Методические указания по выполнению лабораторных работ специальность: 150411 «Монтаж и техническая эксплуатация промышленного оборудования (по отраслям)» icon

Методические указания по выполнению лабораторных работ специальность: 150411 «Монтаж и техническая эксплуатация промышленного оборудования (по отраслям)»


1 чел. помогло.
Смотрите также:
Методические указания и контрольные задания для студентов заочного отделения Специальность:...
Методические указания и контрольные задания для студентов заочной формы обучения гоу спо...
Методические указания и контрольные задания для студентов заочного отделения специальность:...
Программа Итоговой государственной аттестации специальности 150411 «Монтаж и техническая...
Программа и контрольные задания для студентов заочного отделения Специальность: 1701 Монтаж и...
Учебное пособие для студентов среднего профессионального образования Специальность 1701 "Монтаж...
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального...
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального...
Методические указания по выполнению курсовой работы по дисциплине опд 12 «Экономика отрасли» по...
Методические указания и контрольные задания для студентов-заочников Салаватского индустриального...
Программа учебной дисциплины 3 Перечень практических работ и лабораторных работ 4 Задания для...
Федеральный государственный образовательный стандарт среднего профессионального образования по...



Загрузка...
страницы:   1   2   3   4
скачать
КГБОУ СПО

«Сосновоборский автомеханический техникум»


МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению лабораторных работ


СПЕЦИАЛЬНОСТЬ: 150411 «Монтаж и техническая эксплуатация промышленного оборудования (по отраслям)»

ДИСЦИПЛИНА: Автоматизация производства


2010



РАССМОТРЕНО

УТВЕРЖДАЮ







ЦК СЭД

Зам.директора по УР

от ________________№________

«___»____________2009

Председатель ЦК

____________Н.Г. Петрова

__________О.В. Князева






Соответствует государственным требованиям к минимуму содержания и уровню подготовки выпускников по специальности 150411



Составитель: Пацкова Е.Г.


^

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА



Методические указания по дисциплине «Автоматизация производства» предназначена для реализации дополнительных требований к минимуму содержания и уровню подготовки выпускников по специальности 1701 Монтаж техническая эксплуатация промышленного оборудования (по отраслям) и является дисциплиной по выбору включающей особенности регионального компонента.

В результате изучения дисциплины студент должен:

иметь представление:

- о роли и месте знаний по учебной дисциплине в сфере своей профессиональной деятельности;

- о роли автоматизации в совершенствовании технологических процессов и повышении экономической эффективности в развитии производства;

знать:

  • принципы контроля и регулирования технологических процессов и оборудования с помощью технических средств автоматизации;

  • принципы действия и устройство автоматизированного контроля и управления производством;

  • принципы построения и назначения элементов системы конструкторской документации по автоматизации;

уметь:

  • выбирать требуемые средства контроля и управления в зависимости от особенности технологического процесса;

  • осуществлять монтаж первичных преобразователей и комплекса: исполнительный механизм – рабочий орган;

  • читать схемы автоматизации и разбираться в них.

Учебный материал необходимо изучать в последовательности, указанной в программе. Изучая материал, обязательно ведите конспект, в котором кратко записывайте основное содержание темы, оставляя поля 40 мм для дополнений. Если при изучении материала Вы встретили затруднения, которые не можете устранить самостоятельно, необходимо обратиться к преподавателю за консультацией.

Для проверки усвоения материала в конце каждой темы приведены вопросы для самопроверки.

Вариант лабораторной работы определяется по порядковому номеру фамилии студента в журнале.

Лабораторные работы выполняются в соответствии с нормами ЕСТД и ЕСКД в тетради от руки или при помощи средств ПЭВМ и оформляется в папку.

Вопросы для самоконтроля переписываются полностью. Ответ должен быть полным по существу и в краткой форме. На каждой странице необходимо оставлять поля 30-40 мм для замечаний преподавателя. Текстовую часть лабораторной работы необходимо снабжать рисунками, схемами и т.п.


Лабораторная работа №1

Тема: ^ Изучение конструкции измерительных приборов


Знать:

- классификацию приборов по ГСП

- основное понятие ГСП

- виды погрешностей

Уметь:

- рассчитывать погрешности приборов

- определять по измерительному прибору род тока, количество измерительных механизмов, положение работы прибора, класс точности (ГОСТ 23217-78)

- определять общие условные обозначения (ГОСТ 23217-78)


Оборудование: амперметр, вольтметр, электронный штангенциркуль, микрометр


^ Вопросы для самоконтроля


1 Перечислите приборы, которые входят в ГСП

2 Опишите виды погрешностей в ГСП

2 Кратко опишите работу индуктивных преобразователей

3 Принцип работы емкостных датчиков

4 Недостатки емкостных преобразователей

5 Что такое реохорд и, из какого материала его изготавливают?

6 Основная часть первичного преобразователя

7 Назовите чувствительный элемент емкостного преобразователя


^ ОСНОВНЫЕ ПОЛОЖЕНИЯ


Классификация приборов по государственной системе

Первичным преобразователем (датчиком) называют элемент, который устанавливают в технологическое оборудование и который первым воспринимает контролируемый параметр. Он преобразует измеряемые физические величины в сигналы, удобные для дальнейшей передачи в измерительные или управляющие устройства. В литейном и термическом цехах применяют те же первичные преобразователи, что и в других отраслях промышленности, поскольку измеряемыми параметрами являются температура, давление, расход, уровень, загазованность, запыленность и др.

К числу основных признаков, позволяющих классифицировать первичные преобразователи, относятся принцип действия и вид входного и выходного сигналов (рис.1).

В зависимости от принципа действия первичные преобразователи можно разделить на две группы: параметрические и генераторные.




Рисунок 1 – Классификация первичных преобразователей


Параметрические преобразователи преобразуют контролируемую величину в один из параметров электрической цепи: проводимость (сопротивление) индуктивность, емкость. Следовательно, для их работы необходимо подводить от внешнего источника электрическую энергию. К параметрическим относят следующие типы преобразователей: потенциометрические, индуктивные, емкостные, тензометрические и др.

В генераторных преобразователях непосредственно преобразуется неэлектрическая энергия входного сигнала в электрическую энергию, значение которой пропорционально значению контролируемого параметра. К генераторным относятся термоэлектрические (термопары), фотоэлектрические, пьезоэлектрические и тахометрические преобразователи. Они работают автономно, т. е. не нуждаются в подводе внешней электроэнергии.

По виду входного сигнала первичные преобразователи делятся на следующие группы: температуры, давления, разрежения, расхода, уровня, состава и влажности веществ, плотности, перемещения, скорости, ускорения и т. д.

По виду выходного сигнала первичные преобразователи подразделяют на несколько групп. Одна группа преобразует контролируемую величину в изменение активного сопротивления, другая — в изменение емкости, третья — в изменение индуктивности и т. д.

Любой первичный преобразователь состоит из отдельных частей. Основной частью является чувствительный элемент, а средства защиты и крепления его относятся к вспомогательным элементам.


^ Государственная система приборов (ГСП)

В соответствии с требованиями ГСП первичные преобразователи, применяемые для автоматизации технологических процессов на промышленных предприятиях, должны выдавать стандартные сигналы. Так, например, первичные преобразователи, выходным сигналом которых является напряжение или сила электрического тока, должны отвечать рядам напряжения: 0,1; 0,2; 0,5; 1; 5; 10; 20 В и силе тока: 1; 2; 5; 10; 20 мА. Такая унификация необходима при использовании преобразователей в автоматизированных системах управления технологическим процессом (АСУ ТП) с управляющими цифровыми ЭВМ.

Точность преобразования информации.

Любые измерения сопровождаются погрешностями:

1) случайные погрешности - имеют случайную природу и причина их неизвестна;

2) промахи - вызваны неправильными отсчетами по прибору;

3) систематические - обусловлены несовершенством методов определения, конструкции прибора.

Виды погрешностей:

1) абсолютные: ΔХ = Х - Х0,

где Х - измеренное значение параметра, Х0 - истинное значение;


2) относительные: (выраженные в %-ах);

3) приведенные:

где Хmin и Хmax - минимальное и максимальное значения измеряемой величины.

Максимальная приведенная погрешность называется классом точности:

В зависимости от класса точности приборы делятся на эталонные (образцовые) и рабочие.


^ Конструкция описания работы потенциометрических преобразователей

Потенциометрический преобразователь преобразует перемещение чувствительного элемента (подвижного контакта) в постоянный или переменный ток вследствие изменения своего электрического сопротивления. Различают преобразователи с угловым (рис.2,а) и линейным (рис.2,6) перемещением подвижного контакта. Потенциометрический преобразователь состоит из реохорда 2 и подвижного контакта 1. При различных положениях подвижного контакта сопротивление между ним и точкой В изменяется, что вызывает изменение напряжения Uo, подаваемого от источника питания на клеммы измерительного прибора.




Рисунок 2 – Потенциометрические преобразователи


Реохорд датчика представляет собой каркас из изоляционного материала с намотанным на него в один ряд проводом. Для намотки используют проволоку без изоляции из константана, нихрома, фехраля и других сплавов с высоким омическим сопротивлением. По поверхности намотки скользит подвижный контакт.

В зависимости от конструкции реохорда различают два типа потенциометрических преобразователей: линейные и функциональные.

Линейные потенциометрические преобразователи имеют постоянные сечения каркаса, диаметр проволоки и шаг намотки.

Потенциометрические преобразователи могут включаться по схеме реостата (рис.2, а и б) или потенциометра (рис.2, в). В зависимости от схемы включения перемещение подвижного контакта преобразуется в изменение тока (при последовательном соединении) или напряжения (при включении по схеме делителя). Первая схема применяется довольно редко, так как она не обеспечивает достаточной точности преобразования, на величину которой оказывают влияние сопротивление соединительных проводов и переходного сопротивления между контактом и обмоткой реохорда.

Потенциометрические преобразователи выполняют с 20 %-ной или 100 %-ной зоной пропорциональности. Последние получили большее распространение, так как они охватывают всю шкалу измерительного прибора.

К недостаткам потенциометрических преобразователей можно отнести наличие подвижного контакта и трудности получения линейной характеристики. Однако простота конструкции и возможность отказа от усилителя компенсируют отмеченные недостатки. Потенциометрические преобразователи получили широкое распространение в схемах автоматики для преобразования механических перемещений. В литейном производстве они могут быть использованы для определения высоты встряхивания на встряхивающих формовочных машинах.


^ Конструкция описания работы индуктивных преобразователей

Индуктивные преобразователи применяют для преобразования малых линейных или угловых перемещений в электрические сигналы. Принцип их действия основан на зависимости индуктивного сопротивления катушки от изменения зазора в магнитопроводе, от перемещения магнитопровода в катушке или от изменения площади зазора.

Индуктивный преобразователь с подвижным якорем (изменяющимся зазором) представляет собой катушку индуктивности 3 с магнитопроводом 2 и подвижным якорем 1 (рис.3,а). Катушка индуктивности с магнитопроводом, называемая статором, закрепляется неподвижно, а якорь механически соединяется с подвижной частью объекта управления, перемещение которого необходимо преобразовать в электрический сигнал. Перемещение якоря изменяет воздушный зазор б, (входная величина преобразователя), вызывает изменение индуктивного сопротивления катушки и, как следствие этого, выходной величины тока I при постоянном напряжении Uo.




Рисунок 3 – Индуктивные преобразователи


Чувствительность индуктивных преобразователей с изменяющимся воздушным зазором уменьшается с увеличением зазора δ, поэтому их используют для измерения и контроля очень малых перемещений (до 2 мм). В таком диапазоне рабочих перемещений их чувствительность не превышает 2 мкм.

Индуктивные преобразователи с перемещающимся магнитопроводом (рис.3,б) способны измерять большие перемещения (до 50 мм).

У индуктивных преобразователей с изменяющейся площадью воздушного зазора (рис.3,в) статическая характеристика линейна только на определенном участке. Линейность нарушается, когда активное сопротивление становится сравнимым с индуктивным. Диапазоны перемещения якоря больше (до 8 мм), чем у преобразователей с изменяющимся воздушным зазором, однако чувствительность ниже.

Все перечисленные выше виды индуктивных преобразователей обладают высокой надежностью, имеют практически неограниченный срок службы и большую мощность выходного сигнала (до нескольких ватт). К недостаткам можно отнести нереверсивность статической характеристики, небольшой диапазон перемещения якоря, наличие тока холостого хода и влияние колебаний амплитуды и частоты напряжения питания.


^ Ёмкостные датчики

Емкостные преобразователи преобразуют неэлектрические величины (перемещение, уровень жидкости, влажность, усилие и т. д.) в изменение электрической емкости. Емкостной преобразователь является частью регулирующего или измерительного устройства с чувствительным элементом, выполненного в виде конденсатора и реагирующего на изменение измеряемого параметра технологического процесса. Чувствительный элемент емкостного преобразователя представляет собой плоский или цилиндрический конденсатор, у которого при воздействии измеряемого параметра изменяется расстояние между пластинами, площадь пластин или диэлектрическая проницаемость среды между обкладками.




Рисунок 4 – Ёмкостные преобразователи


Емкостные преобразователи с переменным расстоянием между пластинами (рис.4,а) как правило конструктивно выполняют в виде плоского конденсатора, состоящего из двух или более пластин, одна из которых закреплена, а другая механически связана с подвижной частью объекта управления. Емкостные преобразователи этого типа применяют для измерения толщины изделий, а также используют для измерения давления, усилия или вибрации.

Емкостные преобразователи с изменяемой площадью пластин выполняют как цилиндрическими (рис.4,6), так и плоскими (рис.4,а).

Цилиндрический емкостной преобразователь (рис.4,6) представляет собой два цилиндра разного диаметра, помещаемые один в другой. Емкость конденсатора зависит от осевого перемещения б внутреннего цилиндра. Преобразователи этого типа предназначаются для измерения линейных перемещений. В плоском преобразователе (рис.4,в) емкость зависит от изменения активной площади пластин при повороте одной пластины относительно другой. Такие преобразователи используют при измерении угловых перемещений.

Емкостные преобразователи с изменением диэлектрической проницаемости среды между пластинами применяют для регулирования влажности формовочной смеси и дозирования воды при ее приготовлении. При колебании уровня жидкости изменяется емкость конденсатора (рис.4,г)5 электродами которого служат корпус 1 и металлический стержень 2. Емкость такого преобразователя складывается из емкости цилиндрического конденсатора без жидкости и параллельно включенной емкости цилиндрического конденсатора с жидкостью. Емкость и чувствительность такого преобразователя увеличиваются с уменьшением отношения диаметров электродов, а также с ростом высоты цилиндра.

Емкостные преобразователи просты по устройству, обладают достаточно высокой чувствительностью, малыми размерами и массой. Однако они имеют три недостатка: мощность выходного сигнала мала, поэтому необходимо применять усилитель; при промышленной частоте электрического тока практически невозможно получить достаточную мощность, в этой связи они получают питание от источника высокой частоты (10 кГц и более); сильное влияние оказывают паразитические емкости и посторонние электрические поля, поэтому требуется тщательное экранирование как самих датчиков, так и соединительных проводов. В литейных цехах емкостные преобразователи находят применение для контроля уровня формовочной смеси в расходных бункерах при ее автоматической раздаче, для дозирования воды при приготовлении формовочной смеси в бегунах и т. д.


^ Ход работы

1 Ответить на контрольные вопросы

2 Подключить к источнику питания (если требуется) измерительный прибор (амперметр, вольтметр)

3 Измерить пять раз один параметр (напряжение и силу тока в цепи; один из размеров детали)

4 Рассчитать абсолютную погрешность

5 Рассчитать относительную погрешность

6 Рассчитать приведенную погрешность

7 Определить по измерительному прибору род тока, количество измерительных механизмов, положение работы прибора, класс точности (ГОСТ 23217-78)

8 Определить общие условные обозначения прибора (ГОСТ 23217-78)

9 Сделать выводы


^ Критерии оценки


Работа будет зачтена, если студент практически выполнил работу, ответил на все вопросы (письменно) и оформил отчет в соответствии с требованиями настоящего методического пособия.


Литература:

1 Староверов, А. Г. Основы автоматизированного производства: учеб. / А. Г. Староверов – М: изд-во Машиностроение, 1989

2 Данилов, И.А., Иванов П.М. Общая электротехника с основами электроники: учеб. / И.А. Данилов, П.М. Иванов. – М: изд-во Высшая школа, 2000

3 Головенков, С.Н., Сироткин, С.В. Основы автоматики и автоматического регулирования станков с ПУ: учеб. / С.Н. Головенков, С.В. Сироткин. – М.: изд-во Машиностроение, 1980


Лабораторная работа №2

Тема: ^ Контроль давления гидросистем манометром


Знать:

– приборы для измерения давления

– манометры и их разновидности

Уметь:

– определять абсолютное, атмосферное и избыточное давление


Оборудование: барометр, манометр

Вопросы для самоконтроля

1 Какие приборы давления вы знаете?

2 Принцип работы жидкостных монометров

3 Принцип работы чувствительных элементов деформационных монометров

4 Принцип работы мембранного монометра

5 С помощью каких монометров можно измерить давление в жидких и газообразных средах?

6 Для чего можно использовать монометры типа ММ?

7 Из чего состоит грузопоршневой монометр?

8 На чем основана работа деформационных манометров?

9 С помощью чего измеряется давление в манометре?

10 Определите абсолютное давление, если атмосферное равно 15 кПа, а избыточное – 35 кПа?

11 Определите вакуумметрическое давление, если атмосферное давление равно 10 кПа, а избыточное – 40 кПа?


^ ОСНОВНЫЕ ПОЛОЖЕНИЯ


Классификация приборов давления

При определении давления принято различать атмосферное, избыточное, абсолютное и вакуумметрическое давление.

Атмосферное давление Ратм — давление, оказываемое атмосферой на все предметы, находящиеся в ней. Так как атмосферное давление измеряется барометрами, то его принято называть барометрическим.

Избыточное давление Ризб — давление в каком-либо замкнутом объеме сверх атмосферного. Избыточное давление измеряют в основном манометрами, поэтому чаще его называют манометрическим.

Абсолютное давление Рабс - сумма атмосферного и избыточного давления, т. е. Рабс = Ратм + Ризб.

Под вакуумом (разрежением) понимают состояние газа, при котором его давление меньше атмосферного. Вакуумметрическое давление Рвак — это разность между атмосферным давлением и абсолютным давлением внутри вакуумметрической системы.

Приборы для измерения давления и разрежения классифицируют по принципу действия и по характеру измеряемой величины. Согласно первой классификации все приборы для измерения давления подразделяют на четыре группы: жидкостные, деформационные, грузопоршневые и электрические.

В жидкостных приборах измеряемое давление уравновешивается давлением столба жидкости, высота которого определяет значение давления.

Деформационные приборы — это такие приборы, в которых измеряемое давление определяется значением деформации упругих элементов различной конструкции или значением развиваемой ими силы.

В грузопоршневых приборах измеряемое давление, уравновешивается давлением, создаваемым массой поршня или дополнительного груза.

Работа электрических приборов основана на изменении электрических, свойств определенных материалов при воздействии на них внешнего давления.

По характеру измеряемой величины приборы для контроля давления или разрежения подразделяют на следующие виды: барометры (для измерения атмосферного давления), манометры (для измерения избыточного давления), дифференциальные манометры (для измерения разности давления); вакуумметры (для измерения разрежения); моновакуумметры (измеряющие небольшое избыточное давление или вакуум).

Манометры, вакуумметры и дифференциальные манометры, предназначенные для измерения небольшого давления, разрежения и разности давления газовых сред (до 40 кПа), называют напоромерами, тягомерами и тягонапоромерами.


^ Жидкостные манометры

Жидкостные манометры отличаются простотой устройства при относительно высокой точности измерения. Их действие основано на уравновешивании внешнего давления столбом затворной (рабочей) жидкости, в качестве которой используют ртуть, воду, трансформаторное масло или спирт.

U-образный манометр представляет собой стеклянную трубку, изогнутую в виде буквы U и заполненную затворной жидкостью так, чтобы уровень жидкости в обоих коленах находился против нулевых отметок. Один конец трубки подсоединяется к объему, в котором необходимо измерить давление Р, а второй сообщается с атмосферой. Отсчет производится по шкале. Разность уровней h определяет избыточное давление Р и плотность жидкости у.

Верхний предел измерения U-образного манометра составляет 10 кПа. при этом погрешность не превышает 2 %.

U-образные манометры используют для измерения разрежения или разности давлений. Основным недостатком U-образных манометров является необходимость снятия при каждом замере двух отсчетов. Этот недостаток частично устранен в чашечном манометре (рис. 1,6), состоящем из сосудов разного диаметра. Под действием измеряемого давления Р уровень жидкости в чашке снижается на высоту h2, значительно меньшую высоты h (диаметр чашки в несколько раз больше диаметра трубки). Разность уровней h в чашечном манометре в основном определяется перемещением мениска в тонкой трубке, так как h1 > h2.

Чашечные манометры имеют верхний предел измерения 10 кПа, а погрешность измерения составляет 0,4 ... 0,25 %.

При точных измерениях небольших избыточных давлений и разрежений применяют специальные чашечные манометры с наклонной трубкой (рис.1,в). Изменение угла наклона, а трубки позволяет при малой высоте h1 получить более точное измерение.

Жидкостные стеклянные манометры не приспособлены для записи показаний и их дистанционной передачи. Поэтому их используют, в основном, для местного контроля, а также для поверки и градуировки манометров других систем.




Рисунок 1 – Жидкостные манометры


^ Чувствительные элементы деформационных манометров

Работа деформационных манометров основана на уравновешивании давления среды силами, возникающими при упругой деформации специальных элементов. Деформация в виде линейных или угловых перемещений передается показывающему или регистрирующему узлу прибора. Одновременно она может быть преобразована в электрический или пневматический сигнал для дистанционной его передачи.

В качестве чувствительного элемента в этих манометрах (рис.2) используют одно- и многовитковые пружины, упругие мембраны и сильфоны.

В одно- и многовитковых пружинных манометрах (рис.2,а, б) измеряемое давление подается во внутреннюю полость через закрепленный неподвижный конец. Второй конец пружины запаивается и соединяется с показывающей системой. Пружины изготовляют из латуни и других медных сплавов, а для высоких давлений — из хромоникелевых сталей. Поперечное сечение пружины представляет собой эллипс, большая ось которого перпендикулярна к плоскости витка пружины.

При повышении давления поперечное сечение пружины «округляется», т. е. увеличивается малая ось эллипса, а угол закручивания пружины уменьшается. Шкала пружинного манометра равномерная, так как пружина работает в зоне пропорциональности между деформацией и напряжением. Перемещение свободного конца одновитковой пружины не превышает 5 ... 8 мм. Поэтому для увеличения угла поворота стрелки в манометрах применяют передаточный механизм: рычажный или зубчатый.

Манометры с одновитковой пружиной изготовляют образцовыми, контрольными и техническими: классы точности — от 0,2 до 4,0; пределы измерений 100 кПа ... 1000 МПа.

Многовитковая трубчатая пружина представляет собой последовательное соединение нескольких одновитковых пружин, благодаря чему она имеет сравнительно большое перемещение свободного конца и развивает значительные усилия. Поэтому многовитковые пружины широко применяют в регистрирующих манометрах. Последние выпускают с верхним пределом измерения до 160 МПа.

В мембранных манометрах чувствительным элементом являются упругая мембрана (рис.2,в), мягкая мембрана, например резиновая с дополнительной пружиной (рис.2,г), мембранные коробки: одинарные (рис.2,д) и двойные (рис.2,е)




Рисунок 2 – Чувствительные элементы деформационных манометров


^ Мембранные манометры

Мембранный манометр типа ММ (рис.3) предназначен для измерения давления до 2,5 МПа. В манометре под действием измеряемого давления мембрана 2, находящаяся в коробке 1, прогибается, перемещая шток 3, соединенный через рычаг 4 с зубчатым сектором 6. Зубчатый сектор находится в зацеплении с зубчатым колесом 8, которое через пружину 9 соединено со стрелкой 7, перемещающейся по шкале 5. Снизу у манометра предусмотрен резьбовой штуцер для установки манометра на объект измерения.

Мембранные манометры применяют, как правило, для измерения небольших давлений. Недостатками мембранных манометров являются малая чувствительность системы, трудность регулировки и изменение характеристик во времени вследствие «усталости мембраны».

Для изготовления мембран используют бронзу, латунь и хромоникелевые сплавы.




Рисунок 3 – Мембранный манометр


^ Технические характеристики показывающих и сигнализирующих

манометров

Давление в манометре измеряется с помощью схемы неуравновешенного моста, плечами которого являются тензорезисторы. В результате деформации мембраны под воздействием измеряемого давления возникает разбаланс моста в виде напряжения, которое с помощью встроенного в корпус манометра электронного усилителя преобразуется в электрический выходной сигнал. Верхний предел показаний манометра 40 МПа, класс точности 0,6; 1,0; 1,5. В табл. 1 приведены технические характеристики манометров, получивших наибольшее распространение.

Электрические манометры используют главным образом для измерение сверхвысоких и пульсирующих с высокой частотой давления.

Наиболее распространенным манометром этого типа является электрический дистанционный манометр МЭД. В корпусе диаметром 160 мм помещены держатель с трубчатой одновитковой пружиной, передаточный механизм и индукционная катушка. Давление Р контролируемой системы (рис. 4) подводится к трубчатой пружине 1 через радиальный штуцер и, вызывает ее деформацию, перемещает магнитопровод 3 индукционной катушки. Катушка 2 манометра и катушка вторичного прибора 4 включены по дифференциально-трансформаторной схеме. Чем больше погружен магнитопровод, тем больше напряжение проводиться во вторичной обмотке и поступает по вторичному прибору.

Тензометрические манометры имеют в качестве чувствительного элемента мембрану с наклеенными на нее тензорезисторами.



Рисунок 4 – Схема грузопоршневого монометра


Давление в манометре измеряется с помощью схемы неуравновешенного моста, плечами которого является тензорезисторы. В результате деформации мембраны под воздействием измеряемого давления возникает разбаланс моста в виде напряжения, которое с помощью встроенного в корпус манометра электронного усилителя преобразуется в электрический выходной сигнал. Верхний предел показаний манометра 40 МПа, класс точности 0,6; 1,0; 1,5. В таблице 1 приведены технические характеристики манометров' получивших наиболее распространение.


Таблица 1 – Технические характеристики показывающих и сигнализирующих манометров







Скачать 0,76 Mb.
оставить комментарий
страница1/4
Е.Г. ПОЯСНИТЕЛЬНАЯ
Дата28.09.2011
Размер0,76 Mb.
ТипМетодические указания, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4
хорошо
  1
отлично
  3
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх