Учебно-методическое пособие Оренбург 2011 удк ббк л icon

Учебно-методическое пособие Оренбург 2011 удк ббк л


Смотрите также:
Учебно-методическое пособие Оренбург, 2010 удк 341. 1 (07) ббк 67. 412. 1 я73...
Учебно-методическое пособие Ставрополь 2007 ббк 51. 1 (2) удк 614. 1/2 (06)...
Учебно-методическое пособие Москва 2003 удк 06. 81. 12 Ббк 65. 050. 9(2)24...
Учебно-методическое пособие Казань 2006 удк. 316. 4 (075); 11. 07. 13 Ббк 72; 65я73...
Учебно-методическое пособие Москва, 2009 ббк 63. 3 /2/я 73 удк-930. 24 Степнова Л. В...
Учебно-методическое пособие казань кгту 2007 удк 364 ббк 65. 272...
Учебно-методическое пособие Таганрог 2010 удк ббк 67. 3я73...
Социология Учебно-методическое пособие для студентов Казань 2010 удк 005 101 1701841 ббк 60 5 (Я...
Учебно-методическое пособие Казань Центр инновационных технологий 2009 удк 32 ббк 66. 0...
Учебно-методическое пособие Ульяновск, 2004 г. Ббк: 74. 200. 52 + 74. 265. 1 Удк: 373. 523: 331...
Учебно-методическое пособие Сибай 2010 удк ббк аламов И. Л., Аламова С. М...
Учебно-методическое пособие Павлодар Кереку 2010 удк 340. 12 (075. 8) Ббк 67. 0я 73...



страницы:   1   2   3   4   5   6   7   8
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ МЕНЕДЖМЕНТА»


Е.Н.ЛЕБЕДЕВА, Н.В.ШАРАПОВА, О.А.Свиридов, Е.Г.РЕВКОВА, З.А.ВЕТЕРКОВА, С.И.КРАСИКОВ

МЕТОДЫ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ВОЗДЕЙСТВИЯ ПРИОРИТЕТНЫХ ПОЛЛЮТАНТОВ


Учебно-методическое пособие





Оренбург

2011

УДК

ББК

Л

Код ГРНТИ


Лебедева Е.Г., Шарапова Н.В., свиридов О.А., Ревкова Е.Г., Ветеркова З.А., Красиков С.И.




Л

Методы защиты человека от воздействия приоритетных поллютантов: учебно-метод. пособие / Е.Г.Лебедева, Н.В.Шарапова, О.А.Свиридов, Е.Г.Ревкова, З.А.Ветеркова., С.И.Красиков – Оренбург : Оренб. гос. ин-т менеджмента, 2011. – 141с.


ISBN 978-5-9723-0089-1


Утверждено Учебно-методическим советом Оренбургского государственного института менедңмента (протокол №7тот 19.04.11г.)


В учебно-методическом пособии раскрывается понятие поллютантов, дается их классификация, отражается их воздействие на организм человека (состояние здоровья). Раскрыты особенности загрязнения окружающей среды приоритетными поллютантами Оренбургской, Челябинской, Самарской областей и Республики Башкортостан; представлены имеющиеся и выделены оптимальные методы защиты человека от воздействия приоритетных поллютантов с оценкой их эффективности; представлены результаты собственных исследований с разработкой программы профилактики и механизмов ее внедрения на примере Оренбургской области.

Учебное пособие рекомендуется студентам и преподавателямвысших учебных заведений, а также специалистам в области здравоохранения, экологии и управления.


УДК

ББК


© Лебедева Е.Н., Шарапова Н.В., Свиридов О.А., Ревкова Е.Г., Ветеркова З.А., Красиков С.И., 2011

© Оренбургский государственный

институт менеджмента, 2011

Содержание

Введение

4

Глава I Поллютанты и их воздействие на организм человека

5
^

1.1 Поллютанты. Основные понятия и классификация


5

1.2 Воздействие поллютантов на организм человека


16

1.2.1 Основные принципы токсического воздействия поллютантов на организм человека

16

1.2.2 Характеристика воздействия отдельных поллютантов на организма человека

24

1.2.3 Механизмы и эффекты токсического воздействия поллютантов на организм человека

33
^

1.3. Приоритетные поллютанты Оренбургской, Челябинской, Самарской областей и Республики Башкортостан


46

1.3.1 Экологическое и техногенное состояние Оренбургской области по данным трехлетнего мониторинга

49

1.3.2 Экологическое и техногенное состояние Челябинской области по данным мониторинга

56

1.3.3 Экологическое и техногенное состояние Самарской области

68

1.3.4 Экологическое и техногенное состояние Республики Башкортостан по данным мониторинга

74

Глава II. Методы защиты человека от воздействия приоритетных поллютантов

81

2.1. Анализ существующих методов защиты человека от техногенного воздействия

81

2.2. Научное обоснование методов защиты человека от воздействия приоритетных поллютантов

90

2.2.1 Источники образования свободных радикалов

91

2.2.2 Активные формы кислорода в реакциях повреждения биомолекул

93

2.2.3 Антиоксидантная защита организма человека

95

2.2.4 Роль активных форм кислорода в развитии заболеваний

100

2.2.5 Факторы антиоксидантной защиты клеток

102

2.3. Оптимальные методы и возможность их применения для защиты человека от воздействия приоритетных поллютантов

105

глава III. Оценка эффективности методов защиты человека от приоритетных поллютантов

112

3.1. Методы оценки эффективности защиты человека от воздействия приоритетных поллютантов

112

3.1.1 Метод оценки свободнорадикального окисления липидов

113

3.1.2 Метод оценки обеспеченности витаминами-антиоксидантами

114

3.1.3 Метод оценки ферментативной защиты по изменению активности ферментов супероксиддисмутазы и каталазы

116

3.1.4 Определение показателей липидного спектра и активности органоспецифических ферментов в сыворотке крови

116

3.1.5 Определение активности г-глютамилтрансферазы

117

3.2. Оценка эффективности использования оптимальных методов защиты человека от воздействия поллютантов на примере Оренбургской области

118

3.2.1 Результаты исследований по оценке эффективности методов защиты организма человека от воздействия приоритетных поллютантов

122

Глоссарий

133

^ Список сокращений

136

Список рекомендуемой литературы

137

Введение

В конце XX века объем выбросов загрязняющих веществ антропогенного происхождения стал соизмерим с масштабами природных процессов миграции и аккумуляции различных соединений. Резко обострились проблемы, непосредственно связанные с химическим загрязнением биосферы, нередко приводящие к острым токсикоэкологическим ситуациям. Это вызвало расширение и интенсификацию различных исследований, касающихся масштабов и темпов загрязнения окружающей среды, поиск эффективных приемов охраны атмосферного воздуха, природных вод, почвенного и растительного покрова, которые основаны на снижении потоков химических загрязняющих веществ, поступающих в биосферу с выбросами промышленности, транспорта, бытовыми отходами, а также ограничение или полное устранение токсического действия различных веществ и соединений техногенного происхождения на растительный и животный мир, предотвращение их негативного влияния на здоровье человека.

Состояния окружающей среды и здоровья человека тесно взаимосвязаны и взаимообусловлены и к настоящему времени имеются достаточно убедительные доказательства, что здоровье людей находится в прямой зависимости от экологии. Так, по данным ВОЗ 25% всех заболеваний в мире зависит от неблагоприятных экологических условий, а более одного миллиарда горожан проживают при угрожающих здоровью уровнях загрязнения атмосферного воздуха. Неблагоприятная экологическая ситуация, в условиях которой проживают 109 млн. человек или 73% всего населения РФ, негативно сказывается на состоянии здоровья работающего населения и обучающейся молодежи страны.

Особое место среди всех факторов антропогенной нагрузки, негативно влияющих на состояние здоровья человека, наибольшее последствие оказывают химические загрязнители. В настоящее время во внешней среде зарегистрировано около 4 мил. токсических веществ и ежегодно их количество возрастает на 6 тыс., за последнее десятилетие в атмосферу было выброшено более 1 мил. тонн никеля, столько же кобальта, более 600 тонн цинка, 1,5 милл. тонн мышьяка и столько же кремния и во внутреннюю среду организма человека попадает около 100 тыс. различных ядовитых веществ.

Среди большого количества поллютантов особое место занимает группа металлов переменной валентности: железо, медь, цинк, хром, марганец, кобальт и никель. Эти металлы выполняют роль кофакторов ряда важнейших ферментов – оксидаз, катализирующих окислительно-восстановительные реакции в организме человека. Однако при избыточном поступлении они способны проявлять токсичность за счет участия в процессах образования свободных радикалов и, как следствие, приводить к развитию окислительного стресса. Инактивации свободных радикалов и развитию окислительного стресса препятствует антиоксидантная система организма.

Разработка методов защиты человека от воздействия приоритетных поллютантов, вызывающих окислительный стресс и, как следствие, способствующих развитию большинства неинфекционных заболеваний человека в современных условиях является острой социальной и медико-профилактической проблемой. Эта проблема сохраняет свою актуальность для многих субъектов РФ, в том числе для Оренбургской области Самарской, Челябинской областей и Республики Башкортостан (данные субъекты были определены как объекты для мониторинговых исследований), где заболеваемость населения остается на высоком уровне, превышающем среднероссийский и отмечается отчетливая тенденция к росту числа заболеваний, обусловленных социальными и природными факторами.

В пособии представлены результаты практического исследования, которые проводились в градообразующих промышленных городах Оренбургской области с многоотраслевой промышленностью и топливно-энергетическим комплексом.( г. Оренбург и г.Орск).

Данное пособие подготовлено по результатам научно-исследовательской работы в рамках федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

^ Глава I. Поллютанты и их воздействие на организм человека


    1. Поллютанты. Основные понятия и классификация


По оценке Всемирной организации здравоохранения (ВОЗ), из более чем 6 млн известных химических соединений практически используется до 500 тыс. соединений; из них около 40 тыс. обладают вредными для человека свойствами, а 12 тыс. являются токсичными.

В биогеохимические циклы теперь включается большой перечень синтетических соединений, неизвестных для целинных природных сред. К ним, в частности, относится большая группа веществ, объединяемых общим термином «пестициды», фенолы и их производные, фреоны, диоксины.

Характер и степень влияния химических загрязняющих веществ на общую экологическую обстановку, отдельные биогеоценозы и компоненты биосферы неодинаковы в различных природных зонах и даже по отношению к отдельным видам животных и растений. Вследствие этого наряду с общими и закономерно обусловленными проявлениями опасных токсико-экологических ситуаций нередко возникают частные и локальные нарушения природной среды.

Природные экосистемы обладают способностью противостоять как колебаниям обычных природных факторов, так и изменениям условий существования под влиянием антропогенных воздействий. Поэтому при рациональной организации охраны природы существенное значение приобретают свойства, позволяющие обнаружить неблагоприятные или потенциально опасные изменения среды на самых ранних стадиях. Соответственно необходимы и эффективные методы раннего обнаружения тех или иных изменений.

Всякое преобразование окружающей среды в результате деятельности человека может быть названо антропогенным. Антропогенное воздействие, приводящее к изменению химического состава одного или нескольких природных компонентов окружающей среды, является геохимическим, поскольку неизбежно с той или иной скоростью и интенсивностью включает это изменение во взаимодействующие друг с другом природные системы.

С классических геохимических позиций изменение химических свойств окружающей среды, не связанное с естественными природными процессами, является загрязнением. При использовании этого термина чаще всего вкладывается медико-биологический смысл, когда загрязнение рассматривается с точки зрения здоровья человека. В этом случае под загрязнением подразумевают любые изменения воздуха, вод, почв и пищевых продуктов, оказывающие нежелательное воздействие на здоровье, выживаемость или деятельность человека. Более точным и справедливым будет распространить это определение и на другие формы жизни.

Тяжесть воздействия загрязняющих веществ определяют три фактора. Первый – их химическая природа, то есть насколько они активны и вредны для человека, растений и животных. Второй – кон­центрация, то есть содержание на единицу объема или массы воздуха, воды или почвы. Третий фактор – устойчивость, то есть продолжительность существования в воздухе, воде и почве.

По масштабам загрязнения подразделяются на локальные (вокруг промышленных предприятий, животноводческих комплексов, нефтебаз и пр.), региональные (в пределах области, бассейна региона, республики, государства), космические (в космическом пространстве – например отработанные ступени летательных аппаратов и пр.).

Источники загрязнения разделяются по характеру поступления загрязняющих веществ в окружающую среду – локальные, точечные, площадные и линейные (неточечные). Все промышленные источники выбросов и стоков точечные. Неточечные источники связаны с сельским хозяйством, химизацией, поверхностным стоком с загрязненных территорий и т.д.

При оценке влияния загрязнений на природную среду необходимо различать прямое (первичное) и опосредованное (вторичное) воздействие. Например, прямое воздействие выбросов металлургического или химического комбината вызывает первичный эффект гибели растительности в ближайших окрестностях. Вслед за этим неизбежно развиваются вторичные процессы эрозии и дефляции оголенной поверхности почв вплоть до полного разрушения почвенного покрова (опосредованное воздействие).

По характеру образования загрязнения подразделяются на природные и антропогенные. Природное загрязнение вызывается естественными причинами, без влияния человека или в результате его отдаленного косвенного воздействия на природу. Природное загрязнение в более узком понятии называется естественным, если происходит без всякого влияния человека на природные процессы; как правило, это катастрофические процессы – мощное извержение вулкана, селевой поток и т.п.

Сюда же следует отнести геохимическое загрязнение, которое возникло в процессе образования и развития нашей планеты. Оно может быть как положительным, так и отрицательным. В первом случае в данной местности имеется избыток какого-то элемента, а во втором – недостаток.

Загрязнения, возникающие в результате хозяйственной деятельности человека, называют антропогенными. Их подразделяют на промышленные (вызываемые отдельно взятым предприятием или всей отраслью промышленности), сельскохозяйственные (возникающие при внесении удобрений, использовании ядохимикатов, сбросе отходов животноводства и других действиях, связанных с сельскохозяйственным производством), военные (возникающие в результате работы военной промышленности, военных испытаний и военных действий, сюда можно отнести затопление химических боеприпасов и взрывчатых веществ, последствия уничтожения химического оружия и последствия военных действий).

По своей природе все загрязнения делятся на физические, физико-химические, химические, биологические и механические.

Физическое загрязнение связано с изменением физических факторов среды: температуры – тепловое загрязнение; волновых параметров – световое, шумовое, электромагнитное загрязнения; радиационных параметров – радиационное, радиоактивное загрязнения.

Единственной формой физико-химического загрязнения является аэрозольное загрязнение, то есть загрязнение воздуха мелкодисперсными жидкими и твердыми веществами; примером такой формы загрязнения является промышленный смог или просто дым.

Проникновение в окружающую среду химических веществ, отсутствующих в этой среде ранее или изменяющих естественную концентрацию до уровня, превышающего обычную норму, относят к химическому загрязнению. Сюда входит загрязнение тяжелыми металлами, пестицидами, отдельными простыми или сложными химическими веществами.

Биологическое загрязнение связано с внесением в окружающую среду и размножением в ней нежелательных для человека организмов, а также с проникновением или внесением в природные экосистемы чуждых данным сообществам и обычно там отсутствующих видов организмов.

Биологическое загрязнение может быть сознательным (интродукция растений и животных, применение биологического оружия), случайным (занос сорных растений и вредных насекомых с импортируемой продукцией или завозимой из других регионов: колорадский жук, амброзия многолетняя и др.). Загрязнение окружающей среды микроорганизмами является микробиологической формой биологического загрязнения, а загрязнение биогенными веществами (выделения, мертвые тела и т.п.) – биотической формой.

Засорение среды агентами, оказывающими неблагоприятное механическое воздействие без физико-химических последствий (например мусором), называют механическим загрязнением. Такое выделение несколько условно, так как фактически замусоривание всегда сопровождается негативными физико-химическими эффектами.

С позиций токсиколога абиотические и биотические элементы того, что называется окружающей средой, – все это сложные, порой особым образом организованные агломераты, смеси бесчисленного количества молекул.

Для экотоксикологии интерес представляют лишь молекулы, обладающие биодоступностью, т.е. способные взаимодействовать немеханическим путем с живыми организмами. Как правило, это соединения, находящиеся в газообразном или жидком состоянии, в форме водных растворов, адсорбированные на частицах почвы и различных поверхностях, твердые вещества, но в виде мелко дисперсной пыли (размер частиц менее 50 мкм), наконец, вещества, поступающие в организм с пищей.

Часть биодоступных соединений утилизируется организмами, участвуя в процессах их пластического и энергетического обмена с окружающей средой, т.е. выступают в качестве ресурсов среды обитания. Другие же, поступая в организм животных и растений, не используются как источники энергии или «пластический материал», но, действуя в достаточных дозах и концентрациях, способны существенно модифицировать течение нормальных физиологических процессов. Такие соединения называются чужеродными или ксенобиотиками (чуждые жизни).

Совокупность чужеродных веществ, содержащихся в окружающей среде (воде, почве, воздухе и живых организмах) в форме (агрегатном состоянии), позволяющей им вступать в химические и физико-химические взаимодействия с биологическими объектами экосистемы, составляют ксенобиотический профиль биогеоценоза. Ксенобиотический профиль следует рассматривать как один из важнейших факторов внешней среды (наряду с температурой, освещенностью, влажностью, трофическими условиями и т.д.), который может быть описан качественными и количественными характеристиками.

Важными элементами ксенобиотического профиля являются чужеродные вещества, содержащиеся в органах и тканях живых существ, поскольку все они рано или поздно потребляются другими. Напротив, химические вещества, фиксированные в твердых, недиспергируемых в воздухе и нерастворимых в воде объектах (скальные породы, твердые промышленные изделия, стекло, пластмасса и др.), можно рассматривать как источники формирования ксенобиотического профиля.

Ксенобиотические профили среды, сформировавшиеся в ходе эволюционных процессов, миллионы лет протекавших на планете, можно назвать естественными ксенобиотическими профилями. Они различны в разных регионах Земли. Биоценозы, существующие в этих регионах, в той или иной степени адаптированы к соответствующим естественным ксенобиотическим профилям.

Различные природные коллизии, а в последние годы и хозяйственная деятельность человека, порой существенным образом изменяют естественный ксенобиотический профиль многих регионов (особенно урбанизированных). Химические вещества, накапливающиеся в среде в несвойственных ей количествах и являющиеся причиной изменения естественного ксенобиотического профиля, выступают в качестве экополлютантов (загрязнителей).

ПОЛЛЮТАНТЫ - техногенные загрязнители среды: воздуха (аэрополлютанты), воды (гидрополлютанты), земли (терраполлютанты).

Изменение ксенобиотического профиля может явиться следствием избыточного накопления в среде одного или многих экополлютантов (таблица 1).


Таблица 1

^ Перечень основных экополлютантов (Куценко С.А., 2002)

Загрязнители воздуха

Загрязнители воды и почвы

Газы:
оксиды серы
оксиды азота
оксиды углерода
озон
хлор
углеводороды
фреоны
Пылевые частицы:
асбест
угольная пыль
кремний
металлы

Металлы
Пестициды хлоорганические (ДДТ, алдрин, диэлдрин, хлордан)
Нитраты
Фосфаты
Нефть и нефтепродукты
Органические растворители (толуол, бензол, тетрахлорэтилен)
Низкомолекулярные галогенированные углеводороды (хлороформ, бромдихлорметан, бромоформ, тетрахлорметан, дихлорэтан)
Полициклические ароматические углеводороды (ПАУ)
Полихлорированные бифенилы
Диоксины
Дибензофураны
Кислоты


Далеко не всегда это приводит к пагубным последствиям для живой природы и населения. Лишь экополлютант, накопившийся в среде в количестве, достаточном для инициации токсического процесса в биоценозе (на любом уровне организации живой материи), может быть обозначен как экотоксикант.

Многочисленные процессы, происходящие в окружающей среде, направлены на элиминацию (удаление) экополлютантов. Многие ксенобиотики, попав в воздух, почву, воду, приносят минимальный вред экосистемам, поскольку время их воздействия ничтожно мало. Вещества, оказывающиеся резистентными (устойчивыми) к процессам разрушения и вследствие этого длительно персистирующие в окружающей среде, как правило, являются потенциально опасными экотоксикантами (таблица 2).


Таблица 2

^ Период полуразрушения некоторых ксенобиотиков в окружающей среде (Куценко С.А., 2002)

Поллютант

Период полуразрушения

Среда

ДДТ
ТХДД
Атразин
Фенантрен
Карбофуфан
Фосфорилтиохолины
Иприт
Зарин

10 лет
9 лет
25 месяцев
138 дней
45 дней
21 день
7 дней
4 часа

Почва
Почва
Вода (РН 7,0)
Почва
Вода (рН 7,0)
Почва (t + 150)
Почва (t + 150)
Почва (t + 150)


К числу природных источников биодоступных ксенобиотиков, по данным ВОЗ (1992), относятся: переносимые ветром частицы пыли, аэрозоль морской соли, вулканическая деятельность, лесные пожары, биогенные частицы, летучие биогенные вещества.

Основные потоки потенциально токсичных веществ возникают в результате различной хозяйственной деятельности человека. Источниками химического загрязнения биосферы стали практически все промышленные предприятия, транспорт, все более или менее крупные населенные пункты, зоны отдыха (рекреации), крупные животноводческие комплексы, территории, занятые пахотными землями (таблица 3).


Таблица 3

^ Общий характер источников загрязнения и их связь с различными видами антропогенной деятельности (Орлов Д.С. и др., 2002)

Вид
деятельности

Общий тип загрязнения

Объекты
загрязнения

Тип
источника

Режим внесения
загрязнения

Добыча полезных ископаемых


Резко преобладает минеральный в виде стоков (шахтные и рудничные воды, стоки обогатительных процессов) и твердых отходов (шламы, породные отвалы)

Почва,
вода


Точечный


Постоянный


Добыча жидких горючих полезных ископаемых


Преобладает органический в виде стоков (утечка нефти) и выбросов (утечка газообразных углеводородов), в меньшей степени минеральный в виде стоков минерализированных нефтяных вод

Почва,
вода,
воздух


«


Постоянный и спонтанный (катастрофические разливы)


Производство энергии


Преобладает минеральный в виде выбросов (газообразные продукты сгорания и зола) и в меньшей степени – твердых отходов (золошлаковые хранилища), стоков (охлаждающие воды)

Воздух,
вода, почва


«


Постоянный


Промышлен-ное
производство


Равноценно минеральный и органический, часто смешанный в виде твердых отходов (шлаки, осадки очистных сооружений, пыль, бракованная продукция, остатки сырья после использования полезных компонентов и т. д.), жидких отходов (отработанные растворы особо опасных токсичных веществ), выбросов (паропылегазовые централизованные выбросы горючих и токсичных производств, воздушно-пылевые неорганизованные выбросы местной вентиляции производственных помещений), стоков (промывные жидкости, отработанные растворы, условно-чистые воды после очистных сооружений)

Воздух,
вода, почва


Точечный для каждого объекта; площадной для крупных промышленных зон с дальними выбросами и стоком в водоток регионального значения


Спонтанный или цикличный для отдельных предприятий, постоянный для промышленных зон


Транспорт


Преобладает минеральный в виде выброса (газообразные продукты сгорания с примесью аэрозольных частиц), в меньшей степени органический в виде стоков (промывочные воды с углеводородами)

Воздух,
в меньшей степени почва


Линейный


Цикличный


Коммуналь-ное
хозяйство


Равноценно минеральный или органический в виде стоков (бытовая канализация, принимающая значительную долю промышленных и ливневых вод) и твердых отходов (бытовой и строительный мусор), в меньшей степени – выбросов (открытое и промышленное сжигание мусора)

Воздух,
вода, почва


Точечный


Постоянный


Земледелие


Преобладает минеральный (удобрения), в меньшей степени органо-минеральный (ядохимикаты)

Почва,
растения


Площадной


Цикличный


Животновод-ство

Преобладает органический в виде стоков

Вода,
почва

Точечный


Постоянный



Подавляющая часть отходов образуется в городах, где проживает большая часть населения земли и сконцентрирована основная масса различных производств.

Антропогенные потоки вещества, образующиеся в ходе производственной деятельности городского населения, чрезвычайно многообразны, содержат высокие концентрации высокого круга химических элементов, в том числе и токсичных. Включаясь в природные циклы миграции, антропогенные потоки приводят к быстрому распространению загрязняющих веществ в компонентах городского ландшафта, где неизбежно их взаимодействие с человеком.

Существенное влияние на процесс загрязнения среды оказывают военные действия. В результате второй мировой войны на полях сражений были складированы тысячи тонн металлов. В результате сравнительно маломасштабной военной операции НАТО в Югославии в 1999 г. потребление таких токсичных элементов, как свинец (Pb), кадмий (Cd), мышьяк (As) и ртуть (Hg), повысилось в результате загрязнения воздуха, воды и почв в Сербии, а также из-за неадекватного качества импортируемых или полученных через гуманитарные цели пищевых продуктов.

По оценке Госкомэкологии РФ суммарный эффект воздействия вооруженных сил на окружающую среду в мирное время сопоставим с влиянием одной из отраслей промышленности среднего масштаба (около 4% общего сброса сточных вод и 1,2% выбросов в атмосферу). По мнению Управления экологии и специальных средств защиты Минобороны РФ, реальные выбросы и сбросы от военных объектов соизмеримы с малыми и средними предприятиями.

Среди техногенных изменений среды обитания организмов наибольшую тревогу вызывает ее загрязнение промышленными и бытовыми отходами. Наибольшую опасность представляют токсические вещества различной природы. Так, к началу 1990-х годов на территории России было размещено около 70% токсичных промышленных отходов от их общего объема в СССР, в том числе все виды наиболее крупнотоннажных отходов (отработанные формовочные смеси, отходы переработки сланцев, нефтешламы, гальванические шламы, нефтеотходы и т.п.). При этом в России накопилось более 1,6 млрд т токсичных промышленных отходов. Каждый год увеличивал эту цифру на 50 млн т, а использовалось из них только 20%. В настоящее время в мире производится около 80 тысяч видов химических продуктов общим объемом около 300 млн т в год.

Загрязняющими биосферу веществами могут быть соединения практически всех элементов периодической системы Д.И. Менделеева.

Колоссальное число химических соединений, распространенных в окружающей среде, разнообразных по своей химической структуре и источникам происхождения, условно можно разделить на следующие группы.

Группа I – продукты полного и частичного сгорания органического топлива – угля, природного газа, нефтепродуктов (бензин, мазут), древесины, а также простые продукты окисления – токсичные радикалы кислорода и пероксиды, оксиды азота, сернистый газ, оксид углерода (II), СО, сложные полициклические соединения, образующиеся при неполном сгорании углеводородов: бензапирены, бензантрацены, холантрены.

Группа II – продукты переработки химической промышленности: бензол, фенолы, ксилол, аммиак, формальдегид, отходы производства пластмасс, резиновой, лакокрасочной индустрии, нефте-перерабатывающей промышленности.

Группа III – продукты бытовой и сельскохозяйственной химии. Это различные пестициды, детергенты – моющие средства, синтетические ткани и краски, органические растворители для химической чистки. Это добавки, применяемые для консервации, окраски продуктов питания или для придания им необходимых вкусовых качеств, и косметические средства.

Группа IV – тяжелые металлы (хром, свинец, ртуть, кобальт, марганец, ванадий, мышьяк и др.), поступающие в биосферу при сгорании органического топлива или с заводов, выплавляющих эти металлы из руд.

Группа V – неорганическая пыль (силикаты, асбест, частицы углерода).

Группа VI – биологические поллютанты, растительные аллергены, микроскопические грибы, микробы, вирусы, а также микотоксины.

Особую группу составляют радионуклиды.

При изучении загрязнения минеральными веществами обычно исследуют отдельные химические элементы, а не их соединения. При этом в отношении микроэлементов с начала 60-х годов ХХ в. очень широко используется термин «тяжелые металлы», или «токсичные металлы», в англоязычной литературе эти металлы называются также «следовыми» (trace metals). Для них характерны высокая токсичность, мутагенный и канцерогенный эффекты.

Термин «тяжелые металлы» принято использовать, когда речь идет об опасных уровнях концентрации металлов с атомной массой более 40.

Термин «микроэлемент» строгого понятия не имеет. Под термином «микроэлементы» понимают все химические элементы, содержание которых в живых организмах и природной среде не превышает 0,01%.

Живые организмы эволюционировали в геохимической среде, их состав формировался и приспосабливался к химическому составу окружающей среды. В связи с этим В.В. Ковальский отмечает, что следует исключить выражение «токсический элемент» (в том числе и «токсичный металл»), а указывать дозу и форму соединения, в которых проявляется токсичность элемента. Любой из микроэлементов при определенном уровне будет проявлять токсичность по отношению к живым организмам.

По степени опасности химические элементы подразделяются на три класса (ГОСТ 17.4.1.02-83):

1.      As, Cd, Hg, Se, Pb, Zn, F.

2.      B, Co, Ni, Mo, Cu, Sb, Cr.

3.      Ba, V, W, Mn, Sr.

Важнейшей характеристикой ксенобиотиков с позиции экотоксикологии является их экотоксическая опасность. Опасность – это потенциальная способность вещества в конкретных условиях вызывать повреждение биологических систем при попадании в окружающую среду. Потенциальная опасность вещества определяется его стойкостью в окружающей среде, способностью к биоаккумуляции, величиной токсичности для представителей различных биологических видов.

По степени воздействия на организм вредные вещества подразделяются на 4 класса опасности:

1 – вещества чрезвычайно опасные;

2 – вещества высоко опасные;

3 – вещества умеренно опасные;

4 – вещества малоопасные.

Класс 1 – очень высокотоксичные: кадмий, ртуть, свинец и их соединения, диоксины, полициклические хлорированные, ароматические углеводороды, токсичные радикалы кислорода, серы, азота.

Класс 2 – соединения высокой токсичности: мышьяк, стронций, цинк, фенол, хлор, фосген, сероводород и сероуглерод, цианиды и др.

Класс 3 – опасные соединения и вещества: уксусная и некоторые другие органические кислоты; спирты: метиловый, бутиловый, пропиловый; селен, табак, этилен, пыль.

Класс 4 – умеренно или малотоксичные вещества: аммиак, нафталин, этиловый спирт, бензин, оксид углерода (II), бутан, нитраты.

Согласно классификации Агентства по охране окружающей среды США (US EPA) список веществ-канцерогенов в порядке убывания приоритетности представлен: хром (VI), мышьяк, никель, бензол, кадмий, акрилонитрил, бенз(а)пирен, свинец, формальдегид, углерод 4-хлористый, дихлорэтан.

Вещества – неканцерогены также проранжированы, в результате составлен список 15 приоритетных веществ: марганец, диоксид серы, никель, окислы азота, хром (VI), свинец, сероводород, диметиламин, мышьяк, ванадия пятиокись, фенол, меди оксид, оксид углерода, акролеин, кобальт.

Все виды источников загрязнения (рассеиваемые пыли, твердые отходы, стоки) содержат широкую группу загрязняющих веществ полиэлементного состава. Сочетание химических элементов характеризует специфические индивидуальные особенности источников загрязнения.

Загрязнение окружающей среды происходит в результате миграции загрязняющих веществ, генерируемых источниками загрязнения.

^ Геохимическая миграция – неразрывный комплекс процессов, приводящих к перераспределению химических элементов в природных телах.

Основной геохимической мерой качества окружающей среды является содержание химических элементов: массовая доля химического элемента (мкг/г, мг/кг, г/т или %) либо объемная концентрация – масса химического элемента в единице объема (мкг/л, мг/л, г/м3).

Каждая миграционная природная система является одновременно транспортирующей и вмещающей средой. В результате геохимической миграции может происходить как рассеяние химических элементов, так и их концентрирование. Процесс рассеяния химических элементов обусловливается их разбавлением или осаждением из транспортирующих потоков. Процесс концентрации происходит в случаях, когда в силу тех или иных физических или химических причин скорость транспортирующего потока в целом или скорость перемещения каких-либо составляющих частиц потока резко уменьшается. Такие участки являются геохимическими барьерами. Вся система от источника поставки элементов до геохимического барьера может быть названа миграционным потоком или цепью распространения загрязняющего вещества.

Природные среды, накапливающие загрязняющие вещества (почвы, растительный покров, снеговой покров, донные отложения), являются депонирующими. Перемещение происходит в транспортирующих средах в вводно-миграционных и воздушно-миграционных потоках, а также путем биологического поглощения элементов растительностью и далее по цепям питания живых организмов. Транспортирующие среды для живых организмов являются главными жизнеобеспечивающими природными средами. Распространение химических элементов в антропогенезе может происходить и техническими средствами (автомобильные и железнодорожные перевозки, авиатранспорт и т.д.).

В процессе миграции происходит распределение химических элементов между природными телами.

^ Интенсивность миграции определяется скоростью обмена, перераспределения химических элементов между компонентами природной среды. Она зависит от физических, физико-химических и биологических свойств природных систем. В конечном счете интенсивность миграции зависит от ландшафтно-геохимических условий, т.е. от специфики сочетания гидрометеорологических, литолого-геохимических и почвенно-ботанических характеристик конкретной территории. Численно интенсивность миграции может быть выражена в виде какого-либо индекса или коэффициента, т.е. относительного показателя, сопоставляющего содержание химических элементов или их объемную концентрацию в фиксированном наблюдении, массе или моменте, по отношению к такому же состоянию природного объекта, принимаемого за базовый (исходное состояние – до начала геохимического преобразования). Применительно к прикладным геохимическим исследованиям в качестве базового чаще всего принимается фоновое содержание. Фоновое содержание – среднее содержание химических элементов в природных телах по данным изучения их естественной вариации (статистических параметров распределения). Геохимический фон – понятие местное, локальное – средняя величина природной вариации содержаний химических элементов. Коэффициенты концентрации, подсчитанные по отношению к геохимическому фону, называются коэффициентами аномальности (контрастности). Коэффициенты концентрации, подсчитанные по отношению к среднему содержанию химического элемента в литосфере (кларку), в какой-либо геохимической системе (почве, горной породе, растительности и т.д.) или ее таксономической части (тип почвы, тип горной породы и т.д.), называются кларками концентрации.

В результате миграции химических элементов по природным транспортным каналам в окружающей среде образуются геохимические аномалии.

^ Геохимическая аномалия – участок территории, в пределах которого хотя бы в одном из слагающих его природных тел статистические параметры распределения химических элементов достоверно отличаются от геохимического фона.

Появление геохимических аномалий всегда связано с теми или иными природными и неприродными источниками воздействия, не являющимися обязательным компонентом данного типа геологической структуры или ландшафта. В случае антропогенных источников воздействия образуются антропогенные геохимические аномалии.

Техногенные геохимические аномалии и зоны загрязнения – понятия, широко используемые в природоохранной литературе, не являются полными синонимами. Под зоной загрязнения обычно подразумевается часть геохимической аномалии, в пределах которой загрязняющие вещества достигают концентрации, оказывающей неблагоприятное влияние на живые организмы.

Химические элементы в воздухе и воде мигрируют в виде двух основных групп форм: растворенной и взвешенной.

В водных потоках многие химические элементы мигрируют преимущественно во взвешенной форме. Поэтому при оценке загрязнения водных систем большое значение приобретает мутность воды.

Общая концентрация химических элементов в растворенной форме в условиях загрязнения определяется прежде всего степенью, а также взаимодействием в системе «вода – биота – твердое вещество».

Химические элементы, связанные со взвешенным веществом, могут присутствовать в виде геохимически подвижных форм (т.е. они могут относительно легко трансформироваться при изменении условий среды) – сорбированные, связанные с органическим веществом, гидроксиды железа и марганца, карбонаты; и в виде неподвижных форм – сульфиды, силикаты, входящие в состав решеток неразложившихся обломочных и глинистых минералов (кристаллическая форма).

В атмосферном воздухе элементы могут находиться в аэрозольной фазе (взвешенная в воздухе, дисперсная) и парогазовой фазе.

На биосферных заповедниках, т.е. в эталонных фоновых условиях, большинство тяжелых металлов (Cd, Co, Cr, Cu, Zn, Pb, и Hg), а также Se, As, Br, Sb находятся в атмосфере, главным образом в парогазовой форме.

В атмосферном воздухе жилых территорий крупного промышленного города роль взвесей в составе атмосферы для большинства элементов возрастает до 70–90%. Однако для ряда элементов парогазовая фаза, или, вернее, не улавливаемая фильтром субмикронная фракция, составляет значительную часть содержания (As – 66%, Sb – 67%, Hg – 60%).

Практически для всех химических элементов на относительно удаленных и сравнительно чистых территориях в выпадениях из атмосферы преобладают растворимые формы. Вблизи источников выбросов одновременно с увеличением общей массы выпадающей пыли и степени концентрации в ней элементов резко уменьшается доля растворимых форм (кроме Cd). Выпадениями фиксируется всего лишь 20–30% массы выбросов. Остальная часть выброса рассеивается, поступая в региональные и глобальные миграционные циклы, создавая «фоновое» загрязнение.

Центр наиболее высоких выпадений приурочен к источнику выброса.

Влияние процессов глобального переноса антропогенных загрязняющих веществ привело к тому, что сейчас, в сущности, не удается собрать надежные данные о природном фоновом состоянии воздуха и выпадений, определяемом космогенным, вулканогенным и литогенным поступлением химических элементов.

Морфология потоков рассеяния в урбанизированных зонах и особенности распределения химических элементов и их ассоциаций определяется, прежде всего, закономерностями пространственного распределения выпадений из атмосферы на земную поверхность.

Элементы, поступающие с выпадениями из атмосферы, концентрируются в самой верхней части почв (0–20 см и 0–40 см). В результате техногенных выпадений и аккумулирования почвы начинают трансформировать соединения тяжелых металлов, и в почвенных горизонтах возникают новые металлорганические соединения, которых не было до техногенного загрязнения.

Локализация и интенсивность поступления техногенных потоков химических элементов обусловливает формирование техногенных геохимических аномалий и биогеохимических провинций с различной степенью экологической напряженности.

Под действием техногенных выбросов происходит деградация плодородия почв. В поверхностных горизонтах почв в районах промышленных узлов содержание микроэлементов, в том числе и тяжелых металлов, увеличивается в десятки и сотни раз относительно фоновых концентраций, и загрязненные почвы сами становятся источником загрязнения окружающей среды. В результате на таких промышленных территориях образуются техногенные биогеохимические микропровинции с аномально высоким содержанием микроэлементов, и в конечном счете сильно изменяются состав и свойства почвы вплоть до исчезновения на их поверхности природной растительности. На таких почвах культурные растения настолько меняют свой химический состав, что становятся непригодными для употребления в пищу человека и в качестве фуража для животных.

Химическое загрязнение почв тяжелыми металлами – наиболее опасный вид деградации почвенного покрова, поскольку самоочищающая способность почв от тяжелых металлов минимальна, почвы прочно аккумулируют их, чему способствует органическое вещество. Тем самым почва становится одним из важнейших геохимических барьеров для большинства токсикантов на пути их миграции из атмосферы в грунтовые и поверхностные воды.

Так как на большей части урбанизированных территорий антропогенное воздействие преобладает над естественными факторами почвообразования, то в городах мы имеем специфические типы почв, характерной особенностью которых является высокий уровень загрязнения. При максимальном проявлении процессов химического загрязнения почва полностью утрачивает способность к продуктивности и биологическому самоочищению, что ведет к нарушению ее экологических функций.

^ Миграционные процессы химических в почвах обусловлены рядом факторов, важнейшими из которых являются окислительно-восстанови­тельные и кислотно-основные свойства почв, содержание в них органического вещества, гранулометрический состав, а также водно-тепловой режим и геохимический фон региона.

Захват химических элементов растительностью знаменует их вовлечение в особую форму движения – биологическую миграцию. Учитывая неодинаковое физиологическое значение разных элементов, можно предположить, что интенсивность вовлечения разных элементов в этот процесс неодинакова. Б.Б. Полынов предложил характеризовать интенсивность биологического поглощения химического элемента частным от деления его содержания в золе и горных породах. Этот параметр А.И. Перельман (1975) назвал коэффициентом биологического поглощения Кб. Так, например, расчеты показывают, что молибден в десятки раз интенсивнее аккумулируется растительностью, чем титан.

Все элементы можно разделить по интенсивности биологического поглощения на две группы. К первой относятся те, концентрация которых в золе больше, чем в земной коре. Особенно активно захватываются бор, бром, йод, цинк и серебро (Кб > 10). Ко второй группе относятся элементы с низкой интенсивностью поглощения, имеющие Кб < 1. Некоторые из них присутствуют в земной коре преимущественно в формах, трудно доступных для растений (галлий, цирконий, титан, иттрий, лантан), другие токсичны, поэтому и поглощаются ограниченно (фтор, уран).

Интенсивность биологического поглощения химических элементов не зависит от их содержания в земной коре. Циркония в гранитном слое континентов несколько больше, чем цинка, но интенсивность биологического поглощения циркония в 13 раз меньше. Причина – его слабое участие в биологических процессах и преобладание форм, трудно доступных для растений. Глобальные геохимические закономерности растительности суши, по-видимому, имеют глубокое физиологическое и эволюционное обоснование.

Поглощение химических элементов растениями – процесс, в значительной мере регулируемый организмом в зависимости от характера строения и химического состава клеточных оболочек у разных видов, составляет всего 2–3% от всей массы усвоенных минеральных элементов. Однако регулирование растением поглощения элементов имеет место только при питании из уравновешенных растворов с низкой концентрацией минеральных веществ. При повышении концентрации процессы регуляции в значительной степени подавляются, в результате чего происходит значительное накопление элементов в растительном организме.

При повышении уровня загрязнения инактивация токсикантов в почве становится неполной и поток ионов начинает атаковать корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корни: хелатировать (связывать) с помощью корневых выделений и адсорбировать на внешней поверхности корней. И все же большое количество токсикантов попадает в корень, где частично адсорбируется на стенках. Если в клетках корня окажется ионов все же больше допустимого уровня, то начинает действовать еще один механизм защиты, переводящий излишек в вакуоли. При продвижении по проводящим тканям растения элементы могут поглощаться ее стенками, а также закомплексовываться присутствующими в клеточном соке органическими соединениями. Для проникновения в клетку листа элементу необходимо преодолеть клеточную мембрану, то есть по аналогии с корнями здесь действует механизм избирательного поглощения.

Помимо поступления тяжелых металлов в растение через корни из загрязненных почв существует еще один путь – поглощение металлов через листовую поверхность из газопылевых выбросов и аэрозолей.

При увеличении поступления химических элементов в природные среды возможно изменение химического состава живых организмов. Мигрируя по пищевым цепям, микроэлементы могут накапливаться в органах и тканях растительных и животных организмов в токсичных концентрациях. Это обстоятельство необходимо учитывать, так как конечным звеном трофической цепи является человек. Сельскохозяйственная продукция и промысловые объекты с превышением уровня ПДК микроэлементов могут оказаться опасными для здоровья человека при использовании их в пищу и в качестве сырья для изготовления медицинских препаратов.





оставить комментарий
страница1/8
Дата18.10.2011
Размер2.83 Mb.
ТипУчебно-методическое пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4   5   6   7   8
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

Рейтинг@Mail.ru
наверх