А.Ф.Черняев Золото Древней Руси icon

А.Ф.Черняев Золото Древней Руси



Смотрите также:
А. Ф. Черняев Золото Древней Руси...
Тема Государство и право России с древнейших времен до середины XV века...
Тема урока: Социальная структура и хозяйство Древней Руси...
Н. М. Карамзин о Древней и Московской Руси...
Государственная образовательная политика Древней Руси...
Вопросы для экзамена по истории отечества Восточные славяне в древности: их расселение и места...
Экспериментальная программа спортивной секции «Единоборства древней Руси» для кадетского корпуса...
Экспериментальная программа спортивной секции «Единоборства древней Руси» для кадетского корпуса...
Монография эволюция государственного строя древней руси...
Программа кандидатского экзамена по специальности 07. 00. 02 "Отечественная история" Москва 2012...
П. А. Раппопорт Зодчество Древней Руси...
Конспект открытого урока музыки в 6 классе на тему: «Народное искусство Древней Руси...



страницы:   1   2   3   4   5
скачать
KLADINA.NAROD.RU

Черняев А. Ф. Золото Древней Руси. М., 1998 г.

 

ОГЛАВЛЕНИЕ.

Аннотация
Вступление

Из истории исследования древнерусских измерительных инструментов

О геометрических соотношениях саженей

Элементы золотых пропорций

Система древнерусских саженей

Модулор Корбюзье

Русская матрица

Вурфные отношения русской матрицы

Матричная вязь «Золотых скрижалей»

^ Понятие о живых фигурах

Логика древних саженей

Таинства церковного зодчества

Храм царя Соломона

Древнерусская метрология Египетских пирамид

Заключение

Литература

Об авторе

 

ББК

85.1я2




Ч49

А.Ф. Черняев
Золото Древней Руси. Русская матрица - основа золотых пропорций.-М.: Белые альвы, 1998. -144 с., ил.
I SBN 5-7619-0062-9

Изучение взаимосвязей древнерусских саженей показало их кратность золотому числу Ф = 1,618. Необычный способ получения мерных частей саженей методом раздвоения-удвоения обусловил нахождение А.А. Пилецким древнерусского всемера - числовой матрицы многовариантного золотого пропорционирования. Исходя из нее построена русская матрица золотых пропорций - бесконечное поле взаимосвязанных степенных чисел, базирующихся на египетском ряде золотого сечения, которая лежит в основе многих математических магических построений. Степенная взаимосвязь каждого ряда чисел позволяет применять вурфные отношения для контроля самых различных материальных процессов. На ней основываются понятия живых и неживых фигур, методы системного пропорционирования, символика крестовых фигур и структура древних сооружений. Анализируются принципы церковного зодчества на примерах храмов XII -XVI вв. Объясняется непригодность для проживания объектов, пропорционированных метром.

Выяснилось, что зодчие Древнего Египта знали русскую матрицу, и все объекты древности, включая египетские пирамиды, проектировались и строились на основе комплекса древнерусских соизмерительных инструментов.

Издание снабжено изящными иллюстрациями, имеющими символический смысл и гармонично сочетающимися с текстом.

Книга рассчитана на архитекторов, дизайнеров, художников, строителей, историков, читателей, интересующихся применением метода золотых пропорций в различных областях знаний, а также специалистов и любителей древнерусской культуры.

 

ISBN 5-7619-0062-9

 

©ЧерняевА.Ф., 1998.
©Гусельников А.В.,иллюстрации,,обложка,1998.
©"Белыеальвы", 1998.


Первая работа "Золото Руси", посвященная золотым пропорциям в системе древнерусских измерительных инструментов, была издана в соавторстве с С.В.Тарасовой. За прошедшие три года найдено еще несколько методов, расширяющих представления о золотых пропорциях, и способов применения совершенно необычной системы мерных линеек как в Древней Руси, так и в Древнем Египте. Особенно существенным результатом стало некоторое понимание физических процессов, обусловивших необходимость одновременного использования нескольких видов мер при измерении одного и того же сооружения. И в частности, найден подход к объяснению живых и неживых фигур и соответствия им сооружаемых объектов.

Когда рукопись данной работы была передана в издательство, мне в руки попалась книга "Золотое сечение" И.Ш.Шевелева, М.А.Марутаева, И.П.Шмелева, в которой проводится анализ размерной структуры нескольких древнерусских церквей способом "парных мер" и предполагается, что мерило новгородского зодчего подтверждает наличие у древних зодчих системы парных мер.

Анализ размерной структуры тех же церквей методом "Всемера" А.А.Пилецкого выявил иную систему использования древних саженей, что обусловило необходимость внесения в работу нового раздела "Таинство церковного зодчества". В этом разделе показаны принципы пропорционирования, заложенные в мерило новгородского зодчего.

Новый материал, по мнению автора, представляет, значительный интерес как для специалистов, так и для самых разных читателей. За публикацию этой книги и сотворчество я выражаю свою искреннюю признательность издателю и редактору С.Н Удаловой и художнику А. В. Гусельникову.

 

^ ИЗ ИСТОРИИ ИССЛЕДОВАНИЯ ДРЕВНЕРУССКИХ ИЗМЕРИТЕЛЬНЫХ ИНСТРУМЕНТОВ

Мемфис и пурпур финикии
Сквозят берестою России...

Николай Клюев

В древнерусской числовой системе архитектурного пропорционирования, которая функционировала задолго до монгольского нашествия, в качестве единиц измерения использовался некоторый набор инструментов под общим названием "сажени". Причем саженей было несколько, разной длины и, что особенно необычно, они были несоразмерны друг другу и использовались при замере объектов одновременно. Историки и архитекторы затрудняются установить их количество, но признают наличие не менее семи типоразмеров саженей, которые при этом имеют собственные названия, определяемые, по-видимому, характером предпочтительного применения.

О том, когда зародилась эта удивительно "нелепая", собранная, как полагают археологи и архитекторы, заимствованием "с миру по нитке", древнерусская система измерительных инструментов, неясно. Различные авторы по-разному определяют время ее возникновения. Некоторые, как, например, Г.Н. Беляев [1], полагают, что она полностью была заимствована у соседей в виде филатерийской (Греция) системы мер и "...занесена на русскую равнину, вероятно, задолго до утверждения там славян в III - II вв. до Р.Х. из Пергама через малоазиатские греческие колонии". Г.Н. Беляев фиксирует самое раннее время появления системы мер на территории Древней Руси.

Другие, как Б.А. Рыбаков, Д.И. Прозоровский [2,3], полагают, что большая часть этих мер была "образована" у славян в период XII - XIII вв. и развивалась, совершенствовалась до примерно XVII в. Но и эти авторы, как и многие другие, не исключают привнесения в древнерусскую систему измерительных инструментов из других сопредельных и отдаленных стран. Таким образом, между двумя крайними наметками времени появления на Руси саженей как измерительных инструментов прошло почти полтора тысячелетия.

Но вот Б.А. Рыбаков в своей работе [4] приводит весьма показательные сведения об инструментах зодчего, содержащиеся в "Сказании о Соломоне и Китоврасе", по которому царю Соломону (кстати исторической личности, прославившемуся своей мудростью и правившему в X - IX вв. до н.э., а значит, легенда имела под собой определенные основания) потребовалось произвести начертание плана задуманного им храма и для выполнения этой работы был приглашен зодчий Китоврас: "Сказание о Соломоне и Китоврасе" сохранило нам древнерусское наименование архитектурного плана - "очертания". Соломон говорит Китоврасу: "Не на потребу тя приведох собе, но на упрос очертания святая святых".

Самым важным в этом эпизоде является то, что Китоврас, зная заранее, что он призван царем для изготовления плана будущего храма, явился к нему с деревянными мерилами, эталонами каких-то мер: "Он же (Китоврас), умеря прут 4 локоть и вшед пред царя, поклонился и поверже пруты пред царем молча...".

Здесь для нас особенно интересно то, что главными инструментами архитектора, необходимыми ему для "очертания", являются деревянные мерила (описанные во множественном числе) по 4 локтя в каждом. Обращение к древнерусской метрологии показывает полную достоверность сообщения "Сказания": во-первых, в древней Руси каждая сажень подразделялась именно на 4 локтя; такое деление просуществовало до XVI в.

Очевидно, волшебный архитектор Китоврас был наделен автором сказания реальными принадлежностями русского зодчего в виде изготовленных из дерева саженей, подразделенных на 4 локтя."

Б. А. Рыбаков отмечает, что автор сказания наделил Китовраса реальными принадлежностями русского зодчего XII -XVII вв., т.е. как бы перенес измерительные инструменты Древней Руси в ту эпоху и в ту область, где, по существующим воззрениям, их и быть не могло, отодвинув при этом время их возникновение еще почти на тысячу лет. К тому же Китоврас явился с несколькими саженями, а это означает, что, по сказанию, ко времени Соломона славянский комплекс из нескольких измерительных длин уже представлял систему взаимосвязанных инструментов. А в данную интерпретацию Б.А. Рыбаков, по-видимому, поверить не мог.

Однако, как будет показано далее, древнеславянская система измерительных инструментов ко времени царя Соломона существовала несколько тысячелетий и, в частности, именно комплекс данных саженей давал те мерные единицы, которые использовались для проектирования и возведения древнеегипетских пирамид, а это около пяти тысяч лет тому назад. Но и это не все. Еще более древние сооружения Египта - Осирион в Абидосе, нижний храм пирамиды Хафра (храм долины; и знаменитый большой сфинкс - построены с применением того же измерительного славянского комплекса. А возраст этих сооружений где-то 10 - 15 тысяч лет. То есть система саженей имеет почтенный возраст, который уходит за пределы нашего исторического восприятия.

Методы расчетов сооружений древнейшими зодчими нам совершенно неизвестны, не намного больше знаем мы о методах расчетов, применяемых славянскими зодчими, и потому, как упоминает Б.А. Рыбаков, сомневаемся в том, что они в своих расчетах "отправлялись от теоретически безукоризненных положений великого греческого геометра" (подразумевается Эвклид).

Однако, прежде чем начинать теоретические изыскания, необходимо понять, чем вызвано появление множества саженей и как свести его к отдельным эталонным размерам. Отмечу, что наличие двух и тем более нескольких эталонов измерительных инструментов для проведения одной и той же операции кажется современным исследователям величайшей нелепицей, логическим нонсенсом, пережитком архаической древности, когда первобытные люди, как полагают специалисты, еще не понимали логики своих действий. Сразу же возникает вопрос: зачем использовать даже две неодинаковые длины для проведения одной и той же операции измерения? Ведь вполне можно обойтись одной, как обходится сейчас весь мир одним метром. Ни метрических, ни физических объяснений этому "парадоксу" в современной науке не находится. Да и отрицать однозначно наличие нескольких измерительных инструментов тоже не приходится, поскольку были и другие государства, имеющие в пользовании по два, три измерительных инструмента, например Египет, где в ходу было одновременно три локтя разной длины.

Древнерусские же системы саженей имели не два, не три размера по длине, а десятки, если не сотни, и это совсем непонятно. Чем обусловлено это множество инструментов, какие закономерности в них зашифрованы, какая методика использовалась при замерах объектов - практически ничего неизвестно. Вот уже почти два столетия ученые пытаются восстановить секреты возникновения "невзаимосвязанных" измерительных инструментов и привести это множество к минимальному количеству типоразмеров, опираясь на определенные исходные предпосылки, чаще всего связанные с пропорциями человеческого тела или с пропорциями геометрических фигур, например квадрата.

По-видимому, отсутствие теоретического обоснования структуры древнерусских саженей, их несоизмеримость и несовместимость как по длине саженей, так и их составных частей, подвигли академика Б.А. Рыбакова на выяснение теоретических основ комплекса славянских измерительных инструментов.

Поскольку, по мнению автора, именно Б.А. Рыбаков и архитектор А.А. Пилецкий ближе других подошли к пониманию системной взаимосвязи древних мер, в дальнейшем преобладают ссылки на их работы.

Рассмотрение саженей в работе [2] Б.А. Рыбаков начинает с предположения о существовании на Руси локальных различий в метрологии и выделяет две наиболее распространенные системы: новгородско-псковскую и московско-владимирско-черни-говскую. В следующей работе [4] о локальности не упоминается, а просто констатируется существование одновременно в Древней Руси с X по XVIII в. только 7 видов саженей и локтей (вероятно, московских). Отмечается, "..что очень мелких и дробных делений в Древней Руси не применяли, а использовали многообразие мер, применяя, скажем "локти" и "пяди" разных систем".

Подчеркну, что такой составной и очень важный для понимания всей системы элемент структуры саженей, как вершок, в работах Б.А. Рыбакова не упоминается. Приведу таблицу 1 выделенных им длин саженей, включив в нее дополнительно вершок (размеры которого выделены жирным шрифтом):

Таблица 1

Виды саженей

Сажень, см
Доли саженей

1/2 пол-сажени

1/4 локоть

1/8 пядь

1/16 пясть

1/32 вершок

Простая

152,76

76,38

38,18

19,1

9,5

4,77

Маховая

176,4

88,2

44,1

22,0

11,0

5,50

Морская

183

91,5

45,7

22,9

11,4

5,72

Трубная

187

93,5

46,7

23,4

11,7

5,84

Без чети

197,2

98,6

49,3

24,6

12,3

6,16

Косая

216

108

54,0

27,0

13,5

6,75

Великая

249,46

124,73

62,36

31,18

15,6

7,80

То, что указанные в таблице типоразмеры охватывают не весь спектр используемых на Руси саженей, можно констатировать по той же работе, из которой извлечена таблица 1. Приведем пример [4] замера одного и того же объекта двумя саженями. Вот описание этого замера: "...При постройке засечной черты в 1638 г. "валили вал в ширину 25 саженей косых, а простых 40 саженей".

Итак, ширина в 25 саженей косых, по Б.А. Рыбакову, в переводе на метры — 54,00 м, а 40 саженей простых — 61,1 м., что не сходится на 7 метров, или более чем на 3 сажени косых. Для небольшой ширины ошибка внушительная, просто недопустимая. И чтобы ее не было, следует предположить, что существовала сажень, имевшая длину около 135 см. Позже мы убедимся в том, что такая сажень действительно существовала, а пока констатируем ее отсутствие в таблице 1.

Отмечу, что записи саженей и в таблице 1, и у всех исследователей до А.А. Пилецкого [10] следуют в порядке либо возрастания их длины (как в таблице 1), либо ее уменьшения, и именно эта последовательность определяет последующий подход к анализу пропорций саженей. Данная последовательность и бытовое определение названий наиболее ходовых саженей и их частей (косая, маховая, локоть, стопа, пядь, пясть и т.д.) делают как бы само-собой разумеющимся предположение о том, что «в основу меры положена часть человеческого тела». И «... причина сходства всех мер — элементарно простое движение рук человека или частей тела...» и даже само название «сажень», как полагают, происходящее от слова «сягать» — шагать [4,7], тоже свидетельствует об этом. Одновременно это свидетельствует и о том, что в основу системы саженей не были заложены теоретические положения евклидовой геометрии.

Но если первоосновой саженей как измерительных инструментов послужили «части человеческого тела», то возникают три достаточно простых вопроса: Каким образом индивидуальные длины частей тела множества людей были усреднены до стандартной длины? Каким образом эта длина сохранялась в течение столетий и тысячелетий при отсутствии каких бы то ни было общегосударственных стандартных эталонов? Какие обстоятельства способствовали превращению разрозненных несоизмеримых инструментов в единую взаимосвязанную систему и в чем это единство заключается?

Теоретически обоснованного ответа на эти вопросы автору, к сожалению, обнаружить не удалось, но в какой-то мере этот вакуум в первом приближении заполняет версия, выдвинутая Б. А. Рыбаковым, о возможной теоретической основе, предположительно использованной для получения взаимосвязанной системы саженей, позволяющей создавать «соразмерные и удивительно гармоничные объекты».

^ О ГЕОМЕТРИЧЕСКИХ СООТНОШЕНИЯХ САЖЕНЕЙ

Анализируя функции саженей, Б.А. Рыбаков отмечает следующие особенности их применения [4]:

  • возможности измерения одного и того же объекта разными видами саженей;

  • «одновременное пользование разными мерами длины объясняется заложенными в этих мерах при их создании строгими геометрическими соотношениями» (т.е. теория Эвклида прослеживается — А. Ч.);

  • графическое построение по двум системам мер длины (по простой и мерной саженям) древних схем — «вавилонов» (система вписанных квадратов), предназначенных, по-видимому, для восстановления пропорций утраченных саженей и служивших одновременно символом зодческой мудрости (рис. 1).

Останавливаясь на сопряженности древнерусских саженей, Б.А. Рыбаков показывает, что если ее представить как квадрат со стороной, равной длине прямой сажени 152,7 см, то косая сажень окажется диагональю этого квадрата: 216= 152,7 х √2 .



Рис. 1. "Вавилоны" [4]

То же соотношение просматривается между мерной (176,4 см) и великой (249,46 см) саженями:
249,46 = 176,4 √2, где √2 = 1,41421... - иррациональное число.

Исходя из этой пропорциональности Б.А. Рыбаков строит "вавилон", восстанавливающий остальные сажени (рис. 2) по системе вписанных и описанных размеров саженей.

В дополнение можно показать, что квадрат, построенный на окружности, описывающей "вавилон" Б.А. Рыбакова, будет иметь своей стороной сажень косую (рис.2). Отмечу также, что у всех "вавилонов", найденных в археологических раскопках, отсутствуют диагонали, без которых восстановление мерных инструментов невозможно. А это свидетельствует о том, что знание пропорций саженей относилось к сокровенному знанию, которое мастера передавали ученикам и не допускали его выхода за пределы гильдии посвященных.



Рис. 2. "Вавилон" русской меры [4]

Продолжая изучение свойств "вавилонов", Б.А. Рыбаков нашел следующие закономерности, определяющие соотношения между саженями (рис. 3). Если возьмем половину длины наиболее распространенной мерной сажени 176,4/2=88,2=А, то следующие зависимости обусловливают нахождение совокупности всех, кроме трубной, саженей: = 249,46 см

А √3 = 88,2 х 1,73205


= 152,76см

- простая (прямая) сажень;

А √4 = 88,2 х 2,00

= 176,4 см

- маховая, мерная сажень;

А √5 = 88,2 х 2,23607

= 197,21 см

- "сажень без чети" (царская);

А √6 = 88,2 х 2,44995

= 216,04 см

- косая (казенная) сажень;

А √8 = 88,2 х 2,82843

= 249,46 см

- великая сажень.

Здесь пропущена зависимость А√7 = 88,2 х 2,64575 = 233,4 см - сажень греческая, которая также не содержится в таблице 1, но часто встречается при обмерах древних сооружений, а позже будет представлена в системе А.А. Пилецкого.

Все операции, предлагаемые Б.А. Рыбаковым, очень хорошо описывают найденную им структуру получения длин саженей и имеют три существенных недостатка:

  • не соотносятся между собой по золотому сечению (Б.А. Рыбаков отмечает, а далее будет показано, что соотношение между ними близко золотому числу Ф.);

  • древние зодчие не знали сантиметров и миллиметров и, более того, не имели представления о дробях и корнях (деление чисел и дроби до XV в. было известно только ученым математикам), а потому математическими методами для восстановления саженей пользоваться не могли;

  • метод не объясняет, почему возникла необходимость в использовании при замере объектов нескольких длин-саженей.



Рис. 3. Геометрическая система древнеруссских саженей [4]

Поскольку метод "вавилонов", как свидетельствуют находки, применялся древними мастерами для пропорционирования саженей по некоторым эталонам, то естественно, что они пользовались им без знания дробей и извлечения корня. Не исключено, однако, что они использовали способы восстановления размеров по любой сохранившейся сажени и даже при отсутствии эталона - по любому прутку с размером, близким к пропорции, человека, например построением треугольных фигур.

Этот метод можно назвать методом "наугольников" (наугольник - плотницкий инструмент треугольной формы [5]). Он заключается в следующем (рис 4): допустим, что эталонная сажень не сохранилась и ее требуется восстановить. Тогда берется деревянный пруток длиной, допустим, в рост плотника. Возьмем для примера рост плотника 172 см, что почти соответствует мерной (маховой) сажени, и примем его за базисную длину. Если три прутка данной длины сложить равнобедренным наугольником, то высота в нем будет равна 148,96 см, что по структуре соответствует сажени простой, да и по длине близко к ней. Если к центру мерной сажени под прямым углом приставить другую мерную сажень и соединить их свободные концы длинными прутками, то получим равносторонний наугольник, длинные стороны которого равны 192,30 см, а это аналог "сажени без чети". Возьмем две полученные простые сажени, соединим их концы под прямым углом и, соединив свободные концы длинным прутком, получим расстояние, равное 210,66 см - аналог сажени косой. Если такую же операцию проведем мерными саженями, получим длину 243,24 см - по назначению аналог сажени великой. И последняя сажень - трубная. Последняя получается, когда к центру косой сажени под прямым углом приставляется сажень простая. При соединении их свободных концов получают равносторонний наугольник, две стороны которого будут иметь длину 182,44 см, что как раз и является аналогом длины трубной сажени.



Рис. 4. Наугольники

Восстановление основных саженей закончено. И только морская сажень (в существовании которой как самостоятельного измерительного инструмента сомневается и Б. А. Рыбаков) не восстановлена. Длины всех полученных саженей отличаются от Длин, приведенных в таблице 1, строго на один и тот же коэффициент 1,0255. А это означает, что восстановленные длины саженей с очень высокой точностью сохраняют между собой пропорциональность. Последнее свидетельствует о том, что главное для древних зодчих заключалось не в сохранении эталонной длины отдельных саженей (вот основная причина появления множества типоразмеров саженей, имеющих различную длину), а в соблюдении строгой пропорциональности между ними. Но какова численная величина этой пропорциональности, почему длины саженей выражаются иррациональными числами и зачем надо пользоваться при замерах разными саженями? Данные методы ответа на эти вопросы не дают.

Надо отметить, что Б.А. Рыбаков сам нашел соизмеримость саженей методом квадратов и треугольников, но, по-видимому, не допускал возможности восстановления соизмеримости по прутку любого размера, поскольку предполагал единственное назначение саженей - служить инструментом для измерения длин.

И еще одно. Наиболее точно размеры одного из рисунков "вавилона" были определены на глиняной плите, найденной в старой Рязани на уровне пола в западном притворе Борисоглебовского собора, построенного в середине XII в. ("вавилон" изображен в правом нижнем углу рис. 3). "Вавилон" имел в длину 25,83 см, а в ширину 18,26 см. То есть длина как бы определялась произведением:

18,26 х √2 = 25,82 см.

Но размеры эти древние зодчий получали без привлечения иррациональных чисел и сантиметровых измерений:
длина "вавилона" равна полпяди (пясти) косой сажени (13,5 см) плюс пясть "сажени без чети" (12,32 см):
13,5 + 12,32 = 25,82 см;
ширина - пясть косой (13,5 см) плюс вершок простой (4,774 см):
13,5 + 4,774 = 18,27 см.

Древние зодчий строили объекты и геометрию фигур только саженями на полную длину или целыми частями саженей, что и подтверждается структурой внешних размеров "вавилона". Тем же способом построен и его срединный прямоугольник, имеющий длину, 18,27 см, а ширину 12,91 см. Данная ширина складывается из вершка косой сажени 6,75 см плюс вершок "сажени без чети" (6,16 см):
6,75 + 6,16 = 12,91 см.

Поскольку Б.А. Рыбаков не использовал вершков в своих построениях, он эти взаимосвязи у рязанского "вавилона" не обнаружил. Но на новгородском мериле он обнаружил очень интересные взаимосвязи в структуре применяемых саженей и возможности их использования для производства работ, связанных круглыми конструкциями объектов. А теперь сделаем небольшое отступление и познакомимся с очень необычным и интересным соизмерительным инструментом.

В 1970 г. при раскопках в Новгороде, недалеко от церкви Параскевы Пятницы (год постройки 1207, семьсот девяносто лет назад) в слоях начала XIII в. были найдены обломки деревянного мерила с тремя шкалами крупных и мелких делений, построенных в десятичной системе [6]. Мерило представляло собой два обломка четырехгранного елового бруска размером 28 x 36 мм общей длиной 54 см.

Следует отметить, что найденный облом мерила вызвал большой интерес у специалистов потому, что это был первый древний инструмент с системой трех шкал, все деления которого имели различную длину и целое число раз укладывались в некоторых саженях. К тому же структура деления трех его шкал не соответствовала принятой на Руси системе пропорционирования, на шкалах сохранившегося облома отсутствовали какие либо цифры или знаки, а потому становилась неясной и методика применения мерила.

Тем не менее Б.А.Рыбаков и И.Ш.Шевелев, опираясь на свои представления о методологии применения древних саженей, находят различные способы использования мерила в древнем зодчестве.

Три грани бруска размечены длинными и короткими зарубками (рис. 5), относящимися к разным мерам. Сохранившиеся размеры таковы:

a -

4 деления первой шкалы

= 33,4 см;




1 деление в среднем

= 8,35 см;

в -

6 делений второй шкалы

= 43,9 см; 1 деление = 7,31 см;

с -

3 деления третьей

= 17,8 см; 1 деление = 5,93 см.

Содержание на одном мериле трех разных шкал, по мнению Б.А. Рыбакова, свидетельствует о том, что оно является расчетным архитектурным инструментом, и каждая шкала, по-видимому, пропорциональна какому-то измерительному инструменту (рис. 5).



Рис. 5. Облом новгородского мерила [6]

Как уже упоминалось, Б. А. Рыбаков определяет 7 видов саженей, имевших хождение на Руси, и считает достаточным для всех архитектурных операций зодческий минимум в три сажени. Этого числа саженей, по го мнению, хватает для проведения всех измерений, поскольку главное назначение нескольких саженей заключается в облегчении зодчему выполнения многочисленных работ, связанных с различными видами расчетов элементов конструкций, и их совмещения в одном объекте (рис. 6).



Рис. 6. Реконструкция мерила (176,4 см) [6]

Исходя из этих соображений он восстанавливает новгородское мерило в виде стержня, содержащего элементы набора частей длин трех саженей: мерной (маховой), великой (косой) и прямой (простой), но в необычном для древнерусских пропорций делении - каждая сажень делится на 21 элемент (рис. 6). Согласно Б.А. Рыбакову, это необычное деление дает древнему зодчему возможность оперировать элементами каждой сажени для воспроизводства архитектурных деталей и сооружений кругового очертания. Поскольку при любом диаметре круга, когда диаметр делится на 21 часть, в самом круге с большой точностью будут укладываться 66 таких же отрезков. Это деление известно с древности как отношение Архимеда в виде пропорции 22:7 = 3,1428, что и обусловливает возможность построения любой окружности с точностью до 0,05% и проведения операции перевода окружности и отрезка любой окружности (дуги) в линейные меры.

Вернемся к нашим саженям. Познакомимся с другим подходом к изучению структуры этих инструментов, который предлагает архитектор А.А. Пилецкий, Прежде чем рассмотреть его метод, ознакомимся с элементами золотых пропорций, обеспечивающих архитектурным сооружениям оптимальные соразмерности.
^

ЭЛЕМЕНТЫ ЗОЛОТЫХ ПРОПОРЦИЙ


Откуда возникли представления о делении отрезков в крайнем и среднем отношениях, позволяющем получать золотое число Ф и пропорцию, названную Леонардо да Винчи «золотым сечением», нам неизвестно. Но уже в Древней Греции на основе золотого числа Ф - 1,618 посредством последовательного умножения (восходящая ветвь ряда) и деления (нисходящая ветвь ряда) базисной единицы на число Ф получали ряд из 11 чисел, имеющий название «золотого ряда», бесконечного в обе стороны:
...; 0,034; 0,056; 0,090; 0,146; 0,236; 0,382; 0,618; 1,000; 1,618; 2,618; 4,236; ... и т.д.

Каждое число этого ряда представляет собой иррациональную (бесконечную) последовательность цифр, округленных до 4 знаков. Каково собственное значение этих чисел и к какой геометрии они относятся — неизвестно тоже, а потому числа эти стоят на обочине и геометрии, и физики.

Однако уже древние греки поняли, что есть в этих числах какая-то особенность, проявляющаяся в том, что объекты, построенные с учетом золотых пропорций, обладают высокими эстетическими качествами и благотворно влияют на человека. И в наше время обнаруживается, что все процессы, связанные с жизнедеятельностью живых организмов, в той или иной степени связаны с теми же золотыми числами, что и обусловливает все более интенсивное изучение этих связей, но, как это ни странно, не свойств и геометрии самих чисел. А они настолько удивительны, что следовало бы поподробнее познакомиться с ними. Один из элементов этих свойств — образование золотого прямоугольного треугольника. Об этом наше изложение.

Прежде всего рассмотрим, что же дает нам деление отрезка в крайнем и среднем отношениях (рис.7). Отмечу, что в постановке задачи говорится о делении одного отрезка на две неравные части а и с так, чтобы весь отрезок (а + с) относился к большей части с, как часть с к меньшей части а. Запишем это отношение:

(1)


Пропорция (1) носит название золотой пропорции.



Рис.7. Деление отрезка в крайнем и среднем отношении.

Отметим, что в данном случае подразумевается конечная в рациональных числах длина отрезка (а + с), кратная некоторому измерительному инструменту. В условии задачи не говорится о невозможности его целочисленного или дробного рационального деления и о нерациональности двух (?) образующихся при делении отрезков.

Это очень важная оговорка. Она подтверждает не преднамеренный, а как бы вероятностный или даже случайный характер деления. Проверим эту случайность. Решим (1), заменив отношение с:а на b:

b = с:а.

(2)

Подставим (2) в (1), получим квадратное уравнение:

b2-b-1=0,

(3)

решая которое, находим величину b:

b1 = (1 + √5)/2 = Ф = 1,61...;

(4)

b2 = (1- √5)/2 = - 1/Ф = - 0,61...

Золотое число Ф является числом иррациональным, т.е. таким числом, бесконечная последовательность которого не может быть вычислена до конца сколько бы времени его ни вычисляли.

Отмечу на будущее очень важное обстоятельство, всплывающее в отношении (4) при рассмотрении числа √5 . Это ординарное число однозначно указывает на свое положение в геометрии прямоугольных фигур. Оно и корень из него, равный 2,23606... , «помнят» о том, что являются гипотенузой прямоугольного треугольника, у которого одна сторона равна двум единицам измерения, а вторая одной. «Помнит» она и о том, что данная гипотенуза является одновременно и диагональю прямоугольника, построенного на тех же сторонах. Или, по-другому, этот прямоугольник «складывается» из двух квадратов, а посему И.Шмелев [8] дал ему название «двусмежный квадрат» (ДК). Получив Ф и обратную его величину, т.е. два числа, мы успокаиваемся, так и не определив, чему же равны числа a и с в формуле (1) и какое отношение они имеют к b, тем более, что подстановка b в (2) с последующим выходом на (1) не приводит к определению величин а и с, а следовательно, и не решает поставленную задачу.

Тогда зачем же мы находим b? Ответ — только для того, чтобы получить точную величину Ф, поскольку мы уже знаем, что это число — основа золотой пропорции. Но что скрывает это число? В чем суть золотой пропорции?

Попробуем решить (1) другим путем. Умножим числитель и знаменатель левой части отношения (1) на a, правой части на с и, сократив знаменатели, получаем следующее уравнение:

а2 + ас = с2.

(5)

Приравнивая произведение ас к b2:

b2 = аc,

(6)

подставляя в (5) b2 вместо ас, получаем уравнение Пифагора:

a2 + b2 = c2

(7)

в котором b2 отображает большой катет прямоугольного треугольника. И, следовательно, деление в крайнем и среднем отношениях есть деление не на два отрезка, а на три в пропорциях прямоугольного треугольника, в котором число b = Ф неявно занимает место одного из катетов. И вместо длин двух отрезков мы получаем три длины, образующих новое геометрическое качество — прямоугольный треугольник. Отношения (2) и (6) свидетельствуют о существовании еще одного числа i, кратного а, b, с. Для получения г возведем в квадрат (2) и, подставляя в него значение b2 из (6), имеем:

а2 х ас = с2 ,

(8)

c = a3.

Подставляя величину с из (8) в (2), получаем:
b= a2

И окончательно:
а6 - b3 = с2.

Поскольку b имеет два значения b1 =1,618 и b2 = 0,618, то по ним находим i1 i2 :
i1 =b13 = (1,618)3 = 4,2358... ,
i2 = b23 =(0,618)3 = 0,236... .

Извлекая из i1 и i2 корень шестой степени, получаем количественную величину a1 a2 :
а1 - 6i1= 6√4,236 = 1,272 ,

а2 = 6i2 = 6√0,236 = 0,786 .

После извлечения квадратного корня из чисел г, находим значения с:
c1 = √i1= 2,058
c2 = √i2 = 0,4858.

Констатируем, что в результате полного решения пропорции (1) мы получили 8 чисел, и кажется, что четыре из них — 0,4858; 0,786; 1,272; 2,058 — лишние. Зачем они нужны, если не входят в золотой ряд, и что собой символизируют? Попробуем определиться, но сначала выясним, какой модуль по длине, рациональный или иррациональный, имеет отрезок, делимый в крайнем и среднем отношениях:
с+ а = 3,33019... = а5.

Таким образом в среднем и крайнем отношениях делятся только иррациональные отрезки. А это может обозначать одно — все естественные отрезки сами по себе и сами для себя имеют свою иррациональную метрику, несоизмеримую со стандартной метрикой.

Полученные выше двойные иррациональные числа а, в, с являются элементами единого степенного ряда, восходящего с основанием а1 = 1,272 от базисной единицы 1 и нисходящего с основанием а2 = 0,786 от той же базисной единицы 1. Числа а1, b1, c1, если им придать функции отрезков-сторон, образуют, как и числа а1, b1, c1, прямоугольные треугольники. Причем образовавшиеся треугольники будут подобны.

Существование чисел-сторон, способных образовывать единственный в золотом ряду прямоугольный треугольник, не может быть случайностью. Похоже, что он выполняет какую-то неизвестную нам функцию, определяемую степенями чисел ряда, в котором он образуется.

Отмечу еще раз, что невозможно получить точное значение иррациональных чисел золотого ряда как бы долго мы ни производили их вычисление, И это заставляет прерывать процесс вычисления с некоторой степенью точности, которая устраивает нас по условиям задачи. Прерывая вычисления, мы не прерываем процесса. В результате округления до определенной величины образовавшееся число, с одной стороны, «помнит» свое место в ряду (память числа [9]), с другой, уже как бы не является числом, а представляет собой некоторое абстрактное отображение незаконченного бесконечного процесса. И поэтому можно считать, что ряд золотых чисел есть совокупность взаимозависимых, непрерывных процессов. Процессов, отображающих некоторые формы движения природных систем.

^ СИСТЕМА ДРЕВНЕРУССКИХ САЖЕНЕЙ

Архитектор А.А.Пилецкий, исследовавший системы пропорционирования в древнерусской архитектуре, приводит следующий набор 12 древних саженей, полученный методом усреднения многих образцов измерительных инструментов [10]:

сажень городовая 284,8 см,

сажень без названия 258,4 см,

сажень великая 244,0 см,

греческая 230,4 см,

казенная 217,6 см,

царская 197,4см,

церковная 186, 4 см,

народная 176,0 см,

кладочная 159,7 см,

простая 150,8см,

малая 142,4см,

без названия 134,5 см

(некоторые сажени имели два и более названия, различные исследователи по-разному определяют их длину, названия двух саженей еще не найдены, и в настоящей работе они условно названы «меньшая» - 1,345 см и «большая» - 258,4 см. При дальнейшем изложении используются данные Пилецкого, который усредняет длину саженей с предполагаемым допуском ±1,5 см).

Кроме них в его работе встречаются еще три осредненных сажени без названия (нельзя исключить, что они были получены вычислением): 209,07 см (локоть этой сажени (52,27 см) в Египте называется царским локтем (?), что равнозначно названию «локоть фараона»), 205,4 см и 166,25 см (условно назовем египетской саженью). Отмечу, что сажень длиной 209,07 см на 4 мм меньше известной на сегодня длины древнеегипетской царской сажени 209,48 см, получаемой из царского локтя длиной 52,37 см умножением на 4 [11], и именно она, по-видимому, имела большое хождение в древности, поскольку длину ее локтя вычисляли с точностью ± 1,5 —2 см большинство исследователей пирамид, начиная с И. Ньютона (вычисленный им локоть длиной 52,395 см до сих пор носит название «локоть Ньютона»).

Обилие саженей различных видов, их диспропорциональность в единой кратности и несоразмерность никакому другому мерному инструменту, как уже упоминалось, всегда поражали исследователей и вызывали недоуменные вопросы о целесообразности такого числа типоразмеров. Ставит в тупик и отсутствие единой минимальной единицы измерения для всех саженей. (Таковыми, например, являются сантиметр для французского стандартного метра или дюйм для английского фута.) Древность времен скрыла от нас обстоятельства, породившие обилие саженей, а потому специалисты полагают, что единая основа пропорционирования совокупности всех их отсутствует и появление в качестве измерительного инструмента той или иной сажени есть следствие некоторого заимствования их или дробных им элементов у соседних народов. Да и о каком пропорционировании можно говорить, если заранее предполагается, что, например, церковная сажень имеет в основе древнеримские пассы, греческая — греческие оргии, великая сажень — шведский межевой локоть, а царская — египетский царский локоть и т.д. Иными словами, заранее предполагается, что славянский народ не был способен ввести единый измерительный инструмент, и потому собирает и бессознательно, диспропорционально использует знания, наработанные соседними народами. С этих позиций даже предположение о возможности существования строгой системы пропорционирования всех древнерусских саженей представляется просто невероятным. И, возможно, поэтому от исследователей ускользнула самая простая и самая совершенная из возможных систем пропорционирования, изначально заложенная в структуру древнерусских саженей — пропорционирование по золотому сечению. Или, что то же самое, кратность всех саженей золотому числу Ф=1,618033989... . Покажем ее, поделив последовательно величины пяти самых больших саженей на пять самых маленьких:
Ф = 284,8/176=258,4/159,7=244/150,8=230,4/142,4=
= 217,6/134,5=1,618.

Для доказательства пропорциональности числу Ф оставшихся царской и церковной саженей достаточно удвоить длину кладочной и простой саженей и разделить полученные результаты на длину царской и церковной саженей:
Ф = 159,7x2/197,4=150,8x2/186,4=1,618.

Известно, что пропорции, базирующиеся на золотом сечении, отличаются исключительно высокими эстетическими качествами и определяют наивысшую соразмерность между целым и его частями. А это означает, что все древнерусские сооружения, начиная с дворцов и храмов и кончая халупами под соломенной кровлей, несли в себе элементы гармонии золотого сечения.

Кратность всех саженей золотому числу (золотым пропорциям) однозначно демонстрирует надуманность всевозможных рассуждений о заимствовании в данную систему каких бы то ни было случайных измерительных инструментов (но не исключает обратного процесса — заимствования отдельных элементов системы другими народами, и, похоже, немалым их числом), да и древнерусские зодчие необоснованных или случайных размеров не допускали. Методы их творчества во многом остаются для нас загадочными. Они обладали, о чем и свидетельствует обилие пропорциональных "золоту" саженей, знанием, умением и методологией проектирования и возведения объектов, нам неведомыми и непонятными. Опуская вопросы проектирования и возведения объектов, рассмотрим, следуя А.А. Пилецкому [10], из каких элементов складывается система "золотых" русских мер и откуда она исторически исходит.

В структуру древнерусской системы мер явно заложены свойства числового ряда Фибоначчи (XIII век):
0,1,1,2,3,5,8,13,21,34, 55, 89,... 377, 610,987,1598,2885,...
образовывать каждый последующий член ряда из суммы двух предыдущих:
1+1=2; 1+2=3; ... 13+21=34;... 377+610=987... ... .

Отношение в этом ряду двух соседних чисел (большего к меньшему) приближается к золотому числу Ф по мере увеличения порядковых номеров членов ряда:
3:2=1,5; 5:3=1,666; 21:13=1,615; 55:34=1,617; ...
610:377=1,618... .

Это один способ получения приблизительной величины Ф. Как было показано выше, более точная величина Ф находится из решения уравнения, получаемого при делении отрезка в крайнем и среднем отношениях.

Золотое иррациональное число Ф было известно еще в Древнем Египте как основа образования бесконечного ряда величин, обладающих свойствами чисел Фибоначчи, получаемых в результате умножения или деления базисной единицы 1 на золотое число Ф. Ветвь ряда, образуемая последовательным умножением 1 на Ф, называется восходящей:
1; 1,618; 2,618; 4,236; 6,854; 11,090; 17,944; 29,034 ... →∞
а другая часть ряда, образуемая последовательным делением 1 на Ф, называется нисходящей:
1; 0,618; 0,382; 0,236; 0,146; 0,090; 0,056; 0,034 ... →0.

Само число 1, первые три члена восходящего ряда и семь членов ряда нисходящего составляют египетский ряд чисел, получивших название "золотая пропорция" или "золотое сечение".

Золотая пропорция — единственная геометрическая прогрессия, у которой каждый последующий член ряда получается, как и числа Фибоначчи, сложением двух предыдущих членов, а весь ряд, за исключением базисной 1, состоит из иррациональных чисел.

Еще одним очень важным качеством обладают и числа Фибоначчи и члены золотой пропорции. Это их многовариантная слагаемость, обеспечивающая получение различными способа. ми одного из чисел того же ряда. Например:
2+3+3+5+8+13+21=55;
3+5+13+34=55;
5+8+8+13+21=55 и т.д.,
что является элементами комбинаторики и позволяет образовывать из этих чисел взаимосоразмерные и композиционно совместимые в частях и между собой величины.

Основная особенность древнерусской измерительной системы, ее отличие от всех западноевропейских метрологии заключается в том, что уменьшение мерности инструмента (получение измерительных стержней масштаба меньшего, чем сажень) производилось последовательным делением соответствующей сажени на 2 (раздвоение).

Так, половина царской сажени — полусажень (98,7 см), четверть сажени (49,85 см) — царский локоть, 1/8 сажени или 1/2 царского локтя — 24,92 см и т.д. Используя это свойство, А.А. Пилецкий, по-видимому, впервые, создал более развитый вариант двойного пропорционирования, образовав единую систему чисел из нескольких рядов Фибоначчи:

Матрица 1

48

 

24

40

 

12

20

32

52

 

6

10

16

26

42

 

3

5

8

13

21

34

55

 

1,5

2,5

4

6,5

10,5

17

27,5

44,5

 

0,75

1,25

2

3,25

5,25

8,5

13,25

22,25

36

58,25

...

...

...

...

...

...

...

...

...

...

Горизонтальные линии в этой системе являются рядами Фибоначчи, и потому сумма двух предыдущих членов равна последующему, а отношение соседних двух чисел (чем дальше от начала, тем больше) приближается к золотому числу Ф. По вертикали же использован принцип деления русских саженей и построена структура удвоения (вверх) или раздвоения (вниз) величин, и потому отноягение по вертикали всех столбцов описывается последовательностью:
1; 2; 4; 8; 16; 32; 64; ... или, что то же самое, 1 х 2n, где 2 является основанием, n → ∞

Полученная система обладает наивысшими комбинаторными свойствами для рациональных чисел, а каждая из них связана со всеми остальными числами. Любое из чисел можно получить множеством различных вариаций. Например:
3+52=55;
10+13+32=55;
4+5+13+16+17=55;
2x3+2x6,5+2x8+2x10=55 и т.д.

Именно эта схема, впервые полученная А.А. Пилецким, отображает системную зависимость между размерами саженей, "сложившихся" в Древней Руси. Используя ее, он пришел к построению системы пропорционирования, условно названную им как "Древнерусский всемер". Размеры саженей выписаны им в матрицу 2 с использованием правила раздвоения измерительных инструментов:

Матрица 2




Египетская

Меньшая

Казенная

Народная

Малая

Греческая

Церковная

Простая

Великая

Царская

Кладочная

Большая

Фараона
















284,8

























205,5







217,6







230,4







244,0







258,4







166,3







176







186,4







197,4







209,1







134,5







142,4







150,8







159,7







102,8







108,8







115,2







122,0







129,2







83,1







88







93,2







98,7







104,5







67,2







71,2







75,4







79,8







51,4







54,4







57,6







61,0







64,6







41,6







44







46,6







49,4







52,3







33,6







35,6







37,7







39,9







25,7







27,2







28,8







30,5







32,3







20,8







22







23,3







24,7







26,1
















17,8







18,9







19,9







Числовая матрица 2 имеет структуру пересекающихся под тупым углом диагональных рядов цифр, исходными для которых являются размеры древнерусских саженей. Под каждой саженью вертикали располагаются ее половинки, четвертинки, восьмые и т.д. доли — система структурных величин одной сажени

По диагоналям слева направо вверх находятся числа, относящиеся к различным саженям, обладающие свойствами рядов Фибоначчи — два соседних нижних числа в сумме равны верхнему. По диагоналям сверху слева направо вниз в первых строках указаны числовые параметры древнерусских саженей (выделены жирным шрифтом).

Важнейшей особенностью матрицы 2, на которой автор не акцентировал внимания, является равенство золотому числу Ф отношения каждого верхнего числа к нижнему по диагонали, идущей слева направо вверх. Равенство как бы повторяет в каждой диагонали пропорции чисел египетского золотого ряда без базисной 1 и в то же время выявляет неудачность формы записи матрицы 2. Последняя не предполагает развития числовых пропорций по столбцам вверх. Возможность развития ограничивает не рамки матрицы, а представления о числах как об отображениях размеров саженей. Эти числа надо было считать иррациональными абстракциями, не имеющими никакого отношения к саженям, а являющимися только составной частью матрицы. И все же составление матрицы 2 было крупнейшим достижением А.А. Пилецкого, максимально приблизившим его к решению загадки золотых пропорций.

Вторая особенность в том, что данный «Всемер» превращал отдельные (как бы не связанные между собой) измерительные инструменты определенной длины в систему соразмерных, пропорциональных «золоту»- длин, образующих поле взаимосвязанных чисел — матрицу. Последняя и обусловливает числам органическую взаимосвязь всех мер длины — саженей.

Третья особенность: сажени «Всемера» четко распределяются на пять групп по столбцам (матрица 2), по три инструмента в каждом столбце, и на три строки, в нижней из которых находятся 4 числа саженей малой длины, в средней 5 саженей средней длины и в верхней 5 саженей наибольшей длины. Итого 14 взаимосвязанных матрицей саженей. И отдельно от них, но в такой же связи, городовая сажень, равная по длине сдвоенной малой — 2,848м.

^ Получение А.А Пилецким «Древнерусского всемера» оказывается важнейшим архитектурным открытием XX века в России. Перед нами необыкновенный соизмерительный инструмент, определяющий весь процесс зодческого творчества древности. Инструмент, обеспечивающий получение принципиально новых (а точнее сказать, полностью утраченных) числовых взаимосвязей, отображающих пропорциональное «золоту» совмещение длин саженей.

Запишем абстрактные величины, численно равные размерам саженей, в матрицу 3 иной формы, выделив их жирным шрифтом и отделив для наглядности верхнюю часть матрицы 3 от нижней интервалом в две строки. Поскольку структуры матрицы 2 и 3 аналогичны, ее можно назвать матрицей А.А. Пилецкого:

Матрица 3 (А.А. Пилецкого)

 




























2067

 



















1952

1579

1277

1033

 










1843

1491

1206

976,0

789,6

638,8

516,8




1740

1408

1139

921,6

745,6

603,2

488,0

394,8

319,4




1076

870,4

704,0

569,6

460,8

372,8

301,6

 

 







538

435,2

352,0

284,8

 

 













258,4

269

 

 













244,0

197,4

159,7

129,2













230,4

186,4

150,8

122,0

98,7

79,85

64,6




217,6

176,0

142,4

115,2

93,2

75,4

61,0

49,35

39,93

32,3

134,5

108,8

88,0

71,2

57,6

46,6

37,7

30,5

24,68

19,96

16,15

67,2

54,4

44,0

35,6

28,8

23,3

18,85

15,25

12,34

9,98

8,07

33,6

27,2

22,0

17,8

14,4

11,65

9,43

7,62

6,17

4,99




16,8

13,6

11,0

8,9

7,2

5,82

4,71

 










8,4

6,8

5,5

4,45

 



















4,2

 




























Числа столбцов матрицы А.А. Пилецкого, выступая в качестве измерительных величин, составляют поэлементную струк
туру каждой сажени. Покажу ее на примере сажени народной (мерной): сажень — 176 см; полсажени — 88см; локоть — 44см; пядь (поллоктя) — 22 см; пясть (полпяди, два вершка) — 11 см; вершок — 5,5 см. Все они, кроме вершка, делению не подлежали. Вершок мог делиться на любое число.

Матрица А.А. Пилецкого показывает, что все величины саженей, образующие отношения, равные Ф, находятся на диагоналях, идущих слева направо и вверх, что величина сажени городовой
есть удвоенная величина сажени малой и лежит на диагонали народной сажени. А результат удвоения величин саженей кладочной и простой также находится на диагоналях царской и церковной саженей (показано стрелками). Четыре наибольшие сажени (без городовой) — первые в тройках величин саженей одной строки — уменьшаются последовательно вправо в коэффициент 1,236... Сами же наибольшие сажени возрастают вправо в коэффициент 1,059... и как мерные линейки по цифровой величине являются округленными до четырех цифр иррациональными числами. Все размеры саженей, кроме крайних, могут быть связаны, как показано еще А.А. Пилецким [10], с габаритами человека следующей зависимостью (таблица 2):

Таблица 2
Рост человека

Очень мален. *

Маленький

Ниже сред.

Среднего.**

Выше сред.

Высокий

Очень высок.















* В числителе размер в положении с поднятой рукой, в знаменателе — рост человека.

** Не зная коэффициента 1,236..., А.А. Пилецкий поставил в столбец для среднего роста отношение 209,1/166,3, Числа 166,3 и 205,5 получаются последовательным умножением размера 134,5 на коэффициент 1,236...

Можно предположить, что именно это соотношение и послужило основой выбора числовых значений системы саженей, обеспечивающей возможность пропорционирования в совокупности многих моделей роста людей от очень низкого до очень высокого (209 см).

Таким образом, построение матрицы Л.А. Пилецкого доказывает принадлежность числовых значений саженей к определенной взаимосвязанной числовой системе, в которой:

  • матрица не имеет базисного числа;

  • поле чисел не ограничено ни в одну из сторон, а числовые значения саженией выбраны по некоторому, еще неизвестному, критерию;

  • основу матрицы составляет золотое число Ф, получаемое делением любого числа таблицы на меньшее по диагонали справа налево сверху вниз. Сумма двух восходящих чисел любой диагопали всегда равна третьему;

  • вертикальные столбцы кратны 2; структура матрицы А.А. Пилецкого не изменится в случае использования вместо знаменателя 2 любого другого числа;

  • числовые диагонали пересекаются под прямым углом и после довательность чисел диагонали слева направо и вниз кратна знаменателю 2,47213...;

  • горизонтальные ряды кратны 1,23606...;

  • величина числового поля матрицы имеет тенденции) возрастать в верхней части и уменьшаться в ее нижней части.

^ МОДУЛОР ЛЕ КОРБЮЗЬЕ

Пропорционирование частей зданий и сооружений, соответствующее природным пропорциям и пропорциям человека, его восприятию действительности и ощущениям, является важнейшим фактором нормального функционирования человеческого организма. Все чаще и чаще в научной литературе отмечается плодотворное влияние на человека конструкций, пропорционированных по золотому сечению. Как полагают, наиболее существенный вклад в архитектурную разработку новых систем пропорционирования в XX в. был сделан французским архитектором Ле Корбюзье, предложившем в конце 40-х годов таблицу-модулор с шагом, равным золотому числу Ф.

В основу модулора были положены конкретные пропорции человеческого тела — высота человека одного роста — одной модели. Причем, Ле Корбюзье пришлось отрабатывать несколько вариантов человека-образца. И поскольку это был образец, величину его роста и определили как средний или выше среднего. Ле Корбюзье пишет [12]: «... в первом варианте модулора он был ростом 175 см, а в положении с поднятой рукой имел размер 216 см. От этих исходных данных и были подсчитаны остальные» (рис. 8).

Я еще вернусь к этой первооснове модулора, но прежде отмечу те очевидные достоинства, которые обеспечили архитектурным конструкциям, возводимым на его основе, достижение эстетически совершенных пропорций, многовариантность компоновок и их некоторую соразмерность с пропорциями человека.

Как уже указывалось выше, золотое число получается в основном либо геометрическим способом (делением отрезка в крайнем и среднем отношениях), либо методом последовательных приближений по числовому ряду Фибоначчи. (Отмечу, что таких рядов немало, Фибоначчи явился автором первого зафиксированного ряда, и все они до А.А. Пилецкого, похоже, были одинарными. Первый двойной ряд и составил основу модулора ле Корбузье, хотя ему самому, вероятно, это не было понято, поскольку в публикациях не отражены его попытки представления красной и голубой линий в виде единой матрицы.)



Рис. 8. Модулор [12]

Модулор Ле Корбюзье построен как одинарный ряд на двух сдвинутых рядах Фибоначчи, условно названных автором красной и голубой линиями. Удвоение резко увеличило возможности архитектурной комбинаторики. Рассмотрим, какими коэффициентами связаны цифры красной и голубой линий (таблица 3):

Таблица 3




0,806




0,806




0,806




0,806




0,806




0,806







красная

 

0,164




0,266




0,431




0,697




1,128




1,825




голубая







0,204




0,330




0,533




0,863




1,397




2,260







1,306




1,306




1,306




1,306




1,306










Если теперь сдвинуть числа голубой линии в ряд красной, то получим полный ряд модулора Ле Корбюзье: 0,164; 0,204; 0,266; 0,330; 0,431; 0,533; 0,697; 0,863; 1,128; 1,397; 1,825; 2,260. Если разделить каждое число красной линии таблицы на стоящее по диагонали снизу и слева от него число голубой линии, то при каждом делении будем получать один и тот же коэффициент 1,306, а при делении чисел красной линии на стоящие слева и снизу от них числа голубой линии — коэффициент 0,806. Это указывает на то, что эти сдвинутые линии составляют одну числовую матрицу, имеющую структуру, аналогичную структуре матрицы А.А. Пилецкого, только, в отличие от нее, отношение по числу Ф проходит не по диагонали, а по горизонтали, и базисный шаг не равен 2. Эта связь и обусловливает моду лору Ле Корбюзье возможность широкого композиционного комбинирования в варианте, увязанном с ростом человека. То, что модулор ограничился всего двумя рядами матрицы А.А. Пилецкого и другим базисным шагом, — его основной недостаток. Именно это ограничило возможность варьирования вариантами роста человека, и в окончательном варианте модулор был рассчитан исходя из роста человека в 6 футов —183 см (последнее округленное число красной линии), и размер в положении с поднятой рукой — 226 см (синяя линия). Рассмотрим вариант построения модулора Ле Корбюзье по структуре матрицы А.А. Пилецкого (матрица 4):

Матрица 4

1,160

1,319

1,512







2,260




0,819

0,932

1,068




1,397




1,825

0,578

0,659

0,754

0,863




1,128




0,409

0,465

0,533




0,697







0,289

0,330

0,376

0,431










0,204

0,232

0,266













0,144

0,164

0,188













Анализируя матрицу 4, убеждаемся, что ее структура полностью повторяет структуру матрицы А. А. Пилецкого, включая отсутствие базисной 1, и на этом сходство заканчивается. Шаг чисел по вертикали, который в матрице А.А. Пилецкого равен 2, в матрице Ле Корьбюзье равен 1,41556... , все клетки матрицы могут быть заполнены (показано светлым шрифтом на примере трех левых столбцов), но в данной области они не образуют соразмерной системы мер, подобной системе древнерусских саженей, и потому не могут быть рекомендованы для применения при пропорционировании объектов.

Модулор Ле Корбюзье позволяет, естественно, получать некоторые распространенные виды пропорций золотого числа:
Ф = 1,618; 2/Ф = 1,236; Ф2/2 = 1,309; 2/Ф2 = 0,472 ...

Не останавливаясь на их архитектурном значении, отмечу, что их достаточно много, они определяют сопряженность и эстетичность зданий и сооружений, и только небольшая часть их входит в пропорции Ле Корбюзье. Более того, ограниченность модулора исходными данными одного человека (образца определенной высоты) автоматически не соизмеряет пропорции модулора с ростом других людей, а следовательно, обусловливает отступление от пропорциональности в конструировании частей объектов. Не поэтому ли Ле Корбюзье неоднократно менял размер образца, пытаясь расширить диапазон применимости модулора.

Но не этот недостаток следует считать самым существенным Еще раз вернемся к его структуре и отметим, что золотое число Ф получается последовательным делением друг на друга чисел как красной, так и голубой линий. Если же провести последовательное деление каждого числа друг на друга
2,260/1,829 = 1,236; 1,829/1,397 = 1,309;
1,397/1,130 = 1,236; 1,130/0,863 = 1,309 и т.д., то получим чередование двух чисел 1,236 и 1,309. Теперь определим для каждого из этих чисел то, которое является кратных для них:
1,309/1,236 = 1,05492... .

Число, кратное для всех чисел рядов Ле Корбюзье, является также иррациональным и равно 1,05492... . А это, как будет показано ниже, означает что все конструкции, построенные на основе модулора Ле Корбюзье, кратны единому множителю и потому при внесении в структуру строительного объекта превращают данный объект в сооружение, непригодное для проживания. Следовательно, красота и эстетичность строительного объекта, создаваемая модулором, еще не являются гарантией безопасности проживания в нем.

^ РУССКАЯ МАТРИЦА

Поскольку все возрастающие вправо в знаменатель Ф числа диагонали матрицы 4 в своей последовательности аналогичны числам египетской золотой пропорции, включающей условно базисную 1, то можно ожидать, что это условно базисное число является некоторым центром матрицы, построенной по правилам пропорционирования древнерусских саженей. Поставим в центр построения базисную 1 и рассмотрим структуру образовавшейся матрицы 5.

Матрицы 3 и 5 по структуре принципиально одинаковы. Но матрица 5 в качестве отличия имеет центральную базисную 1, которая и становится основой всего числового поля. Все особенности, относящиеся к матрице 3, присущи и матрице 4. Наличие базисной единицы образует ведущую диагональ слева направо снизу вверх, состоящую из чисел египетского ряда. Поэтому данная диагональ может быть названа образующей или главной диагональю. Два числа этой диагонали 1 и Ф не изменяются и определяют числовую структуру всей бесконечной матрицы. Количественное значение числового поля матрицы формируется числом-знаменателем п=2, стоящим в столбце над базисной единицей 1, Знание этих трех чисел и обусловливает возможность формирования бесчисленного количества матриц со свойствами золотых пропорций. Все числа этих матриц, кроме столбца, включающего базисную 1, иррациональны и по своей числовой величине индивидуальны. Вертикальный столбец, или основной ряд с базисной 1, может состоять как из рациональных, так и из иррациональных чисел. В этом столбце строчку над 1 не может занимать только число Ф, ибо тогда вся матрица вырождается в египетский ряд.

Матрица 5

2131

1724

1395

1128

913,0

738,6

697,6

483,4

391,2

316,4

256

207,1

167,6

135,6

1065

862,0

697,5

564,3

456,5

369,3

298,8

241,7

195,6

158,2

128

103,5

83,77

67,78

532,8

431,0

348,7

282,1

228,3

184,7

149,4

120,9

98,78

79,11

64

51,77

41,89

33,89

266,4

215,5

174,4

141,0

114,1

92,34

74,7

60,43

48,89

39,55

32

25,89

20,94

16,94

133,2

107,7

87,19

70,54

57,06

46,17

37,35

30,22

24,44

19,78

16

12,94

10,47

8,472

66,61

53,88

43,59

35,27

28,53

23,08

18,67

15,11

12,22

9,888

8

6,472

5,236

4,236

33,30

26,94

21,80

17,63

14,27

11,54

9,337

7,554

6,111

4,944

4

3,236

2,618

2,118

16,65

13,47

10,90

8,817

7,133

5,771

4,669

3,777

3,056

2,472

2

1,618

1,309

1,059

8,326

6,736

5,449

4,408

3,567

2,885

2,334

1,888

l,528

1,236

1,00

0,8090

0,6545

0,5295

4,163

3,368

2,725

2,204

1,783

1,443

1,167

0,9443

0,7639

0,6180

0,50

0,4045

0,3272

0,2647

2,081

1,684

1,362

1,102

0,8916

0,721

0,5836

0,4721

0,3820

0,3090

0,25

0,2022

0,1636

0,1324

1,041

0,8419

0,6811

0,5511

0,4458

0,3607

0,2918

0,2361

0,1910

0,1545

0,125

0,1011

0,0818

0,0662

0,5203

0,4210

0,3406

0,2755

0,2229

0,1803

0,1459

0,1180

0,0955

0,0772

0,0625

0,506

0,0409

0,0331

0,2602

0,2105

0,1703

0,1378

0,1114

0,0902

0,0729

0,0590

0,0477

0,0386

0,0312

0,0253

0,0204

0,0165

0,1301

0,1052

0,0851

0,0689

0,0557

0,0451

0,0365

0,0295

0,0239

0,0193

0,0156

0,0126

0,0102

0,0083

0,0650

0,0526

0,0426

0,0344

0,0279

0,0225

0,0182

0,0147

0,0119

0,0096

0,0078

0,0063

0,0051

0,0041

0,0325

0,0263

0,0213

0,0172

0,0139

0,0113

0,0091

0,0074

0,0060

0,0048

0,0039

0,0032

0,0026

0,0021

0,0163

0,0131

0,0106

0,0086

0,0069

0,0056

0,0045

0,0037

0,0030

0,0024

0,0019

0,0016

0,0013

0,0010

0,0081

0,0066

0,0053

0,0043

0,0035

0,0028

0,0023

0,0018

0,0015

0,0012

0,0010

0,008

0,006

0,0005

Матрица 5 имеет ярко выраженную двойную крестовую структуру расположения чисел с центром в базисной 1. Каждое из направлений креста содержит свой коэффициент пропорциональности — знаменатель: главная диагональ — Ф = 1,615..., основной базисный ряд — 2,0, перпендикулярная диагональ — 2,472... и базисная строка — 1,236... С изменением формирующего числа меняются все знаменатели, кроме Ф. Нельзя не отметить, что символика двойного креста используется многими государственными и религиозными структурами.

Крестовая форма, образуемая базисной строкой и столбцом матрицы, обусловливает возможность использовать их как координатную систему для нахождения места любого числа ее множества либо по системе чисел на строке и столбце, либо по показателю степени при знаменателе строки или столбца.

Все числа матрицы взаимосвязаны и создают систему взаимного пропорционирования, но каждое число — единственное, самотождественное и не равное никакому другому числу образование. Строго по другую сторону базисной 1 оно имеет свой обратный аналог, Поэтому прямая, проведенная через 1 и любое число, образует как бы диагональ с числами, кратными ближайшему к 1 числу-знаменателю. А это дает возможность построения матрицы в бесцифровой символической форме. Да и сама матрица, по-видимому, послужила основой эзотерических знаний многих народов.

Строение матрицы 5, многовариантное пропорционирование и бесчисленность ее степенных диагоналей, способных выполнять функции координат или тригонометрических функций, числовое поле, включающее качественные зависимости физических свойств, взаимосвязь всех чисел поля показывают, что матрица отображает актуальную структуру динамической геометрии [9], а ее члены являются коэффициентами золотых пропорций.

Матрица 5 многовариантного пропорционирования, построенная на основе условно базисной 1, золотого числа Ф и с использованием принципа последовательного уменьшения древнерусских саженей в 2 раза, может быть названа русской матрицей.

Трудно предположить, что столь сложная и необычная, даже для нашего времени электронной математики, матрица была разработана каким-либо народом древности только для получения «странных» измерительных инструментов. Но нельзя исключить стороннее привнесение не матрицы, а эталонов длины и методологии их применения. А потому возникает вопрос: имеются ли хоть какие-то аналоги данной матрицы в математической культуре других древних народов?

Сейчас на этот вопрос можно ответить положительно, поскольку аналог русской матрицы в зашифрованном виде отыскался, и записана эта матрица на деревянных панелях, извлеченных из гробницы древнеегипетского зодчего Хеси-Ра, жившего в период правления фараона Джосера (XXVII век до н.э.). Деревянные доски-панели были покрыты с одной стороны великолепной резьбой, а с другой — едва различимыми геометрическими схемами (фотографии резьбы были опубликованы, схемы же так, по-видимому, и не появились в открытой печати).

Изучая геометрию фигур, вырезанных на панелях, архитектор И.Ш. Шевелев обратил внимание на то, что на одной из панелей зодчий держит в руках жезлы, соотносящиеся между собой как 1 : √5, и высказал интуитивное предположение, что это отношение свидетельствует о знании архитектором Хеси-Ра закономерностей золотого сечения. Современная наука достаточно уверенно отвергает возможность знания строителями древнейшего Египта золотых пропорций и умения пользоваться его законами, не отрицая возможности интуитивного использования этих соотношений. Требовались более серьезные доказательства достоверности применения в геометрии фигур на панелях золотых пропорций.

Архитектор И.П.Шмелев [8] провел тщательное изучение геометрической пропорциональности фигур и композиционного строя панелей и на взаимосвязанном числовом материале показал, что жрецы Древнего Египта задолго до кратоновской школы Пифагора владели теорией гармонии, связанной с золотыми пропорциями. Однако, какая конкретно математическая структура зашифрована на панелях, оставалось неясно.

Теперь понятно, что на панелях Хеси-Ра зашифрована математическая конструкция, подобная по своей структуре русской матрице. Часть чисел, найденных И.П. Шмелевым, с точностью до последнего знака входят в матрицу 5, образуя как бы скелет, по которому уже несложно достроить и всю матрицу (в матрице 5 эти числа выписаны из панелей жирным шрифтом). А это означает, что русская матрица 5 и канон Хеси-Ра, зашифрованный на деревянных панелях, образуют одну и ту же математическую структуру (ниже элементы саженей, отображенные на панелях Хеси-Ра, будут рассмотрены подробнее). И можно предположить, что система древнерусских саженей и древнеегипетский канон обязаны своим происхождением одному и тому же источнику, вполне возможно, не имеющему ни Египет, ни Древнюю Русь своей родиной.

Дело в том, что пропорция, образуемая величинами древнерусских саженей, отображенная матрицей А.А. Пилецкого, не вписывается ни в одну, обозримую до 12-13 знака, область матрицы 5. И если бы численные размеры саженей брались из матрицы 5, то их не надо было бы искать. Уже в строке 4 от базисной единицы вверх, где 24 = 16, десятый столбец слева начинается и состоит из чисел, близких величинам саженей, заканчиваясь числом 28 = 256:














256.










241,7; 195,6; 158,2;










228,3; 184,7; 149,4;










215,5; 174,4; 141,1;










133,2.














Однако эти величины саженей по неизвестной причине были проигнорированы. Был проигнорирован и другой ряд, начинающийся третьим числом строки 28 = 256:













260,5.










246,0; 199,0; 161,0;










232,3; 187,9; 152,0;










219,3; 177,4; 143,6;










135,6













который также мог бы служить основой размеров для саженей.

Можно было бы, наконец, сложить попарно близкие размеры и, разделив на 2, получить с точностью до 2 мм величину всех русских саженей. Например, (133,2 + 135,6)/2 = 134,4 и т.д. Но размеры саженей были найдены другим, более сложным способом.

Как уже упоминалось, матрица А.А. Пилецкого не имеет своим началом базисную 1 и не вписывается в числовое поле матрицы 5. Имеет она и еще одну труднообъяснимую особенность. При делении чисел из четырех значащих цифр одних саженей на другие получаем в результате число Ф с фантастической точностью — от 4 до 8 значащих цифр (в приведенных выше двух строках возможных типоразмеров саженей только в трех случаях точность достигает пятого знака). Такие результаты не могут быть случайными, подгонка невозможна уже потому, что по четырем значащим числам точно получается не более четырех цифр. Их можно выявить на значительном цифровом материале только с использованием ЭВМ (трудно вообразить, что в Древнем Египте или в Древней Руси располагали ЭВМ).

Отсутствие базисной единицы 1 в матрице А.А. Пилецкого свидетельствует о том, что шаг значимых чисел русской матрицы по вертикали определяется не знаменателем 2, а другим числом, возведение которого в некоторую степень имеет результатом 2. А это добавляет матрице дополнительные строки «промежуточных» чисел и обеспечивает возможность «сплочения» значимых чисел в одну строку. Следовательно, для нахождения места значимых чисел и матрицы, в которую они входят, необходимо определить число, задающее шаг базисного столбца. И это число, по логике, должно было находиться среди тех чисел, которым в древности придавали сакральное значение. Например 3, 7, 9, 12 и т.д. Поскольку гармоничность является одним из свойств золотого сечения, а число 2 — октава темперированной музыкальной гаммы и образуется малыми секундами, то было сделано предположение, что малая секунда, равная 12√2 = 1,05946... , является шагом по вертикали русской матрицы и обеспечивает ей музыкальную гармоничную структуру. С шагом 1,0594... и был построен новый вариант русской матрицы 6, часть числового поля которой приводится ниже. В ней выделены числовые ряды, входящие и в матрицу 5.

Матрица 6

0,1670

0,2550

0,3895

0,5949

0,9085

1,387

2,119

3,236

4,942

0,1576

0,2407

0,3676

0,5615

0,8575

1,309

2,000

3,054

4,665

0,1488

0,2272

0,3470

0,5300

0,8094

1,236

1,888

2,883

4,403

0,1404

0,2145

0,3275

0,5002

0,7639

1,167

1,782

2,721

4,156

0,1325

0,2024

0,3091

0,4721

0,7211

1,101

1,682

2,568

3,923

0,1251

0,1911

0,2918

0,4456

0,6806

1,039

1,587

2,424

3,703

0,1181

0,1804

0,2754

0,4206

0,6424

0,981

1,498

2,288

3,495

0,1114

0,1702

0,2599

0,3970

0,6063

0,926

1,414

2,160

3,298

0,1052

0,1607

0,2454

0,3747

0,5723

0,874

1,335

2,039

3,113

0,0993

0,1516

0,2316

0,3537

0,5402

0,825

1,260

1,924

2,939

0,0937

0,1431

0,2186

0,3339

0,5099

0,779

1,189

1,816

2,774

0,0885

0,1351

0,2063

0,3151

0,4812

0,735

1,122

1,714

2,618

0,0835

01275

0,1948

0,2974

0,4542

0,694

1,059

1,618

2,471

0,0788

0,1204

0,1838

0,2807

0,4287

0,655

1,000

1,527

2,332

0,0744

0,1136

0,1735

0,2650

0,4047

0,618

0,944

1,441

2,201

Построение матрицы 6 начинается с определения шага горизонтального ряда делением Ф на 1,05946... Он оказывается равным 1,52722... Изменение знаменателя вертикального столбца с 2 на 1,05946... вызывает поворот нарастания численных величин по часовой стрелке относительно базисного числа и главной диагонали. И, следовательно, последовательность числовых величин саженей может быть найдена в правой нижней части матрицы 5. Для определения места чисел 134,5; 217,6 ... достаточно последовательно делить их на коэффициент 1,52722... до тех пор, пока частное от деления не окажется равным одному из чисел нисходящего базисного столбца. Поэтому числа данного ряда должны быть вычислены сразу же после нахождения числа 1,05946..., и для нисходящего базисного ряда будут степенью числа 0,94387... Одновременно показатель степени при числе 0,94387... становится номером той строки, на которой находится значимое число (например, 134,5; 217,6...). Число же операций последовательного деления данного значимого числа на 1,5272... является степенью последнего и как бы превращается в номер столбца, в котором находится значимое число.

Проведя соответствующие расчеты, получаем, что число 134,5 находится вправо от базисного столбца на пересечении 60-го столбца с 355-й строкой, а предпоследнее 159,7 — на пересечении 69-го столбца с 418-й строкой. Число 258,4 занимает 417-ю строку 70-го столбца. В матрице, построенной с опорой на крайние значащие числа, очень много чисел, отличающихся от значащих на 1-2 единицы в последнем знаке, их немало встречается и на всем числовом поле от базисной единицы 1. Но все их соотношения не образуют системы, обеспечивающей получение хотя бы трех Ф с точностью до 5 знака. И, по-видимому, отношение 258,4 : 159,7, дающее точность до 8 знака, — ближайшее к центру матрицы. Это еще раз подтверждает преднамеренность в подборе эталонов длины древнерусских саженей.

Вычленим для наглядности из матрицы 6 числовые модули Древнерусских саженей с образуемыми ими числовыми столбцами и рассмотрим возникшую структуру (матрица 7).

Матрица 7

СТОЛБЦЫ

СТРОКИ

60

61

62

63

64

65

66

67

68

69

70

353







354

142,46

217,56

355

134,46

205,35

356




193,83

357




182,95

358




172,68

359




162,99

360




153,84

361




145,20

362




137,05

363




129,36




оставить комментарий
страница1/5
Дата11.10.2011
Размер1,53 Mb.
ТипКнига, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4   5
плохо
  2
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх