Программа курса: «концепции современного естествознания» icon

Программа курса: «концепции современного естествознания»


4 чел. помогло.

Смотрите также:
Программа курса «Концепции современного естествознания»...
Программа курса Москва 2008 концепции современного естествознания программа курса...
Программа дисциплины Концепции современного естествознания для специальности 080506...
Учебно-методический комплекс дисциплины концепции современного естествознания Специальность...
Учебно-методический комплекс дисциплины ( ен. Ф. 01 ) Концепции современного естествознания...
Программа дисциплины «Концепции современного естествознания»...
Рабочая программа дисциплина Концепции современного естествознания Специальности: 030301...
Рабочая программа дисциплина «концепции современного естествознания» Специальность...
Рабочая программа дисциплина «концепции современного естествознания» Специальности...
Программа дисциплины «концепции современного естествознания» «050706 Педагогика и психология»...
Вопросы к экзамену по дисциплине: Концепции современного естествознания. Для студентов...
В. М. Найдыш Концепции современного естествознания...



страницы: 1   2   3   4   5   6   7   8   9   ...   12
вернуться в начало
скачать

^ Основные проблемы современной космологии.

В космологии ещё со времён античности стоял вопрос: почему наша Вселенная такова, какая она есть? В современной науке более строго этот вопрос звучит так: почему универсальные физические постоянные (Планка, скорость света, гравитационная постоянная, заряд электрона и протона) имеют такие, а не иные значения, и что случилось бы со Вселенной, если бы эти значения оказались другими? Правомерность этого вопроса определяется тем, что численные значения физических постоянных теоретически никак не обоснованы, они получены экспериментально и независимо друг от друга.
Неопределенная ситуация с физическими постоянными вызвала желание проверить, какими окажутся для Вселенной последствия изменения значений отдельных физических постоянных или целой их группы. Проведенный анализ привел к ошеломляющему выводу. Оказалось, что достаточно совсем небольших, в пределах 1030 процентов отклонений значений постоянных в ту или другую сторону - и наша Вселенная окажется настолько упрощенной системой, что ни о каком ее направленном развитии не сможет быть и речи. Не смогут существовать основные устойчивые состояния - ядра, атомы, звезды и галактики.
Например, увеличение постоянной Планка более чем на 15 процентов лишает протон возможности объединяться с нейтроном, то есть делает невозможным протекание нуклеосинтеза. Тот же результат получается, если увеличить массу протона на 30 процентов. Изменение значений этих физических постоянных в меньшую сторону открыло бы возможность образования устойчивого ядра гелия, следствием чего явилось бы выгорание всего водорода на ранних стадиях расширения Вселенной. Приходится признать, что существуют очень узкие «ворота» подходящих значений физических постоянных, в границах которых возможно существование знакомой нам Вселенной.
Но на этом не заканчиваются «случайные» совпадения. Напомним о тех из них, с которыми мы уже встречались, говоря об эволюции Вселенной. Небольшая асимметрия между веществом и антивеществом позволила на ранней стадии образоваться барионной Вселенной, без чего она выродилась бы в фотоннолептонную пустыню; благодаря остановке первичного нуклеосинтеза на стадии образования ядер гелия смогла возникнуть водородногелиевая Вселенная; наличие у ядра углерода возбужденного электронного уровня с энергией, почти точно равной суммарной энергии трех ядер гелия, открыло возможность для протекания звездного нуклеосинтеза, в ходе которого образовались все элементы таблицы Менделеева, более тяжелые, чем водород и гелий; расположение энергетических уровней у ядра кислорода опять же случайно оказалось таким, что не позволяет в процессах звездного нуклеосинтеза превратиться всем ядрам углерода в кислород, а ведь углерод - это основа органической химии и, следовательно, жизни. Совокупность многочисленных случайностей такого рода метко названа П. Девисом «тонкой подстройкой» Вселенной.
Таким образом, наука столкнулась с большой группой фактов, раздельное рассмотрение которых создает впечатление необъяснимых случайных совпадений, граничащих с чудом. Вероятность каждого подобного совпадения очень мала, а уж их совместное существование и вовсе невероятно. Тогда вполне обоснованной представляется постановка вопроса о существовании пока не познанных закономерностей, которые способны организовать Вселенную определенным образом и со следствиями которых мы столкнулись.
Итак, наличие «тонкой подстройки», определенных физических законов, свойства элементов и характер взаимодействий между ними определяют устройство нашей Вселенной. В ходе ее развития появляются структурные элементы нарастающей сложности, а на одном из этапов развития появляется «наблюдатель», способный обнаружить существование «тонкой подстройки» и задуматься о породивших ее причинах.
У наблюдателя, обладающего нашей системой восприятия мира и нашей логикой, неизбежно возникнет вопрос: случайна ли обнаруженная им «тонкая подстройка» Вселенной или она предопределена какимто глобальным процессом самоорганизации? А это означает, что всплывает старая проблема, волновавшая человечество на протяжении всей его сознательной истории: занимаем ли мы особое место в этом мире или же это положение является результатом случайного развития. Признание «тонкой подстройки» закономерным природным явлением приводит к заключению, что с самого начала во Вселенной потенциально заложено появление «наблюдателя» на определенном этапе ее развития. Принятие такого вывода равносильно признанию существования у природы определенных целей.
В этой ситуации был выдвинут и в настоящее время широко обсуждается антропный принцип. В 70е годы в двух вариантах его сформулировал английский ученый Картер.
Первый из них получил наименование слабого антропного принципа: «То, что мы предполагаем наблюдать, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя».
Второй вариант назван сильным антропным принципом: «Вселенная должна быть такой, чтобы в ней на некоторой стадии эволюции мог существовать наблюдатель».
Слабый антропный принцип интерпретируется так, что в ходе эволюции Вселенной могли существовать самые разные условия, но человекнаблюдатель видит мир только на том этапе, на котором реализовались условия, необходимые для его существования. В частности, для появления человека понадобилось, чтобы в ходе расширения вещества Вселенная прошла все те стадии, о которых говорилось выше. Понятно, что человек не мог наблюдать их, так как физические условия тогда не обеспечивали его появления. Но, с другой стороны, все эти стадии могли протекать только в мире, где существовала «тонкая подстройка». Поэтому сам факт появления человека уже предопределяет то, что он должен увидеть: и современную Вселенную, и наличие в ней «тонкой подстройки». Короче говоря, раз человек есть, то он увидит вполне определенным образом устроенный мир, ибо ничего другого ему увидеть не дано.
Более серьезное содержание заложено в сильном антропном принципе. По существу, речь идет о случайном или закономерном происхождении «тонкой подстройки» Вселенной. Признание закономерного устройства Вселенной влечет за собой признание принципа, организующего ее. Если же считать «тонкую подстройку» случайной, то приходится постулировать множественное рождение вселенных, в каждой из которых случайным образом реализуются случайные значения физических постоянных, физические законы и т.п. В какойто из них случайно возникнет «тонкая подстройка», обеспечивающая появление на определенном этапе развития наблюдателя, и он увидит вполне благоустроенный мир, о случайном возникновении которого первоначально не будет подозревать. Правда, вероятность этого очень мала.
Если же мы признаем «тонкую подстройку» изначально заложенной во Вселенной, то линия ее последующего развития предопределена, а появление наблюдателя на соответствующем этапе неизбежно. Из этого следует, что в родившейся Вселенной потенциально было заложено ее будущее, а процесс развития приобретает целенаправленный характер. Появление разума не только заранее «запланировано», но и имеет определенное предназначение, которое проявит себя в последующем процессе развития.
Пока мы еще слишком мало знаем о Вселенной, ведь земная жизнь - это только малая часть гигантского целого. Но мы имеем право строить любые догадки, если они не противоречат познанным законам природы. И вполне возможно, что если человечество продолжит свое существование, если его способность познавать себя и окружающий мир сохранится, то одной из главных задач будущего научного поиска человечества станет осознание своего предназначения во Вселенной.
 


^ Важнейшие понятия химии. Становление и развитие химической науки.

Химия – это естественная наука, изучающая химические свойства и превращения материи, сопровождающиеся изменением их состава и строения. Она также изучает условия, при которых эти превращения происходят. В настоящее время химия представляет собой высокоупорядоченную, постоянно развивающуюся систему знаний о химических элементах и их соединениях, энергетике химических процессов, реакционной способности веществ, катализаторах и т. д.
Основные химические представления были впервые сформулированы и приняты на первом Международном съезде химиков, состоявшемся в Карлсруэ (Германия) в 1860 г. Система химических представлений легла в основу так называемой атомномолекулярной теории, основные положения которой заключались в следующем.
 Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов.
 Атомы и молекулы находятся в непрерывном движении.
 Атомы представляют собой мельчайшие, далее неделимые составные части молекул.
Если первые три утверждения съезда химиков в Карлсруэ сегодня кажутся очевидными, то последнее оказалось исторически ограниченным. С открытием сложного строения атома стала ясна причина связи атомов друг с другом. Она получила название химическая связь, указывающая на то, что между атомами действуют электростатические силы, т. е. силы взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов.
Взаимное соединение элементов не является произвольным. Опыт показывает, что некоторые элементы соединяются с другими, а некоторые — нет. Способность атомов связывать один или большее число атомов другого элемента называется валентностью. Электронная теория строения вещества говорит о том, что соединяться могут только такие элементы, атомы которых имеют незаполненные внешние электронные орбиты (валентные сферы), обладающие определенной валентностью и вследствие чего проявляющие неустойчивость.
В образовании химической связи между атомами главную роль играют электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно, так называемые валентные электроны. В зависимости от характера распределения электронной плотности между взаимодействующими атомами различают три основных типа химической связи: ковалентную, ионную и металлическую.
Химическая связь представляет собой такое взаимодействие, которое связывает отдельные атомы в молекулы, ионы, кристаллы, т. е. те структурные уровни организации материи, которые изучает химическая наука.
Природа химической связи, согласно современным представлениям, объясняется взаимодействием электрических полей, создаваемых электронами и ядрами атомов, которые участвуют в образовании химического соединения.
Согласно электронной теории строения вещества атом любого элемента состоит из электрически положительно заряженного атомного ядра, состоящего из протонов и нейтронов. Вокруг ядра подобно планетам Солнечной системы обращаются электроотрицательно заряженные электроны ("электронная оболочка"), которые по сравнению с ядром почти не имеют массы. Атом в целом является электрически нейтральным — заряд ядра атома равен заряду электронной оболочки, т. е. число электронов оболочки равно числу протонов ядра атома. Электроны вращаются вокруг ядра атома по определенным энергетически уравновешенным орбитам.
Учение о строении атома сыграло и играет колоссальную роль в химии и физике XX века. На основе атомной модели вскрыты глубинные принципы периодического изменения свойств химических элементов и развита теория периодической системы Д. И. Менделеева. Решающее значение здесь имело установление закономерностей формирования электронных конфигураций (оболочек) по мере роста заряда атомного ядра.
Когда говорят о химическом синтезе, то подразумевают производство сложных соединений из исходных элементов (например, производство искусственного каучука, камфоры и т. д.). Полученные материалы в результате синтеза называют синтетическими материалами.
Химическое разложение, в результате которого получаются простейшие вещества, называется химическим анализом.
Все известные на сегодня элементы в систематизированном виде в соответствии с периодическим законом, открытым Д. И. Менделеевым, расположены в Периодической системе элементов Менделеева.
Элементы классифицируются на металлы (золото, платина, серебро, железо, медь, алюминий, кальций, ртуть и др.) и неметаллы (сера, фосфор, углерод, азот, хлор, кислород и т. д.). Вещества в обычных условиях могут быть твердыми, жидкими и газообразными (агрегатное состояние).
Большинство веществ, находящихся в естественных условиях, состоят в соединениях друг с другом, т. е. являются веществами сложными. Незначительное число элементов в природе находится в свободном состоянии (кислород, серебро, сера и некоторые другие).
Основные законы химии:
Химические процессы подчиняются всеобщим законам природы — закону сохранения массы вещества и закону сохранения энергии.
Закон сохранения массы в химических процессах можно сформулировать так: сумма масс исходных веществ (соединений) равна сумме масс продуктов химической реакции. Например, при разложении воды масса воды будет равна сумме массы водорода и массы кислорода. Из закона сохранения вещества вытекает, что вещество нельзя ни создать из ничего, ни уничтожить совсем.
Количественным выражением закона сохранения массы веществ применительно к производственному химическому процессу является материальный баланс, в котором подтверждается, что масса веществ, поступивших на технологическую операцию (приход), равна массе полученных веществ (расход).
Закон сохранения энергии действует во всех случаях и повсюду, где одна форма энергии переходит в другую. Например, при переходе энергии пара в турбине в энергию вращательного движения, т. е. механическую энергию, при переходе электрической энергии в электрической лампочке в световую и т. д. Так же как нельзя ни уничтожить, ни создать вещество, нельзя ни создать, ни уничтожить энергию.
Специфическим видом энергии является химическая энергия, которая освобождается или расходуется при каждой химической реакции. Химическую энергию, как любой вид энергии, можно превратить в механическую (использование взрывчатых веществ), тепловую (сжигание топлива), электрическую (гальванические элементы) и т. п. Измерить химическую энергию непосредственно нельзя. Ее величина определяется как величина тепловой энергии в кДж (в килоджоулях).
Количественным выражением закона сохранения энергии в химическом производстве является тепловой (энергетический) баланс.
Рассмотрим теперь, как происходило историческое развитие химии.
Отдельные химические процессы (получение металлов из руд, крашение тканей и др.) использовались еще на заре становления человеческой цивилизации. Позже, в III—IV веках, зародилась алхимия, задачей которой было превращение неблагородных металлов в благородные (золото, серебро). Начиная с эпохи Возрождения, химические исследования все в большей мере стали использовать для практических целей (металлургия, стеклоделие, керамика, получение красок и т. д.). Во второй половине XVII века Р.Бойль дал первое научное определение понятия "химический элемент".
Превращение химии в подлинную науку завершилось во второй половине XVIII века, когда был сформулирован закон сохранения массы вещества при химических реакциях (М.В.Ломоносов, А.Л.Лавуазье). В начале XIX века Дж. Дальтон ввел понятие "молекула". Атомномолекулярные представления утвердились в 60х годах XIX века. В этот период А.М.Бутлеров создал теорию строения химических соединений, а Д.И.Менделеев открыл периодический закон (периодическая система элементов Менделеева). Попытки объединения элементов в группы предпринимались и до него. Однако не были найдены причины изменений свойств вещества.
Д.И. Менделеев считал, что любое точное знание составляет систему. Системный подход позволил ему в 1869 г. открыть периодический закон и разработать Периодическую систему химических элементов. Он исходил из того, что основной характеристикой элементов являются их атомные веса. Его периодический закон сформулирован в следующем виде: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.
С конца XIX — начала XX века важнейшим направлением химии стала разработка теоретических основ науки (электронная теория), изучение закономерностей химических процессов.
До конца XIX века химия в основном была единой целостной наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие веков многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации.
Современная химическая наука, опираясь на прочные теоретические основы, непрерывно развивается вширь и вглубь, в частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы - особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д.
В начале XX века химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность.
К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства.
Характерный для новейшей химии, как и для всей науки XX века, процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений.
Уже к началу XX века внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего периодический закон Д.И. Менделеева).
Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакции. Изучением их свойств, а также физикохимических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX века.
Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIX века. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода - способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны.
В XX веке многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д.
В конце прошлого века возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До конца века был открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения с большей частью не только металлов, но и неметалле (фосфор, бор, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии.
Самостоятельной областью химии является наука о методах определения состава вещества - аналитическая химия. Основная задача - определение химических элементов или соединений, входящих в состав исследуемого вещества, - решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, постоянный эффективный контроль над ходом технологического процесса и качеством получаемых продуктов.
 


^ Структурная химия. Учение о химических процессах.

Характер любой системы, как известно, зависит не только от состава и строения элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании самих веществ и их реакционной способности химикам приходилось заниматься и изучением их структур. При этом соответственно уровню достигнутых знаний менялись и представления о химической структуре вещества. И хотя в этом направлении химии существовали разные концепции и ученые поразному истолковывали характер взаимодействия между элементами химических систем, тем не менее, все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между элементами.
Сам термин «структурная химия» - понятие условное. В нем, прежде всего, подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любого химического соединения, в том числе и ранее неизвестного.
Во многом развитие этого направления в химии связано с теорией химического строения органических соединений русского химика Александра Михайловича Бутлерова. Его теория позволяла строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, и таким образом объясняла химическую активность одних веществ и пассивность других. Теория химического строения органических соединений Бутлерова смогла стать для химиков практическим руководством по синтезу органических веществ. Появление этой теории позволило превратить химию из науки аналитической, занимающейся изучением состава готовых веществ, в науку преимущественно синтетическую, способную создавать новые вещества и новые материалы.
Эта теория наглядно демонстрирует валентность химических элементов как число единиц сродства, присущих атому -С: М; -О; Н. Комбинируя атомы различных химических элементов с их единицами сродства, можно создать структурные формулы любого химического соединения. А это означает, что химик в принципе может создавать план синтеза любого химического соединения - как уже известного, так и еще неизвестного, прогнозировать получение неизвестного соединения и проверить свой прогноз синтезом.
В результате у химиков появился не только энтузиазм, но и уверенность в положительном исходе эксперимента в области органического синтеза. Сам термин «органический синтез» возник в 60 - 80е годы прошлого века. Он стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела вплоть до белков, гормонов и алкалоидов. И действительность, казалось, подтвердила эти заявления: за вторую половину XIX века число изученных органических соединений за счет вновь синтезированных возросло с полумиллиона примерно до двух миллионов.
Но дело в том, что структурная химия ограничена рамками сведений только о молекулах вещества, находящегося в дореакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения этого вещества. Так, согласно структурным теориям, должны быть вполне осуществимы многие реакции, которые практически не идут. Большое количество реакций органического синтеза, основанных лишь на принципах структурной химии, имеют столь низкие выходы продукции и такие большие отходы в виде побочных продуктов, что не могут быть использованы в промышленности. К тому же такой синтез требовал в качестве исходного сырья дефицитных активных реагентов и сельскохозяйственной продукции, в том числе и пищевой, что крайне невыгодно в экономическом отношении.
Тем не менее, современная структурная химия достигла больших результатов: большая часть лекарственных препаратов - это продукты органического синтеза. Самым последним ее достижением является открытие совершенно нового класса металлоорганических соединений, которые за свою двухслойную структуру получили название «сэндвичевых соединений». Молекула этого вещества представляет собой две пластины из соединений водорода и углерода, между которыми находится атом какоголибо металла.
Исследования в области современной структурной химии идут по двум перспективным направлениям:
 синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.:
 создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными и другими свойствами.
Решение каждой проблемы имеет свои сложности. Так, в первом случае необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс внешних факторов, в том числе и поля гравитации (земного притяжения). Поэтому такие кристаллы выращивают на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что наряду с запрограммированными дефектами практически всегда образуются и нежелательные.
Учение о химических процессах является следующим по сложности уровнем химических знаний.
Способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условием протекания химических реакций. Эти условия могут оказывать воздействие на характер и результат химических реакций. Наиболее зависимыми от условий протекания реакции оказываются соединения переменного состава с ослабленными связями между их компонентами. Именно на них направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций.
Одним из основоположников этого направления в химии стал русский химик Н.Н. Семенов - лауреат Нобелевской премии, основатель химической физики. В своей Нобелевской лекции 1965 г. он заявил, что химический процесс - то основное явление, которое отличает химию от физики, делает ее более сложной наукой. Химический процесс становится первой ступенью при восхождении от таких относительно простых физических объектов, как электрон, протон, атом, молекула, к живой системе, потому что любая клетка живого организма, по существу, представляет собой своеобразный сложный реактор. Это - мост от объектов физики к объектам биологии.
Подавляющее большинство химических реакций находится во власти стихии. Они трудноконтролируемы: в одних случаях их просто не удается осуществить, хотя они в принципе осуществимы, в других - трудно остановить, например, горения и взрывы, в третьих случаях их трудно ввести в одно желаемое русло, так как они самопроизвольно создают десятки непредвиденных ответвлений с образованием сотен побочных продуктов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические и кинетические, а среди последних ведущую роль играют каталитические методы.
Выделение химической термодинамики в самостоятельное направление учения о химических процессах обычно связывают с появлением в 1884 г. книги «Очерки по химической динамике» голландского химика Я. Вант Гоффа. В ней обоснованы законы, устанавливающие зависимость направления химической реакции от изменения температуры и теплового эффекта реакции. Тогда же ЛеШателье сформулировал свой «принцип подвижного равновесия», вооружив химиков методами смещения равновесия в сторону образования целевых продуктов. Основными рычагами управления реакцией выступают: температура, давление (если реакция происходит в газовой фазе) и концентрация реагирующих веществ (если реакция идет в жидкой фазе).
Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону, что зависит как от природы реагентов, так и от условий процесса. Есть реакции, которые не требуют особых средств управления: кислотноосновное взаимодействие (нейтрализация), реакции, сопровождающиеся удалением готовых продуктов или в виде газов, или в форме осадков. Но существует немало реакций, равновесие которых смещено влево, к исходным веществам. И чтобы их осуществить, требуются особые термодинамические рычаги - увеличение температуры, давления и концентрации реагируемых веществ.
Термодинамическое воздействие влияет преимущественно на направленность химических процессов, а не на их скорость. Управлением скоростью химических процессов занимается химическая кинетика, в которой изучается зависимость протекания химических процессов от различных структурнокинетических факторов: строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т.п.
Задача исследования химических реакций является исключительно сложной. Ведь при ее решении необходимо выяснить механизм взаимодействия не просто двух реагентов, а еще и «третьих тел», которых может быть несколько. В этом случае наиболее целесообразно поэтапное решение, при котором вначале выделяется наиболее сильное действие какогонибудь одного из «третьих тел», чаще всего катализатора.
Здесь следует понять, что практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, которые могут, как катализировать (ускорять), так и ингибировать (замедлять) процесс.
Опыты показывают, что на интенсивность химических процессов оказывают влияние также случайные примеси. Вещества различной степени чистоты проявляют себя в одних случаях как более активные реагенты, в других - как инертные. Примеси могут оказывать как каталитическое, так и ингибиторное действие. Поэтому для управления химическим процессом в реагирующие вещества вносят те или иные добавки.
Таким образом, влияние «третьих тел» на ход химических реакций может быть сведено к катализу, то есть положительному воздействию на химический процесс, и к ингибированию, сдерживающему процесс.
Катализ в химии делает настоящие чудеса. Например, реакция синтеза аммиака. До 1913 г. она вообще не могла быть осуществлена. Только после того, как был найден катализатор, при высокой температуре и давлении эту реакцию удалось осуществить. Но она была очень трудной в технологическом исполнении и опасной. А сейчас открыты условия, позволяющие проводить ее при нормальном давлении и комнатной температуре с использованием металлоорганических катализаторов.
Применение катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным ввести в действие в качестве сырья для органического синтеза парафины и циклопарафины, до сих пор считавшиеся «химическими мертвецами». Катализ находится в основании производства маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (производство неорганических кислот, оснований и солей) и «тяжелого органического синтеза», включая получение горючесмазочных материалов, базируется на катализе. Последнее время тонкий органический синтез также становится все более каталитическим. 60 - 80 процентов всей химии основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором. Но сам катализ долгое время оставался загадкой природы, вызывая к жизни самые разнообразные теории, как чисто химические, так и физические.
Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали исследователей на новые эксперименты. Ведь дело было в том, что для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для вышеназванной реакции синтеза аммиака в 1913 - 1914 годах немецкие химики испробовали в качестве катализатора более 20 тысяч химических соединений, следуя периодической системе элементов и сочетая их самыми разными способами.
На современном этапе своего развития учение о химических процессах занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.
 





Скачать 2,53 Mb.
оставить комментарий
страница7/12
Дата28.09.2011
Размер2,53 Mb.
ТипПрограмма курса, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   12
плохо
  1
не очень плохо
  3
средне
  1
хорошо
  2
отлично
  6
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх