмосферы: местное, региональное и глобальное. Местное загрязнение характеризуется повышенным содержанием загрязняющих веществ на небольших территориях (город, промышленный район, сельскохозяйственная зона и др.) (рис. 5.1). При региональном загрязнении в сферу негативного воздействия вовлекаются значительные пространства, но не вся планета. Глобальное загрязнение связано с изменением состояния атмосферы в целом.

По агрегатному состоянию выбросы вредных веществ в атмосферу классифицируются на: 1) газообразные (диоксид серы, оксиды азота, оксид углерода, углеводороды и др.); 2) жидкие (кислоты, щелочи, растворы солей и др.); 3) твердые (канцерогенные вещества, свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества и прочие).

Главные загрязнители (поллютанты) атмосферного воздуха, образующиеся в процессе производственной и иной дея­тельности человека – диоксид серы (SO2), оксиды азота (NOх), оксид углерода (СО) и твердые частицы. На их долю приходится около 98 % в общем объеме выбросов вредных веществ. Помимо главных загрязнителей, в атмосфере городов и поселков наблюдается еще более 70 наименований вредных веществ, среди которых – формальдегид, фтористый водород, соединения свинца, аммиак, фенол, бензол, сероуглерод и др. Однако именно концентрации главных загрязнителей (диоксид серы и др.) наиболее часто превышают допустимые уровни во многих городах России.

Суммарный мировой выброс в атмосферу четырех главных загрязнителей (поллютантов) атмосферы составил в 1990 г. – 401 млн т, а в России в 1991 г. – 26,2 млн т (табл. 5.1). Кроме указанных главных загрязнителей в атмосферу попадает много других очень опасных токсичных веществ: свинец, ртуть, кадмий и другие тяжелые металлы (источники выброса: автомобили, плавильные заводы и др.); углеводороды (СnНm), среди них наиболее опасен бенз(а)пирен, задающий канцерогенным действием (выхлопные газы, топка котлов и др.), альдегиды, и в первую очередь формальдегид, сероводород, токсичные летучие растворители (бензины, спирты, эфиры) и др.




Рис. 5.1. Местное (локальное) загрязнение атмосферы


^ Таблица 5.1

Выброс в атмосферу главных загрязнителей (поллютантов) в мире и в России


Вещества, млн т

Диоксид серы

Оксиды азота

Оксид углерода

Твердые частицы

Всего

Суммарный мировой выброс

99

68

177

57

401

Россия (только стационарные источники)

9,2

3

7,6

6,4

26,2

%

9,2

4,4

4,3

11,2

6,5

Россия (с учетом всех источников), %

12

5,8

5,6

12,2

13,2


Наиболее опасное загрязнение атмосферы – радиоактивное. В настоящее время оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами – продуктами испытания ядерного оружия, проводившихся в атмосфере и под землей. Приземный слой атмосферы загрязняют также выбросы в атмосферу радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации и другие источники.

Особое место занимают выбросы радиоактивных веществ из четвертого блока Чернобыльской АЭС в апреле – мае 1986 г. Если при взрыве атомной бомбы над Хиросимой (Япония) в атмосферу было выброшено 740 г радионуклидов, то в результате аварии на Чернобыльской АЭС в 1986 г. суммарный выброс радиоактивных веществ в атмосферу составил 77 кг.

Еще одной формой загрязнения атмосферы является локальное избыточное поступление тепла от антропогенных источников. Признаком теплового (термического) загрязнения атмосферы служат так называемые термические зоны, например, «остров тепла» в городах, потепление водоемов и т. п.

В целом, если судить по официальным данным на 2000 г уровень загрязнения атмосферного воздуха в нашей стране, особенно в городах России, остается высоким, несмотря на значительный спад производства, что связывают прежде всего с увеличением количества автомобилей.


^ 5.1.1. Основные источники загрязнения атмосферы


В настоящее время «основной вклад» в загрязнение атмосферного воздуха на территории России вносят следующие отрасли: теплоэнергетика (тепловые и атомные электростанции, промышленные и городские котельные и др.), далее предприятия черной металлургии, нефтедобычи и нефтехимии, автотранспорт, предприятия цветной металлургии и производство стройматериалов.

Роль различных отраслей хозяйства в загрязнении атмосферы в развитых промышленных странах Запада несколько иная. Так, например, основное количество выбросов вредных веществ в США, Великобритании и ФРГ приходится на автотранспорт (50–60 %), тогда как на долю теплоэнергетики значительно меньше, всего 16–20 %.

^ Тепловые и атомные электростанции. Котельные установки. В процессе сжигания твердого или жидкого топлива в атмосферу выделяется дым, содержащий продукты полного (диоксид углерода и пары воды) и неполного (оксиды углерода, серы, азота, углеводороды и др.) сгорания. Объем энергетических выбросов очень велик. Так, современная теплоэлектростанция мощностью 2,4 млн кВт расходует в сутки до 20 тыс. т угля и выбрасывает в атмосферу за это время 680 т SO2 и SO3, 120–140 т твердых частиц (зола, пыль, сажа), 200 т оксидов азота.

Перевод установок на жидкое топливо (мазут) снижает выбросы золы, но практически не уменьшает выбросы оксидов серы и азота. Наиболее экологично газовое топливо, которое в три раза меньше загрязняет атмосферный воздух, чем мазут, и в пять раз меньше, чем уголь.

Источники загрязнения воздуха токсичными веществами на атомных электростанциях (АЭС) – радиоактивный йод, радиоактивные инертные газы и аэрозоли. Крупный источник энергетического загрязнения атмосферы – отопительная система жилищ (котельные установки) дает мало оксидов азота, но много продуктов неполного сгорания. Из-за небольшой высоты дымовых труб токсичные вещества в высоких концентрациях рассеиваются вблизи котельных установок.

^ Черная и цветная металлургия. При выплавке одной тонны стали в атмосферу выбрасывается 0,04 т твердых частиц, 0,03 т оксидов серы и до 0,05 т оксида углерода, а также в небольших количествах такие опасные загрязнители, как марганец, свинец, фосфор, мышьяк, пары ртути и др. В процессе сталеплавильного производства в атмосферу выбрасываются парогазовые смеси, состоящие из фенола, формальдегида, бензола, аммиака и других токсичных веществ. Существенно загрязняется атмосфера также на агломерационных фабриках, при доменном и ферросплавном производствах.

Значительные выбросы отходящих газов и пыли, содержащих токсичные вещества, отмечаются на заводах цветной металлургии при переработке свинцово-цинковых, медных, сульфидных руд, при производстве алюминия и др.

^ Химическое производство. Выбросы этой отрасли хотя и невелики по объему (около 2% всех промышленных выбросов), тем не менее, ввиду своей весьма высокой токсичности, значительного разнообразия и концентрирования, представляют значительную угрозу для человека и всей биоты. На разнообразных химических производствах атмосферный воздух загрязняют оксиды серы, соединения фтора, аммиак, нитрозные газы (смесь оксидов азота), хлористые соединения, сероводород, неорганическая пыль и т. п.).

^ Выбросы автотранспорта. В мире насчитывается несколько сот миллионов автомобилей, которые сжигают огромное количество нефтепродуктов, существенно загрязняя атмосферный воздух, прежде всего в крупных городах. Так, в г. Москве на долю автотранспорта приходится 80% от общего количества выбросов в атмосферу. Выхлопные газы двигателей внутреннего сгорания (особенно карбюраторных) содержат огромное количество токсичных соединений – бенз(а)пирена, альдегидов, оксидов азота и углерода и особо опасных соединений свинца (в случае применения этилированного бензина).

Наибольшее количество вредных веществ в составе отработанных газов образуется при неотрегулированной топливной системе автомобиля. Правильная ее регулировка позволяет сни­зить их количество в 1,5 раза, а специальные нейтрализаторы снижают токсичность выхлопных газов в шесть и более раз.

Интенсивное загрязнение атмосферного воздуха отмечается также при добыче и переработки минерального сырья, на нефте- и газоперерабатывающих заводах (рис. 5.2), при выбросе пыли и газов из подземных горных выработок, при сжигании мусора и горении пород в отвалах (терриконах) и т. д. В сельских районах очагами загрязнения атмосферного воздуха являются животноводческие и птицеводческие фермы, промышленные комплексы по производству мяса, распыление пестицидов и т. д.

«Каждый житель Земли – это и потенциальная жертва стратегических (трансграничных) загрязнений», – подчеркивает А.Гор в книге «Земля на чаше весов» (1993). Трансграничными загрязнениями понимают загрязнения, перенесенные с территории одной страны на площадь другой. Только в 1994 г на европейскую часть России из-за невыгодного ее географического положения выпало 1204 тыс. т соединений серы от Украины, Германии, Польши и других стран. В то же время в других странах от российских источников загрязнения выпало только 190 тыс. т серы, т. е. в 6,3 раза меньше.





Рис. 5.2. Пути распространения выбросов соединений серы

в районе Астраханского газоперерабатывающего завода (АГПЗ)

(Ю.А.Федоров, 1995)


^ 5.1.2. Экологические последствия загрязнения атмосферы


Загрязнение атмосферного воздуха воздействует на здоровье человека и на окружающую природную среду различными способами – от прямой и немедленной угрозы (смог и др.) до медленного и постепенного разрушения различных систем жизнеобеспечения организма. Во многих случаях загрязнение воздушной среды нарушает структурные компоненты экосистемы до такой степени, что регуляторные процессы не в состоянии вернуть их в первоначальное состояние и в результате механизм гомеостаза не срабатывает.

Сначала рассмотрим, как влияет на окружающую природную среду локальное (местное) загрязнение атмосферы, а затем глобальное.

Физиологическое воздействие на человеческий организм главных загрязнителей (поллютантов) чревато самыми серьезными последствиями. Так, диоксид серы, соединяясь с влагой, образует серную кислоту, которая разрушает легочную ткань человека и животных. Особенно четко эта связь прослеживается при анализе детской легочной патологии и степени концентрации диоксида серы в атмосфере крупных городов. Согласно исследованиям американских ученых, при уровне загрязнения SO2 до 0,049 мг/м3 показатель заболеваемости (в человека-днях) населения Нэшвилла (США) составлял 8,1 %, при 0,150–0,349 мг/м3 – 12 и в районах с загрязнением воздуха выше 0,350 мг/м3 – 43,8%. Особенно опасен диоксид серы, когда он осаждается на пылинках и в этом виде проникает глубоко в дыхательные пути.

Пыль, содержащая диоксид кремния (SiO2), вызывает тяжелое заболевание легких – силикоз. Оксиды азота раздражают, а в тяжелых случаях и разъедают слизистые оболочки, например глаз, легких, участвуют в образовании ядовитых туманов и т.д. Особенно опасны они, если содержатся в загрязненном воздухе совместно с диоксидом серы и другими токсичными соединениями. В этих случаях даже при малых концентрациях загрязняющих веществ возникает эффект синергизма, т.е. усиление токсичности всей газообразной смеси.

Широко известно действие на человеческий организм оксида углерода (угарного газа). При остром отравлении появляются общая слабость, головокружение, тошнота, сонливость, потеря сознания, возможен летальный исход (даже спустя 3–1 дней). Однако из-за низкой концентрации СО в атмосферном воздухе он, как правило, не вызывает массовых отравлений, хотя и очень опасен для лиц, страдающих анемией и сердечно-сосудистыми заболеваниями.

Среди взвешенных твердых частиц наиболее опасны частицы размером менее 5 мкм, которые способны проникать в лимфатические узлы, задерживаться в альвеолах легких, засорять слизистые оболочки.

Весьма неблагоприятные последствия, которые могут сказываться на огромном интервале времени, связаны и с такими незначительными по объему выбросами, как свинец, бенз(а)пирен, фосфор, кадмий, мышьяк, кобальт и др. Они угнетают кроветворную систему, вызывают онкологические заболевания, снижают сопротивление организма инфекциям и т.д. Пыль, содержащая соединения свинца и ртути, обладает мутагенными свойствами и вызывает генетические изменения в клетках организма.

Последствия воздействия на организм человека вредных веществ, содержащихся в выхлопных газах автомобилей, весьма серьезны и имеют широчайший диапазон действия: от кашля до летального исхода (табл. 13.2). Тяжелые по­следствия в организме живых существ вызывает и ядовитая смесь дыма, тумана и пыли – смог. Различают два типа смога зимний смог (лондонский тип) и летний (лос-анджелесский тип).


^ Таблица 5.2

Влияние выхлопных газов автомобилей на здоровье человека

(по X.Ф.Френчу, 1992)


Вредные вещества

Последствия воздействия на организм человека

Оксид углеро­да

Препятствует абсорбированию кровью кислорода, что ослабляет мыслительные способности, замедляет рефлексы, вызывает сонливость и может быть причиной потери сознания и смерти

Свинец

Влияет на кровеносную, нервную и мочеполовую системы; вызывает, вероятно, снижение умственных способностей у детей, откладывается в костях и других тканях, поэтому опасен в течение длительного времени

Оксиды азота

Могут увеличивать восприимчивость организма к вирусным заболеваниям (типа гриппа), раздражают легкие, вызывают бронхит и пневмонию


^ Окончание таблицы 5.2


Озон

Раздражает слизистую оболочку органов дыхания, вызывает кашель, нарушает работу легких; снижает сопротивляемость к простудным заболеваниям; может обострять хронические заболевания сердца, а также вызывать астму, бронхит

Токсичные выбросы (тяжелые металлы)

Вызывают рак, нарушение функций половой системы и дефекты у новорожденных


Лондонский тип смога возникает зимой в крупных промышленных городах при неблагоприятных погодных условиях (отсутствие ветра и температурная инверсия). Температурная инверсия проявляется в повышении температуры воздуха с высо­той в некотором слое атмосферы (обычно в интервале 300–400 м от поверхности земли) вместо обычного понижения. В результате циркуляция атмосферного воздуха резко нарушается, дым и загрязняющие вещества не могут подняться вверх и е рассеиваются. Нередко возникают туманы. Концентрации оксидов серы, взвешенной пыли, оксида углерода достигают опасных для здоровья человека уровней, приводят к расстройству кровообращения, дыхания, а нередко и к смерти. В 1952 г. в Лондоне от смога с 3 по 9 декабря погибло более 4 тыс. человек, до 10 тыс. человек тяжело заболели. В конце 1962 г. в Руре (ФРГ) смог убил за три дня 156 человек. Рассеять смог может только ветер, а сгладить смогоопасную ситуацию – это сокращение выбросов загрязняющих веществ.

Лос-анджелесский тип смога, или фотохимический смог, не менее опасен, чем лондонский. Возникает он летом при интенсивном воздействии солнечной радиации на воздух, насыщенный, а вернее перенасыщенный выхлопными газами автомобилей. В Лос-Анджелесе, выхлопные газы более четырех миллионов автомобилей выбрасывают только оксидов азота в количестве более чем тысяча тонн в сутки. При очень слабом движении воздуха или безветрии в воздухе в этот период идут сложные реакции с образованием новых высокотоксичных загрязнителей – фотооксидантов (озон, органические перекиси, нитриты и др.), которые раздражают слизистые оболочки желудочно-кишечного тракта, легких и органов зрения. Только в одном городе (Токио) смог вызвал отравление 10 тыс. человек в 1970 г. и 28 тыс. – в 1971 г. По официальным данным, в Афинах в дни смога смертность в шесть раз выше, чем в дни относительно чистой атмосферы. В некоторых наших городах (Кемерово, Ангарск, Новокузнецк, Медногорск и др.), особен­но в тех, которые расположены в низинах, в связи с ростом числа автомобилей и увеличением выброса выхлопных газов, содержащих оксид азота, вероятность образования фотохимического смога увеличивается.

Антропогенные выбросы загрязняющих веществ в больших концентрациях и в течение длительного времени наносят большой вред не только человеку, но отрицательно влияют на животных, состояние растений и экосистем в целом.

В экологической литературе описаны случаи массового отравления диких животных, птиц, насекомых при выбросах вредных загрязняющих веществ большой концентрации (особенно залповых). Так, например, установлено, что при оседании на медоносных растениях некоторых токсичных видов пыли наблюдается заметное повышение смертности пчел. Что касается крупных животных, то находящаяся в атмосфере ядовитая пыль поражает их в основном через органы дыхания, а также поступая в организм вместе со съеденными запыленными растениями.

В растения токсичные вещества поступают различными способами. Установлено, что выбросы вредных веществ действуют как непосредственно на зеленые части растений, попадая через устьица в ткани, разрушая хлорофилл и структуру клеток, так и через почву на корневую систему. Так, например, загрязнение почвы пылью токсичных металлов, особенно в соединении с серной кислотой, губительно действует на корневую систему, а через нее и на все растение.

Загрязняющие газообразные вещества по-разному влияют на состояние растительности. Одни лишь слабо повреждают листья, хвоинки, побеги (окись углерода, этилен и др.), другие действуют на растения губительно (диоксид серы, хлор, пары ртути, аммиак, цианистый водород и др.) (табл. 5.3). Особенно опасен для растений диоксид серы (SO2), под воздействием которого гибнут многие деревья, и в первую очередь хвойные – сосны, ели, пихты, кедр.


^ Таблица 5.3

Токсичность загрязнителей воздуха для растений

(Бондаренко, 1985)


Вредные вещества

Характеристика

Диоксид серы

Основной загрязнитель, яд для ассимиляционных органов растений, действует на расстоянии до 30 км

Фтористый водород и четырехфтористый кремний

Токсичны даже в небольших количествах, склонны к образованию аэрозолей, действуют на расстоянии до 5 км

Хлор, хлористый водород

Повреждают в основном на близком расстоянии

Соединения свинца, углеводороды, оксид углерода, оксиды азота

Заражают растительность в районах высокой концентрации промышленности и транспорта

Сероводород

Клеточный и ферментный яд

Аммиак

Повреждает растения на близком расстоя­нии


В результате воздействия высокотоксичных загрязнителей на растения отмечается замедление их роста, образование некроза на концах листьев и хвоинок, выход из строя органов ассимиляции и т. д. Увеличение поверхности поврежденных листьев может привести к снижению расхода влаги из почвы, общей ее переувлажненности, что неизбежно скажется на среде ее обитания.

Способна ли растительность восстановиться после снижения воздействия вредных загрязняющих веществ. Во многом это будет зависеть от восстанавливающей способности оставшейся зеленой массы и общего состояния природных экосистем. В то же время следует заметить, что невысокие концентрации отдельных загрязнителей не только не вредят растениям, но и, как, например, кадмиевая соль, стимулируют прорастание семян, прирост древесины, рост некоторых органов растений.


^ 5.1.3. Загрязнения атмосферы и глобальные экологические последствия


К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

  1. возможное потепление климата («парниковый эффект»);

  2. нарушение озонового слоя;

  3. выпадение кислотных дождей.

Большинство ученых в мире рассматривают их как крупнейшие экологические проблемы современности.

Возможное потепление климата («парниковый эффект»)

Наблюдаемое в настоящее время изменение климата, которое выражается в постепенном повышении среднегодовой температуры начиная со второй половины прошлого века, большинство ученых связывают с накоплением в атмосфере так называемых «парниковых газов» – диоксида углерода (СО2), метана (СН4), хлорфторуглеродов (фреонов), озона (О3), оксидов азота и др.

Парниковые газы, и в первую очередь СО2, препятствуют длинноволновомутепловому излучению с поверхности Земли. По Г.Хефлингу (1990), атмосфера, насыщенная парниковыми газами, действует как крыша теплицы. Она, с одной стороны, пропускает внутрь большую часть солнечного излучения, с другой – почти не пропускает наружу тепло, переизлучаемое Землей.

В связи со сжиганием человеком все большего количества ископаемого топлива: нефти, газа, угля и др. (ежегодно более 9 млрд т условного топлива) – концентрация СО2 в атмосфере постоянно увеличивается. За счет выбросов в атмосферу при промышленном производстве и в быту растет содержание фреонов (хлорфторуглеродов). На 1–1,5 % в год увеличивается со­держание метана (выбросы из подземных горных выработок, сжигание биомассы, выделения крупным рогатым скотом и др.). В меньшей степени растет содержание в атмосфере и оксида азота (на 0,3 % ежегодно).

Следствием увеличения концентраций этих газов, создающих «парниковый эффект», является рост средней глобальной температуры воздуха у земной поверхности. За последние 100 лет наиболее теплыми были 1980, 1981, 1983, 1987 и 1988 гг. В 1988 г. среднегодовая температура оказалась на 0,4 °С выше, чем в 1950–1980 гг. Расчеты некоторых ученых показывают, что в 2005 г. она повысится на 1,3°С по сравнению с 1950–1980 гг. В докладе, подготовленном под эгидой ООН международной группой по проблемам климатических изменений, утверждается, что к 2100 г. температура на Земле станет выше 2–4 градуса. Масштабы потепления за этот относительно короткий срок будут сопоставимы с потеплением, произошедшим на Земле после ледникового периода, а значит, экологические последствия могут быть катастрофическими. В первую очередь это связано с предполагаемым повышением уровня Мирового океана вследствие таяния полярных льдов, сокращения площадей горного оледенения и т. д. Моделируя экологические последствия повышения уровня океана всего лишь на 0,5–2,0 м к концу XXI в., ученые установили, что это неизбежно приведет к нарушению климатического равновесия, затоплению приморских равнин в более чем 30 странах, деградации многолетнемерзлых пород, заболачиванию обширных территорий и к другим неблагоприятным последствиям.

Однако ряд ученых видят в предполагаемом глобальном потеплении климата и положительные экологические последствия. Повышение концентрации СО2 в атмосфере и связанное с ним увеличение фотосинтеза, а также увеличение увлажнения климата могут привести к росту продуктивности как естественных фитоценозов (лесов, лугов, саванн и др.), так и агроценозов (культурных растений, садов, виноградников и др.).

По вопросу о степени влияния парниковых газов на глобальное потепление климата также нет единства во мнениях. Так, в отчете Межправительственной группы экспертов по проблеме изменения климата (1992) отмечается, что наблюдаемое в последнее столетие потепление климата на 0,3–0,6 °С могло быть обусловлено преимущественно природной изменчивостью ряда климатических факторов.

В связи с этими данными академик К.Я.Кондратьев (1993) считает, что нет никаких оснований для одностороннего увлечения стереотипом «парникового» потепления и выдвижения задачи по сокращению выбросов парниковых газов как центральной в проблеме предотвращения нежелательных изменений глобального климата.

По его мнению, важнейшим фактором антропогенного воздействия на глобальный климат является деградация биосферы, а следовательно, в первую очередь необходимо заботиться о сохранении биосферы как основного фактора глобальной экологической безопасности. Человек; используя мощность порядка 10 ТВт разрушил или сильно нарушил на 60 % суши нормальное функционирование естественных сообществ организмов (Данилов – Данильян, Горшков и др., 1995). В результате из биогенного круговорота веществ изъята значительная их масса, которая ранее затрачивалась биотой на стабилизацию климатических условий. На фоне постоянного сокращения площадей с ненарушенными сообществами деградированная, резко снизившая свою ассимилирующую емкость биосфера становится важнейшим источником повышенного выброса в атмосферу диоксида углерода и других парниковых газов.

На международной конференции в Торонто (Канада) в 1985 г перед энергетикой всего мира поставлена задача сократить к 2005 г. на 20 % промышленные выбросы углерода в атмосферу. На Конференции ООН в Киото (Япония) в 1997 г. правительствами 84 стран мира подписан Киотский протокол, по которо­му страны должны выбрасывать антропогенный углекислый газ не больше, чем они выбрасывали его в 1990 г. Но очевидно, что ощутимый экологический эффект может быть получен лишь при сочетании этих мер с глобальным направлением экологической политики – максимально возможным сохранением сообществ организмов, природных экосистем и всей биосферы Земли.


^ 5.1.4. Нарушение озонового слоя


Озоновый слой (озоносфера) охватывает весь земной шар и располагается на высотах от 10 до 50 км с максимальной концентрацией озона на высоте 20–25 км. Насыщенность атмосферы озоном постоянно меняется в любой части планеты, достигая максимума весной в приполярной области.

Впервые истощение озонового слоя привлекло внимание широкой общественности в 1985 г., когда над Антарктидой было обнаружено пространство с пониженным (до 50 %) содержанием озона, получившее название «озоновой дыры». С тех пор результаты измерений подтверждают повсеместное уменьше­ние озонового слоя практически на всей планете. Так, например, в России за последние 10 лет концентрация озонового слоя снизилась на 4–6 % в зимнее время и на 3 % – в летнее.

В настоящее время истощение озонового слоя признано всеми как серьезная угроза глобальной экологической безопасности. Снижение концентрации озона ослабляет способность атмосферы защищать все живое на Земле от жесткого ультрафиолетового излучения (УФ-радиация). Живые организмы весьма уязвимы для ультрафиолетового излучения, ибо энергии даже одного фотона из этих лучей достаточно, чтобы разрушить химические связи в большинстве органических молекул. Не случайно поэтому в районах с пониженным содержанием озона многочисленны солнечные ожоги, наблюдается рост заболеваемости людей раком кожи и др. Так, например, по мнению ряда ученых-экологов, к 2030 г. в России при сохранении нынешних темпов истощения озонового слоя заболеют раком кожи дополнительно 6 млн человек. Кроме кожных заболеваний возможно развитие глазных болезней (катаракта и др.), подавление иммунной системы и т. д.

Установлено также, что растения под влиянием сильного ультрафиолетового излучения постепенно теряют свою способность к фотосинтезу, а нарушение жизнедеятельности планктона приводит к разрыву трофических цепей биоты водных экосистем, и т. д.

Наука еще до конца не установила, каковы же основные процессы, нарушающие озоновый слой. Предполагается как естественное, так и антропогенное происхождение «озоновых дыр». Последнее, по мнению большинства ученых, более вероятно и связано с повышенным содержанием хлорфторуглеродов (фреонов). Фреоны широко применяются в промышленном производстве и в быту (хладоагрегаты, растворители, распылители, аэрозольные упаковки и др.). Поднимаясь в атмосферу, фреоны разлагаются с выделением оксида хлора, губительно действующего на молекулы озона.

По данным международной экологической организации «Гринпис», основными поставщиками хлорфторуглеродов (фреонов) являются США – 30,85 %, Япония – 12,42; Великобри­тания – 8,62 и Россия – 8,0 %. США пробили в озоновом слое «дыру» площадью 7 млн км2, Япония – 3 млн км2, что в семь раз больше, чем площадь самой Японии. В последнее время в США и в ряде западных стран построены заводы по производству новых видов хладореагентов (гидрохлорфторуглеродов) с низким потенциалом разрушения озонового слоя.

Согласно протоколу Монреальской конференции (1987 г.), пересмотренному затем в Лондоне (1991 г.) и Копенгагене (1992 г.), предусматривалось снижение выбросов хлорфторуглеродов к 1998 г. на 50 %. В соответствии с Законом РФ «Об охране окружающей среды» (2002) охрана озонового слоя атмосферы от экологически опасных изменений обеспечивается посредством регулирования производства и использования веществ, разрушающих озоновый слой атмосферы, на основе международных договоров Российской Федерации и ее законодательства. В будущем необходимо продолжать решать проблему защиты людей от УФ-радиации, поскольку многие из хлофторуглеродов могут сохраняться в атмосфере сотни лет.

Ряд ученых продолжают настаивать на естественном происхождении «озоновой дыры». Причины ее возникновения одни видят в естественной изменчивости озоносферы, циклической активности Солнца, другие связывают эти процессы с рифтогенезом и дегазацией Земли.


^ 5.1.5. Кислотные дожди


Одна из важнейших экологических проблем, с которой связывают окисление природной среды, – кислотные дожди. Образуются они при промышленных выбросах в атмосферу диоксида серы и оксидов азота, которые, соединяясь с атмосферной влагой, образуют серную и азотную кислоты (рис. 5.3). В ре­зультате дождь и снег оказываются подкисленными (число рН ниже 5,6). В Баварии (ФРГ) в августе 1981 г. выпадали дожди с кислотностью рН=3,5. Максимальная зарегистрированная кислотность осадков в Западной Европе – рН=2,3.

Суммарные мировые антропогенные выбросы двух главных загрязнителей воздуха – виновников подкисления атмосферной влаги – SO2 и NOх составляют ежегодно более 255 млн т (1994 г.). На огромной территории природная среда закисляется, что весьма негативно отражается на состоянии всех экосистем. Выяснилось, что природные экосистемы подвергаются разрушению даже при меньшем уровне загрязнения воздуха, чем тот, который опасен для человека. «Озера и реки, лишенные рыбы, гибнущие леса – вот печальные последствия индустриализации планеты» (X.Френч, 1992).









оставить комментарий
страница3/5
Дата07.12.2011
Размер1,74 Mb.
ТипУчебное пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5
отлично
  2
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх