скачатьМинистерство образования и науки Российской ФедерацииФедеральное агентство по образованию Иркутский государственный технический университет![]() Конспект лекций дисциплины «ХИМИЯ» для студентов заочной формы обучения ИрГТУ по техническим направлениям и специальностям Иркутск 2008 Конспект лекций дисциплины «Химия». Учебное пособие для студентов 1 курса технических направлений и специальностей. Составила: доцент кафедры химии, к.х.н., Кузнецова О.В. – Иркутск: 2008. – 74 c. Пособие включает конспект лекций по наиболее важным разделам курса химии, целью является закрепление и углубление знаний по теоретической части курса. Библиогр. 6 назв. Табл. 3. Рис. 11. Оглавлениестр.
^ Химия – это наука о веществах, изучающая их состав, строение, свойства, а также их превращения. Природа, т.е. окружающий мир, – это различные формы движущейся материи, которая может существовать в виде элементарных частиц и полей. Взаимодействуя друг с другом, частицы и поля образуют более сложные системы – атомы. Атомы при взаимодействии образуют различные вещества. Каждое вещество обладает набором характерных признаков – свойств, которые отличают одно вещество от другого. При изменении условий одни вещества могут превращаться в другие – происходит химическая реакция. В определенной совокупности вещества образуют материалы, которые использует человек. На базе химических знаний создаются новые технологии, позволяющие получать принципиально новые вещества и материалы, металлы и сплавы, полупроводниковые и сверхпроводниковые материалы, лекарственные препараты, красители, синтетические материалы и т.д. ^ Атом – наименьшая частица химического элемента, входящая в состав молекул и сохраняющая химические свойства данного элемента. Молекула – наименьшая частица вещества, способная к самостоятельному существованию и обладающая всеми химическими свойствами данного вещества. Молекулы могут содержать различное число атомов: молекулы простых газов двухатомны, молекулы воды – трехатомны, молекулы белков содержат сотни тысяч атомов. Химический элемент – это вид атомов, характеризующийся определенной совокупностью свойств. При взаимодействии атомов одного элемента образуется простое вещество, которое является формой существования химического элемента в свободном состоянии. Сочетание разных атомов дает сложное вещество, т.е. химическое соединение. Многие химические элементы образуют не оно, а несколько простых веществ. Такое явление называют аллотропией, а каждое из этих простых веществ – аллотропной модификацией данного элемента. Существование таких модификаций обусловлено неодинаковой кристаллической структурой простых веществ или различным числом атомов, входящих в состав молекул отдельных аллотропных форм. Вследствие этого аллотропные модификации химического элемента различаются физическими свойствами и химической активностью. Например, алмаз и графит резко отличаются по своим физическим и химическим свойствам, однако являются аллотропными модификациями одного химического элемента – углерода. Одной из важнейших характеристик атомов и молекул является их масса. Абсолютные величины (т.е. массы, выраженные в граммах) очень малы, например, масса атома водорода равна 1,67·10-24 г. Поэтому для практических целей введена атомная единица массы (а.е.м.), которая составляет 1/12 часть массы атома изотопа углерода с массовым числом, равным 12, – 12С: 1 а.е.м.=1,667·10-24 г. Масса атома, выраженная в атомных единицах массы, называется относительной атомной массой и обозначается Ar. Относительная атомная масса является безразмерной величиной и показывает во сколько раз масса данного атома больше 1/12 массы 12С. Например, Ar(S) = 32. Масса молекулы, выраженная в атомных единицах массы, называется относительной молекулярной массой и обозначается Mr. Зная формулу химического соединения, можно рассчитать его молекулярную массу как сумму относительных атомных масс всех входящих в его состав атомов. Например, Мr(Н2SO4) = 2·Ar(H) + Ar(S) + 4·Ar(O) = 2·1 + 32 + 4·16 = 98. В химии широко применяется единица количества вещества – моль. Моль – это количество вещества, содержащее столько структурных единиц (атомов, молекул, ионов и др.) данного вещества, сколько их содержится в 12 г изотопа углерода 12С. Вычислено, что в 12 г 12С содержится 6,02·1023 атомов. Это число называется числом Авогадро и обозначается NА. Следовательно, в одном моле любого вещества содержится 6,02·1023 частиц. Масса одного моля вещества называется молярной массой вещества и обозначается М. Молярная масса вещества представляет собой отношение массы вещества (m) к количеству вещества (ν): М = m/ν. Молярную массу обычно выражают в граммах на моль (г/моль) и численно она равна относительной молекулярной массе. Например, М(Н2SO4) = 98 г/моль. Объем, занимаемый одним молем газа при нормальных условиях (температура 0ºС, давление 760 мм рт. ст. или 101, 325 кПа), называют молярным объемом. Он обозначается Vm и равен 22,4 л/моль. Химические реакции изображают с помощью химических уравнений. Принято выделять следующие типы химических реакций: 1. реакции соединения: А + В = АВ Например, СаО + СО2 = СаСО3 2. реакции разложения: АВ = А + В Например, СаСО3 = СаО + СО2 3. реакции замещения: АВ + С = АС + В Например, Zn + CuSO4 = Cu + ZnSO4 4. реакции обмена: АВ +CD = AD + CB Например, CaO + 2HCl = CaCl2 + H2O ^ Основным законом химии является закон сохранения массы веществ, который вывел русский ученый Ломоносов М.В. в 1748 г.: масса веществ, вступающих в реакцию, равна массе веществ, образовавшихся в результате реакции. Таким образом, в химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. С законом сохранения массы веществ тесно связан закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, но одни ее виды могут превращаться в другие в строго эквивалентных количествах. Например, при разложении солей под действием электрического тока электрическая энергия превращается в химическую, при разрядке аккумулятора происходит обратный процесс – превращение химической энергии в электрическую. В 1799 г. французский ученый Жозеф Луи Пруст сформулировал закон постоянства состава: каждое химическое соединение имеет постоянный качественный и количественный состав независимо от способа его получения. Позже был сформулирован закон эквивалентов: вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. Эквивалент (Э) – это реальная или условная частица вещества, которая может замещать, присоединять или выделять один ион водорода в кислотно-основных или ионообменных реакциях или один электрон в окислительно-восстановительных реакциях. Под «реальной частицей» понимают реально существующие соединения (КОН, H2SO4, Н2О), под «условной» – доли этих реальных частиц ( 1/2H2SO4, 1/5KMnO4). Эквивалент так же, как атом, молекула, ион – безразмерная величина, и его состав выражают с помощью химических формул и символов. Количество вещества эквивалентов измеряется в молях. Масса 1 моля эквивалентов называется молярной массой эквивалентов (Мэ) и выражается в г/моль. Молярная масса эквивалентов вещества, участвующего в окислительно-восстановительной реакции, рассчитывается так: ![]() где М – молярная масса вещества; nе– число электронов, присоединенных одной молекулой окислителя или отданных одной молекулой восстановителя. Молярная масса эквивалентов кислоты или основания, участвующих в кислотно-основной реакции, рассчитывается по формуле ![]() где n – число функциональных групп: для кислот – число атомов водорода, замещенных в данной реакции на металл; для оснований – число гидроксильных групп, замещенных в данной реакции на кислотный остаток. Молярная масса эквивалентов соли в реакциях обмена рассчитывается по формуле: ![]() где n – число ионов металла, участвующих в реакции от каждой молекулы; |c.o.| – абсолютное значение степени окисления иона металла. Молярная масса эквивалентов оксида рассчитывается по формуле: ![]() где n – число катионов соответствующего оксиду основания или число анионов соответствующей оксиду кислоты; |c.o.| – абсолютное значение степени окисления катиона или аниона. Чтобы определить молярную массу эквивалентов элемента в соединении, можно воспользоваться формулой ![]() где МА – молярная масса атома элемента; |c.o.| – абсолютное значение степени окисления элемента. В общем виде закон эквивалентов формулируется следующим образом: массы реагирующих друг с другом веществ прямо пропорциональны молярным массам их эквивалентов: ![]() В 1811 г. итальянский ученый Амедео Авогадро выдвинул гипотезу, которая была впоследствии подтверждена большим числом экспериментальных данных и названа законом Авогадро: в равных объемах газов при одинаковых условиях (давлении и температуре) содержится равное число молекул. Из закона Авогадро можно вывести следствие: при нормальных условиях 1 моль любого газа занимает объем, равный 22,4 л. Лекция № 2. Строение атома Атом – это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из положительно заряженного ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. Все электроны атома образуют его электронную оболочку, строение которой определяет многие химические свойства элемента. ^ – это отрицательно заряженная микрочастица, входящая в состав атома и несущая наименьший электрический заряд. Заряд электрона в кулонах оказался величиной чрезвычайно малой (1,610-19 Кл), поэтому для удобства величина этого "элементарного" заряда принята за единицу qe=-1. Так как атом в целом электронейтрален, то число электронов, движущихся вокруг ядра, равно заряду ядра этого атома. Например, заряд ядра атома натрия +11. Вокруг ядра размещается 11 электронов с общим отрицательным зарядом –11. Самый простой состав имеет ядро атома водорода – один положительный заряд и массу, близкую к единице атомной массы. Ядро водорода назвали протоном. Протон (р+) – это микрочастица, входящая в состав ядра атома, имеющая положительный заряд qр=+1 и массу, близкую к 1 а.е.м.. В любом атоме число протонов в ядре равно числу электронов. Нейтрон (n0) – это электронейтральная микрочастица, входящая в состав ядра атома, его масса, как и масса протона, близка к 1 а.е.м.. Масса электронов в атоме очень мала – он почти в две тысячи раз легче протона, поэтому массой электрона в атоме пренебрегают и масса атома считается равной сумме масс протонов и нейтронов, т.е. сумме количества протонов и нейтронов в атоме. Большинство элементов в природе встречаются в виде атомов, характеризующихся разными атомными массами. Такие атомы называются изотопы – атомы, имеющие одинаковый заряд ядра, но разные атомные массы. Это объясняется тем, что они содержат одинаковое число протонов, но разное число нейтронов. Например, изотопы водорода: протий, дейтерий и тритий. Ядро протия состоит из одного протона, дейтерия – из одного протона и одного нейтрона, трития – из одного протона и двух нейтронов. Атомы различных изотопов одного и того же элемента наряду с разными ядерными свойствами имеют одинаковое строение электронной оболочки, поэтому химические и физические свойства изотопов почти одинаковы. ^ Электроны характеризуются двойственной природой: они имеют свойства и частицы, и волны. Для движущегося электрона невозможно указать его точное местоположение, можно лишь определить вероятность нахождения электрона в различных частях внутриатомного пространства. Область пространства, в которой наиболее вероятно нахождение электрона, называется атомной орбиталью (АО). Состояние электрона в атоме характеризуется четырьмя квантовыми числами. ^ , т.е. удаленность электрона от ядра. Главное квантовое число n принимает значения целых чисел 1, 2, 3, 4… Совокупность электронов с одинаковым значением n называется энергетическим уровнем. Наименьшую энергию имеют электроны первого от ядра энергетического уровня (n=1); с увеличением n энергия электрона и его удаленность от ядра возрастают. Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия является минимальной, называется основным, или невозбужденным. Состояния с более высокими значениями энергии называются возбужденными. Энергетические уровни обозначают буквами: Числовое значение n 1 2 3 4 5 6 7 Буквенное обозначение K L M N O P Q. На одном и том же энергетическом уровне могут находиться атомные орбитали различной формы, отличающиеся друг от друга по энергии. Поэтому энергетические уровни разделяются на подуровни. Энергию электрона на подуровне и форму атомной орбитали характеризует орбитальное квантовое число l. Значение l зависит от главного квантового числа: l принимает значения от 0 до (n–1), т. е. 0, 1, 2, 3… (n–1). В пределах данного энергетического уровня совокупность электронов, характеризующихся одинаковым значением l, называется энергетическим подуровнем. Подуровни обозначают буквами: Орбитальное квантовое число l 0 1 2 3 Обозначение энергетического подуровня s p d f. Таким образом, при l = 0, 1, 2, 3 электроны находятся соответственно на s-, p-, d-, f-подуровнях. При данном значении главного квантового числа n наименьшую энергию имеют электроны s-подуровня, затем p-, d-, f-подуровней. Электроны различных подуровней называют s-, p-, d-, f-электронами. В этом случае говорят также о состояниях s-, p-, d-, f-электронов, или s-, p-, d-, f-атомных орбиталях. Число энергетических подуровней в уровне не должно быть больше главного квантового число n. Так, первый уровень (n=1) имеет один подуровень (s), второй уровень (n=2) – два подуровня (s и p), третий (n=3) – три (s, p, d), четвертый (n=4) – четыре (s, p, d, f). В оболочках атомов ныне известных элементов электроны застраивают на каждом уровне не более четырех подуровней. Уровни O (n=5), P (n=6), Q (n=7) содержат по четыре подуровня. Каждый подуровень составлен из орбиталей, количество которых определяется магнитными квантовым числом ml. Магнитное квантовое число ml определяет возможные ориентации орбитали в пространстве, связано с орбитальным квантовым числом и может принимать целочисленные значения от –l до +l, включая ноль. Определенному значению l соответствует (2l+1) возможных значений магнитного квантового числа. Число значений ml указывает на число атомных орбиталей в подуровне и число возможных направлений, по которым они могут ориентироваться в пространстве. Для s-подуровня l=0 и потому ml имеет единственное значение: ml =0. Таким образом, на s-подуровне имеется единственная s-орбиталь, которая расположена симметрично ядру атома. Для p-подуровня l=1 и ml приобретает три значения: –1, 0, 1, т. е. р-подуровень имеет три р-орбитали и они ориентированы по трем осям координат; d-подуровень (l=2) имеет пять значений ml: –2, –1, 0, 1, 2 и, следовательно, пять d-орбиталей, которые ориентированы по пяти разным направлениям; f-подуровень (l=3) имеет семь значений ml: –3, –2, –1, 0, 1, 2, 3, т. е. семь f-орбиталей. Число ориентаций f-орбиталей равно семи. У ![]() ![]() ![]() Таким образом, электроны в атоме располагаются по энергетическим уровням, удаленность которых от ядра характеризуется значением главного квантового числа n; уровни состоят из подуровней, число которых для каждого уровня не превышает значение n; в свою очередь, подуровень состоит из орбиталей, форма которых определяется значением орбитального квантового числа l, а количество задается числом значений магнитного квантового числа ml. Квантовые числа n, l, ml характеризуют орбиталь. Кроме движения вокруг ядра, электрон вращается вокруг собственной оси. Это движение получило название «спин». ^ ms характеризует два возможных направления вращения электрона вокруг собственной оси (по часовой стрелке или против). Спиновое квантовое число ms принимает два значения: +1/2 и –1/2. Электроны с разными спинами обычно обозначаются противоположно направленными стрелками ↓↑. Четыре квантовых числа n, l, ml, ms полностью характеризуют состояние электрона в атоме. Лекция № 3. Электронная конфигурация атома Порядок распределения электронов по энергетическим уровням и подуровням в оболочке атома называется его электронной конфигурацией. При записи электронной конфигурации номер уровня (главное квантовое число) обозначают цифрами 1, 2, 3, 4…, подуровень (орбитальное квантовое число) – буквами s, p, d, f. Число электронов в подуровне обозначается цифрой, которая записывается вверху у символа подуровня. Например, электронная конфигурация атома серы имеет вид 16S 1s22s22p63s23p4, а ванадия 23V 1s22s22p6 3s23p63d34s2. Порядок распределения электронов по энергетическим уровням подчиняется ряду принципов. Согласно принципу Паули в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел. Принцип Паули определяет максимальное число электронов на одной орбитали, уровне и подуровне. Так как АО характеризуется тремя квантовыми числами n, l, ml, электроны данной орбитали могут различаться только спиновым квантовым числом ms. Но ms может иметь только два значения +1/2 и –1/2. Следовательно, на одной орбитали может находиться не более двух электронов с противоположно направленными спинами ![]() Таблица 1 Максимальное число электронов на квантовых уровнях и подуровнях
Последовательность заполнения электронами орбиталей осуществляется в соответствии с принципом минимальной энергии, согласно которому электроны заполняют орбитали в порядке повышения уровня энергии орбиталей. Очередность орбиталей по энергии определяется правилом Клечковского: увеличение энергии, и соответственно, заполнение орбиталей происходит в порядке возрастания суммы (n+l), а при равной сумме (n+l) – в порядке возрастания n. Химические свойства атомов определяются, в основном, строением наружных энергетических уровней, которые называются валентными. Полностью завершенные энергетические уровни в химическом взаимодействии не участвуют. Поэтому часто для краткости записи электронной конфигурации атома их обозначают символом предшествующего благородного газа. Например, для серы: [Ne]3s23p4; для ванадия: [Ar]3d34s2. Одновременно сокращенная запись наглядно выделяет валентные электроны, определяющие химические свойства атомов элемента. В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f-элементы. Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами. У s-элементов валентными являются s-электроны внешнего энергетического уровня. У р-элементов последним заполняется р-подуровень внешнего уровня. У них валентные электроны расположены на p- и s-подуровнях внешнего уровня. У d-элементов в последнюю очередь заполняется d-подуровень предвнешнего уровня и валентными являются s-электроны внешнего и d-электроны предвнешнего энергетического уровней. У f-элементов последним заполняется f-подуровень третьего снаружи энергетического уровня. Электронная конфигурация атома может быть изображена в виде схем размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с противоположно направленными спинами ![]() Порядок размещения электронов в пределах одного подуровня определяется правилом Хунда: в пределах подуровня электроны размещаются так, чтобы их суммарный спин был максимальным. Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами. 16S ![]() ![]() Суммарный спин р-электронов третьего энергетического уровня атома серы ms = ½ – ½ + ½ + ½ = 1; d-электронов атома ванадия – ms = ½ + ½ + ½ = 3/2. Часто графически изображают не всю электронную формулу, а лишь те подуровни, на которых находятся валентные электроны, например, 16S…3s2 3p4 ![]() ![]() При графическом изображении электронной конфигурации атома в возбужденном состоянии наряду с заполненными изображают вакантные валентные орбитали. Например, в атоме фосфора на третьем энергетическом уровне имеются одна s-АО, три р-АО и пять d-АО. Электронная конфигурация атома фосфора в основном состоянии имеет вид 15Р… 3s2 3p3 ![]() Валентность фосфора, определяемая числом неспаренных электронов, равна 3. При переходе атома в возбужденное состояние происходит распаривание электронов состояния 3s и один из электронов с s-подуровня может перейти на d-подуровень: Р*… 3s2 3p3 3d1 ![]() При этом валентность фосфора меняется с трех (РСl3) в основном состоянии до пяти (РCl5) в возбужденном состоянии. ^ В 1787 г. было известно 33 элемента, в 1860 г. – уже 61, поэтому перед учеными встала проблема систематизации известных элементов. В 1829 г. Иоганн Вольфганг Деберейнер установил закон триад: существуют тройки элементов, сходные по химическим свойствам, при этом масса среднего элемента в триаде приблизительно равна среднему арифметическому из величин атомных масс для двух крайних. Среди триад Деберейнер выделял Li-Na-K, Ca-Sr-Ba, S-Se-Te, Cl-Br-I. В 1862 г. Александр де Шанкуртуа предложил винтовую модель. Он разместил все известные элементы в порядке увеличения атомной массы по винтовой линии, описанной вокруг цилиндра. Сходные элементы распологались при этом друг под другом. В 1864 г. Джон Ньюлендс предложил закон октав. Он составил элементы в ряд по возрастанию атомной массы и заметил, что каждый восьмой обладает сходными свойствами с первым элементом. Поэтому он разбил ряд на столбцы по семь элементов. Однако эта система исключала возможность открытия новых элементов, кроме того, многие элементы попадали не на свои места. В 1869 г. Дмитрий Иванович Менделеев (1834-1907 гг.) открыл периодический закон химических элементов: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов». Графическим изображение этого закона является периодическая система элементов. К заслугам Д.И. Менделеева можно отнести то, что он рассматривал периодичность изменения совокупности всех свойств (и физических и химических). Кроме этого, он оставил пустые клетки в системе элементов: экаалюминий (галлий был открыт в 1875 г.), экабор (скандий – в 1879 г.), экасилиций (германий – в 1885 г.). Менделеев исправил атомные массы для Cr, In, Pt, Au, U и расположил К после Ar, Ni после Со, I после Te, хотя в этом случае атомная масса элементов, названных первыми, больше, чем у вторых. В 1913 г. Генри Мозли установил, что порядковый номер элемента в периодической системе численно равен заряду ядра. Поэтому в современной формулировке периодический закон звучит так: Свойства химических элементов, а также свойства и форма образуемых ими соединений, находятся в периодической зависимости от заряда их атомов и определяются периодически повторяющимися однотипными электронными конфигурациями их атомов. Периодическая система состоит из периодов и групп. Периодом называется последовательный ряд элементов, расположенных в порядке возрастания заряда ядра их атомов, электронная конфигурация которых изменяется от ns1 до ns2np6 (или до ns2 у первого периода). Все периоды начинаются с s-элемента и заканчиваются p-элементом (у первого периода s-элементом). Малые периоды содержат 2 и 8 элементов, большие периоды – 18 и 32 элемента, седьмой период остается незавершенным. Число элементов в периодах 2-8-18-32 соответствует максимально возможному числу электронов на соответствующих энергетических уровнях: на первом – 2, на втором – 8, на третьем – 18, на четвертом – 32 электрона. В периодах слева направо ослабевают металлические и усиливаются неметаллические свойства и кислотный характер соединений. По вертикали в таблице расположено 8 групп, в которых один под другим размещены элементы, имеющие сходные свойства. ^ . Количество валентных электронов в оболочке атома, как правило, равно номеру группы, в которой находится элемент, и определяет высшую степень окисления элемента. Группы делятся на подгруппы – главные и побочные. Подгруппы включают в себя элементы с аналогичными электронными структурами (элементы-аналоги). В главных (А) подгруппах расположены s-элементы (I, II группы) и p-элементы (III-VIII группы). В атомах элементов главных подгрупп валентные электроны находятся на s- и р-подуровнях внешнего энергетического уровня и общее их число равно номеру группы. В главных подгруппах при переходе сверху вниз усиливаются металлические свойства, основной характер соединений и их устойчивость в низшей степени окисления. Например, для элементов IV А-группы возможные степени окисления +2 и +4. Для углерода наиболее характерна степень окисления +4, поэтому четырехвалентные соединения углерода устойчивы и не проявляют окислительных свойств. У свинца металлические свойства выражены сильнее, чем у углерода и для него характерна степень окисления +2, вследствие чего соединения свинца со степенью окисления +4 являются окислителями. В побочных (В) подгруппах располагаются d- и f-элементы. Валентные электроны в атомах d-элементов находятся на s-подуровне внешнего и d-подуровне предвнешнего энергетических уровней. В побочных подгруппах, кроме подгруппы скандия, при переходе сверху вниз металлические свойства ослабевают, а кислотный характер соединений и их устойчивость в высшей степени окисления усиливаются. d-элементы побочных подгрупп склонны проявлять переменную степень окисления. Характер образуемых ими соединений зависит от степени окисления элемента. Соединения, в которых элемент находится в низшей степени окисления, имеют основной характер, в высшей степени окисления – кислотный, в промежуточной – амфотерный. Например, хром проявляет степени окисления +2, +3, +6 и характер образуемых им оксидов следующий: Cr+2O ![]() основной амфотерный кислотный Элементы главных и побочных подгрупп сильно отличаются по своим свойствам. Общими для элементов главных и побочных подгрупп являются формулы высших оксидов и их гидроксидов. У высших оксидов и соответствующих им гидроксидов элементов I–III групп (кроме бора) преобладают основные свойства, IV–VII групп – кислотные (табл. 2). Таблица 2
|