Учебно-методическое пособие. Ульяновск: УлГУ, 2005. 112 с icon

Учебно-методическое пособие. Ульяновск: УлГУ, 2005. 112 с


Смотрите также:
Учебно-методическое пособие Ульяновск, 2004 г. Ббк: 74. 200. 52 + 74. 265. 1 Удк: 373. 523: 331...
Учебно-методическое пособие по курсу «Соматопсихология» Ульяновск...
Учебно-методическое пособие для студентов заочной, вечерней и дистанционной форм обучения москва...
Учебно-методическое пособие Москва Издательство Российского университета дружбы народов 2005...
Учебно-методическое пособие Москва Издательство Российского университета дружбы народов 2005...
Учебно-методическое пособие Для студентов всех специальностей Таганрог 2005...
Ульяновск, 17-19 декабря 2008 г. ( сайт: www uni ulsu ru ) Ульяновск 2008...
Учебно-методическое пособие для студентов 1...
Методическое пособие для студентов 2 курса гуманитарного факультета, специальность «История»...
Учебно-методическое пособие для студентов дневного и заочного отделений специальности 350300...
Учебно-методическое пособие Минск, 2005 удк616. 33-07-08-053. 3-053. 6+616. 342-07-08-053. 3-053...
Учебно-методическое пособие Санкт-Петербург 2005 ббк 73: 81. 1 З-38...



Загрузка...
страницы: 1   2   3   4   5   6   7   8   9   ...   13
вернуться в начало
скачать
37

тельно других показана их принципиальная неполнота (арифметика натуральных чисел). Но, в большинстве случаев исследование сталкивается с трудностью формализации сис­тем, необходимой для решения вопроса о полноте. Неполные системы не могут всесторон­не описывать действительность, поэтому в науке присутствует стремление к созданию по возможности максимально полных систем.

Критерий независимости заключается в том, что существует принцип невыводимости одной аксиомы из других, принятых в данной системе. Методом доказательства независи­мости аксиом является построение систем, где выполняются все аксиомы за исключением испытуемой. Так, для доказательства независимости всякой непротиворечивой аксиомати­ки S содержащей п аксиом, где п - произвольное целое положительное число, требуется построить п непротиворечивых систем. Иногда осуществить это достаточно сложно. На­пример, для доказательства независимости пятого евклидова постулата пришлось, во-первых, построить неевклидовы геометрии, а, во-вторых, показать их непротиворечивость. На это ушло более двух тысячелетий.

К эмпирическим критериям научности относится "опытная оправдываемость", пред­полагающая принципиальную эмпирическую проверяемость систем знания .Проверяемость- процедура, позволяющая установить истинность (ложность) теоретиче­ских положений путем соотнесения их с определенным непосредственно наблюдаемым положением дел. Она включает процедуру эмпирического подтверждения (верификации) и опровержения (фальсификации). Решение вопроса об истинности теории комплексная процедура, в которой опытному подтверждению отводится значительная, но не универ­сальная роль. Аппарат теории создается для характеристики фиксированных предметных областей (фактов) полученных в ходе эксперимента.

Если наблюдаются следствия опровергающие теорию, то это является показателем её ложности, так как теория не может выполнять свою познавательную функцию. Дополни­тельный смысл принцип фальсификации как критерия научности состоит в том, что тео­рия считается научной, если потенциально фальсифицируема. Причем, следует заметить, что единственное противоречие, на которое накладывается запрет в теории, это логиче­ское. Противоречия фактов допустимы, так как могут безболезненно устраняться, или же приводить к научным революциям. Допустимость противоречий фактов теории вытекает из того, что , во-первых, факты не могут с абсолютной точностью соответствовать теории, потому что теория оперирует идеализациями, понятийными, логическими, математиче­скими структурами, в то время как реальность, отражаемая в теории, неидеальна; во-вторых, теория имеет возможность соответствующим образом осмыслить противоречащие ей факты, в ходе чего противоречия могут быть сняты; в-третьих, имеется поправка на по­грешности, ошибки, допускаемые в процедурах вычисления, измерения, расчета на эмпи­рическом уровне. Считается, что наличие противоречащих теории данных есть предвари­тельный симптом для всестороннего анализа теории, результатом которого может быть её сохранение без изменений, либо частичная перестройка, либо выбраковка. Пример частич­ной перестройки теории с сохранением её ядра концептуальная эволюция И. Кеплера. Первоначально он был сторонником коперниканской теории круговых движений планет, столкнувшись с тем, ■гго Марс, отклоняется от нужного положения на восемь угловых ми­нут, понял, что "полученный им ответ неверен, так как Тихо Браге не мог допустить такую большую ошибку". Кеплер модифицировал элементы круговых траекторий, принимаемых в теории, и ввел эллиптические траектории орбит, что сняло несоответствие теории и эм­пирии.

Таким образом, опыт не гарантирует однозначно истинности теории. Одинаковые эм­пирические основания совместимы с разными теоретическими обоснованиями. АС. Эд-дингтон об этой ситуации говорил так: " Мы в состоянии показать, что при помощи неко­торой определенной структуры, возможно, объяснить все явления, но мы не можем дока-

29 ^ Ильин В.В. Философия науки. М, 2003 С. 184.

38

зать, что такая структура будет единственной" °. Например, в космологии, несмотря на существование фридмановской теории расширяющейся Вселенной, адекватно описываю­щей эмпирические данные, и позволяющей делать экспериментально подтверждаемые предсказания, тем не менее, появляются альтернативные теории, в том числе, стационар­ной Вселенной. Причина подобной ситуации заложена в самой гипотетико-дедуктивной схеме развертывания научного знания. Достаточно часто провести экспериментальную ап­робацию теории невозможно или в силу, каких то технических обстоятельств затрудни­тельно. Поэтому их могут принимать по соображениям согласуемости либо с имеющимися эмпирическими данными, либо теоретическим контекстом.

^ К экстралогическим и неэмпирическим критериям научности относят такие как про­стота, красота, эвристичность, конструктивность, нетривиальность, информативность, ло­гическое единство, концептуальная и когерентная обоснованность, оптимальность, эсте­тичность, прагматичность. Эти критерии позволяют выявить предпочтительность теорий, когда апелляция к логическим и эмпирическим критериям оказывается недостаточной.

Простота является средством квалификации информационных аспектов знания, то есть ориентирует на учет количества информации, необходимой для понимания концепту­альной структуры. В науке изначально существует установка на минимизацию допущений при объяснении. Причина возникновения этой установки проистекает из особенностей че­ловеческого мозга, способного работать лишь с определенным числом переменных, обла­дающего определенной скоростью переработки информации.

Различают онтологическую и семиотическую простоту. Представление об онтологиче­ской простоте мироздания, его гармоничности и монистичное™, и, следовательно, о логи­ческой потребности разума унифицировать знание о нем, представив единую теорию, раз­деляли Н. Коперник, И. Ньютон, П. Лаплас. В рамках семиотической простоты выделяют синтаксическую и прагматическую простоту. Синтаксическая простота определяется оп­тимальностью, удобством применяемой символики, способов кодирования (должно быть минимальным число мест предикатов, выражающих значение). Но выразительные средст­ва в науке варьируются в зависимости от идейных контекстов. Например, механика Нью­тона принята и сейчас для расчета орбит планет Солнечной системы, так как использова­ние общей теории относительности в данном случае нецелесообразно. Представление о прагматической простоте раскрывается посредством введения представления о простоте экспериментальных, технических, алгоритмических, психологических и других аспектов научной деятельности. Считается, что из двух теорий проще та, которая при ассимиляции нового эмпирического материала не обрастает ad hoc допущениями, уловками, геропизма-ми. Таким образом, принцип простоты позволяет оценить теорию не с позиций её истин-пости, а с позиций "выживаемости и перспектив дальнейшего развития в условиях непре­рывно расширяющейся эмпирической ситуации и столкновения с конкурирующими тео­риями соответствующей области знания"31.

С критерием простоты связаны такие критерии как гомогенность, компактность, логи­ческое и концептуальное единство, стройность, изящность, ясность, которые, обобщая можно назвать критерием "красоты". Критерий красоты выражает субъективную удовле­творенность знанием. Например, Н.И. Лобачевский выступил с критикой евклидовой гео­метрии, так как его не устраивала неясность, полуинтуитивность её построений: "Никакая математическая наука не должна бы начинаться с таких чемных понятий", как евклидова система; "нигде в математике нельзя терпеть такого недостатка строгости", какой имеется в учении о параллельных32. П. Дирак четко выразил сознательную ориентацию ученых на регулятив красоты: "Общие законы природы, когда они выражены в математической фор-

30 Эддингтон А.С. Теория относительности. М., Л., 1934. С.197.

31 Меркулов И.П. К анализу понятия "динамической простоты" // Философия. Методология. Наука.
М., 1972. С. 201.

32 Лобачевский НИ. О началах геометрии // Основания геометрии. М., 1956. С.27.

39

ме, обладают математической красотой. Это дает физику-теоретику могучий метод, руко­водящий его действиями. Если он видит, что в его теории есть уродливые части, то он счи­тает, что именно эти части неправильны и он должен сконцентрировать на них свое вни­мание. Этот прием изыскания математического изящества является наиболее существен­ным для теоретиков"33.

Критерий эвристичности выражает свойство теории выходить за первоначальные гра­ницы и способность к саморасширению. Этот критерий позволяет отсевать тривиальные конструкции, не обеспечивающие прироста информации. Показательно как рассуждают в связи с реализацией этого принципа ученые. Например, при отборе возможностей при ре­шении проблемы барионной асимметрии Вселенной: "Простейший ответ — так было всегда, то есть мир с самого начала был асимметричен, для теоретиков неинтересен. Гораздо при­влекательнее вариант, когда в начальном состоянии число частиц и античастиц совпадает, но затем из-за каких-то особенностей в динамике их взаимодействия возникает асиммет­рия"34. Привлекательнее значит перспективнее с позиций предпосылок прогресса знания, что определяется внутренней установкой на поиск достаточных оснований явления.

Критерий когерентности предполагает согласованность производимого наукой знания с теми фундаментальными закономерностями, которые были установлены. Такими базо­выми принципами считаются — принцип причинности, единства мира, инвариантности, симметрии, относительности, соответствия и законы сохранения импульса и энергии, за­кон всемирного тяготения. Более приемлемой считается та гипотеза, которая совместима с базисным знанием. Действие этого критерия предохраняет науку от проникновения экст­равагантных гипотез.

Например, принцип инвариантности (симметрии, относительности, сохранения) на­столько фундаментален, что служит смыслообразующей структурой в экспликации приро­ды знания35. Принцип инвариантности предъявляет к исследовательской деятельности требование подчиняться общим правилам оперирования с абстрактными объектами и зада­ет алгоритм объективной фиксации результатов. "Объективность" предполагает универ­сальность теоретических формулировок, что является показателем их закономерного и объективного статуса. Требование инвариантности уравнений теории к группам преобра­зований складывается из следующих предписаний: во-первых, в рамках теории должны иметь место независимость результатов от особенностей их описания в разных системах координат, числовых значений параметров, независимость формы утверждений от единиц измерения; во-вторых, уравнения должны быть справедливы для всех подстановок. Требо­вание инвариантности законов к группам преобразований выполняет в науке содержатель­ные, эвристические функции, то есть ориентирует на поиск новых законов движения, со­ответствующих этому требованию. В нелинейной теории элементарных частиц В. Гейзен-берга "определение вида основного уравнения (закона) производилось именно на основа­нии того требования, чтобы оно было инвариантным не только по отношению к простран­ственным и лоренцовым вращениям, но и по отношению к специфическим преобразовани­ям Паули - Гюрши и Салама - Тушека, характерным именно для современной теории эле­ментарных частиц" . Требование инвариантности формулировок теории относительно групп преобразований обеспечивает воспроизводимость, однотипность, тождественность, повторяемость результатов и является гарантом объективности знания.

Практика является критерем истины, в сфере естествознания её значение проявля­ется при проведении научных опытов, экспериментировании; в сфере обществознания - в опыте политической, социальной, экономической жизни, истории в целом. Практика явля­ется критерием истины, и на её основании происходит окончательное ассоциирование зна-

33 Дирак П. Электроны и вакуум. М., 1957. С. 4-5.

34 Смондырев М.А. Лауреаты Нобелевской премии 1980 г. //Природа. 1981. № 1. С. 100.

35 Ильин ВВ. Философия науки. М.,2003. С. 205.

36 Кузнецов И.В. Избранные руды по методологии физики. М, 1975. С. 199

40

ния в науку. Но, в ряде случаев практику трудно использовать при оценке конкретных ре­зультатов: для логико-математических наук; абстрактных разделов современного естество­знания, насыщенных формализмом; исторических науках. Кроме того, научность и истин­ность, как они не взаимосвязаны, тем не менее, не совпадают. "Истинность" характеризует знание с точки зрения его соответствия действительности. Некоторые аспекты донаучного и ненаучного знания можно считать истинными - обыденное знание, рецептурно-индуктивное знание, протоколы наблюдения. "Научность" характеризует знание в фокусе его архитектоники, формы отображения мира, которые определяются стандартами рацио­нальности, принятыми в науке как сфере духовного производства.

Таким образом, под научной истиной следует понимать эмпирические и теоретиче­ские утверждения науки, содержание которых соответствует своему предмету, что удосто­верено научным сообществом. Основными формами этого удостоверения являются: во-первых, соответствие результатам систематических, статистически обработанных данных наблюдения и эксперимента (для эмпирических высказываний); во-вторых, конвенцио­нальное полагание наличия такого тождества у исходных утверждений (аксиом) и выведе­ние из них всех логических следствий (теорем), истинность которых гарантируется кор­ректным применением соответствующих правил логики.

2.1.3. Формы научного знания

В области научного знания, возможно, выделить три познавательных области, формы значительно отличающихся по предмету, средствам и методам исследования: математика, естествознание и гуманитарные науки.

Математика как наука является совокупностью дедуктивных теорий (арифметика, алгебра, геометрия), отображающих фиксированные объектные области (чисел, функций, пространств). "Чистая" математика включает абстрактные теории, функционирующие как концептуальный аппарат математики (анализ, алгебра), средство обоснования математиче­ских теорий (теория множеств, метаматематика). "Прикладная" математика образует фун­дамент вычислительной, микропроцессорной математики, робототехники, программиро­вания. Состав математики определяется математическими теориями и аппаратом логики, придающими ей статус дедуктивной науки.

Математику с гносеологической точки зрения отличают следующие особенности. Во-первых, отсутствие непосредственной соотнесенности с фиксированным фрагментом дей­ствительности, что определяет большую абстрактность математики по сравнению с други­ми науками. Причина большей абстрактности математики связана с её происхождением -арсенал математики (абстракции, категории) образуются в отличие от других наук путем отвлечения от гносеологически более сложного исходного материала, каким являются не столько объекты, сколько действия, какие можно производить над ними. Математика изу­чает формальные отношения определенных классов множеств, абстрагируясь от их факти­ческой природы. Математика, анализируя онтологически неспецифицированные системы, изучает абстрактные структуры, для определения которых задают отношения (в которых находятся элементы множества), и постулируют, что эти отношения удовлетворяют неко­торым условиям (которые являются аксиомами рассматриваемой структуры)37. Из аксиом структуры выводятся логические следствия, получается математическая теория, которая непосредственно не связана с реальностью.

Во-вторых, математику отличает аксиоматизм. Долгое время считалось, что сущность математики олицетворяет, евклидова геометрия, созданная на генетически-конструктивной основе. Г. Лейбниц распространил идеал геометрии на математику, полагая её специфику не в логической доказательности, а в непосредственной наглядной созерцаемости, которая по своей природе теоретическая. В рамках этого генетически-конструтивного подхода особенность математического познания виделась в комбинировании "демонстративных

7 Бурбаки Н. Очерки по истории математики . М., 1976. С. 62.

41

структур" внутреннего созерцания, поэтому оценивалось не только доказательство, но и положения математики (аксиомы представляющиеся как "эвристически мощные" утвер­ждения, отличающиеся "самоочевидностью"). В ходе развития математики и перестройки систем математического знания выяснилось, что истинность аксиом или исходных посту­латов математической теории не самоочевидна.

Современное понимание природы математической деятельности, с аксиоматическим идеалом в основе, сформировано Д. Гильбертом, К. Геделем, А. Тарским. Д. Гильберт от­казался от наделения фундаментальных понятий геометрии какими-либо конкретными фи­зическими образами, а аксиомы лишены какого бы то ни было истолкования3 . Критерием истинности теории является её логическая непротиворечивость и выводимость из аксиом.

В-третьих, математике присущи точность и строгость. Причина этого: аподиктичность доказательства как результат аксиоматически-дедуктивной организации математического знания; алгоритмичность доказательства (наличие фиксированных способов решения ма­тематических проблем в форме систематически выведенных однозначных предписаний); дедуктивность математики (заключается в принципах построения применяемых в ней рас­суждений, основанных на переходе от одной смысловой структуры к другой по четким и жестким правилам логики). Кроме того, в соответствии с правилами построения аксиома­тических, формальных теорий математические теории имеют четко представимую струк­туру, состоящую из символов, правил построения формул, логических связок и правил по­строения из формул и логических связок высказываний. В математике отсутствует апелля­ция к эмпирическому опыту как критерию истины, а оценка рассуждений осуществляется внеэмпирическими критериями (непротиворечивость, полнота, независимость).

В-четвертых, в качестве основного критерия научности в математике принимается кри­терий непротиворечивости. Математическая система считается непротиворечивой, если для всякого утверждения А утверждения А и ~"А не являются в ней одновременно дока­зуемыми. Одновременная доказуемость в системе А и -"А определяет бессмысленность системы. Противоречивые формальные теории не представляют ценности. Г. Вейль сказал по этому поводу так: "... чистая математика признает только одно — но зато совершенно обязательное условие истины - именно непротиворечивость"39.

Естествознание ориентировано на исследование первичной объективно сущей при­роды, оно охватывает множество дисциплин, занимающихся исследованием материи, опи­сывающих формы, механизмы, структуры, условия её существования. Естествознание со­стоит из описательных и объяснительных теорий.

В описательных теориях отражены эмпирические описания (научные факты, получен­ные путем измерения, наблюдения, первичной классификации и систематизации различ­ных видов экспериментирования) и эмпирические законы, полученные в процессе индук­тивного обобщения эмпирического материала (законы Менделя до утверждения в науке хромосомной теории наследственности).

В объяснительных теориях, которые являются совокупностью логически организован­ных систем знания, преобладают теоретические объяснения (концептуальные реконструк­ции данных, полученных на теоретическом уровне изучения, вследствие интерпретации, идеализации, мысленных экспериментов, моделирования - законы Менделя, получаемые на репрезентативном уровне как следствия из хромосомной теории наследственности), а так же точные количественно детализированные результаты. Например, количественно детализированные Менделем, а потом получившие статус числовых закономерностей рас­пределения контрастирующих признаков в первом и последующих поколениях гибридов.

Объяснительные теории включают подмножества гипотетико-дедуктивных и аксиома­тических теорий. Гипотетико-дедуктивные теории построены на базе гипотетико-дедуктивного метода, то есть, основаны на выводе следствий из гипотез логическим путем

с последующей их фактической проверкой. Классическая механика построена по этому принципу. Ньютон вначале вывел фундаментальные понятия, потом законы, утверждения, подлежащие верификации. Аксиоматические теории подвергаются строгой логической ре­конструкции. Но выделение группы аксиом, фиксирующих логические, математические, собственные основания теории возможно лишь в развитой теоретической науке, поэтому многие из естественнонаучных теорий остаются неаксиоматизированными и неформали-зированными. Например, в биологии есть единственная попытка аксиоматизации - вари­ант менделевской генетики с использованием языка Principia Mathematica Вуджера. Ис­ключением является физическое знание, чьи обширные фрагменты формализированы.

В естествознании есть достаточно большая груши дисциплин (геология, тектоника, па­леонтология, почвоведение, климатология), теории, в которых занимают "срединное" по­ложение между описательными и объяснительными теориями, так как используют осно­ванный на комбинированном применении эмпирических и теоретических исследований метод исторической реконструкции.

Естествознание с гносеологической точки зрения отличает следующее. Во-первых, непо­средственная соотнесенность с определенным фрагментом действительности. Это обуслов­лено онтологической специфичностью естествознания, то есть тем, что теории исследуют "материальные" отношения объектов определенных предметных областей, что определяет качественные особенности, как отдельных элементов, так и всего их внутреннего строя. Создание теории, в самом широком смысле, происходит как последовательность сбора, сис­тематизации данных, их теоретизации, вывода из полученных систем эмпирически обнару-жимых следствий, окончательного оправдания теорий, внедрение их в практику.

Во-вторых, отсутствует прямой логический мост между эмпирическим материалом и теоретическим базисом: невозможна непосредственная дедукция теории из эмпирических фактов, так же как и редукция теории к эмпирическому основанию. Это определено тем, что содержание теории соответствует отношениям идеализированного мира, мира вторич­ных концептуализации (понятия, модели, идеализированные объекты), который репрезен­тирует изучаемые объекты реальности.

В-третьих, в качестве языка познавательной деятельности используется математика. Так как, математика, не привязана к определенной предметной области, она располагает большими эвристическими возможностями: ставя вопрос о логической возможности чего-либо, математика анализирует предмет в максимально общем виде. Результатом анализа являются предметно недетализированные структуры, отвечающие критерию непротиворе­чивости.

Язык математики удобен в обращении: всякой теории поставлен в соответствие свой особый математический язык40. В классической механике это язык чисел, векторов, в реля­тивистской механике — язык четырехмерных векторов и тензоров, в квантовой механике — язык операторов. Показателем стадий роста физики может быть смена математического языка в ней используемого. Классическая физика исходила из идеи возможности редукции всей физики к механике, но применяемый в ней аппарат обыкновенных дифференциаль­ных уравнений не позволял описывать тепловые, электрические явления. В связи с этим Фурье предложил использовать более гибкий аппарат обыкновенных дифференциальных уравнений в частных производных. Но и он оказался не универсальным, так как в рамки дифференциально-аналитического подхода не вписывались специальная теория относи­тельности и квантовая механика. Было доказано, что содержание физики не возможно ре­дуцировать к содержанию механики, невозможно редуцировать используемый в физике математический аппарат к обыкновенным дифференциальным уравнениям. Для ученого-естественника важна идентифицируемость математического аппарата с величинами, что позволяет ему выполнять описательную, генерализующую, кодифицирующую функцию.


! Ильин ВВ. Философия науки. М.,2003. С. 223-225. ' Вейль Г. О философии математики. М.-Л., 1934. С. 56.

42

' Ильин ВВ. Философия науки. М, 2003, С. 248-249.

43

С другой стороны в естествознании для создания терминов и новых понятий могут ис­пользоваться конкретные стилистические формы и приемы живой речи. В частности, дос­таточно важной является роль метафор, которые порождают комплекс ассоциаций, пред­ставлений и дают новое понимание традиционных терминов и понятий. Метафорическое использование языковых конструкций позволяет мысленно разорвать жесткую связь кон­кретного свойства и конкретного объекта, представить данное свойство общим для разно­типных объектов, на этой основе строить более широкие классы, объединять разнородные объекты единую систему. Метафора может использоваться для описания недоступных для непосредственного наблюдения объектов либо гипотетических объектов, не включенных в эмпирические исследования- Так, в современной физике появились понятия типа "шарм", "очарование" элементарных частиц, "цветность" кварков. Исследования показывают, что без создания терминов-метафор невозможно получение нового знания, включения его в систему существующих представлений.

В-четвертых, естествознание основывается на требовании опытной оправдываемое™, означающую потенциальную экспериментальную верифицируемость систем естественно­научного знания. Основным критерием научности в естествознании является эмпириче­ский, который дополняется критерием когерентности, если проверяется новая теория.

^ Гуманитарное знание в качестве объекта исследования изучает человека в его соци­альных отношениях специализированно (политэкономия, политика, право, религиоведе­ние, этика) или в целостности (история, философия), изучает пространство человеческих значений, ценностей и смыслов, возникающих при усвоении культуры (культурология, со­циальная и культурная антропология). Довольно долго существовало сформулированное иеокантианцамам противопоставление естественных и гуманитарных наук, причем по­следним отказывалось в статусе истинной научности на том основании, что они имеют де­ло с индивидуальными событиями и не устанавливают закономерностей. Этот сравнитель­ный анализ выглядел приблизительно следующим образом:






Исторические науки

Естественные науки

1. Конечный ре­зультат познания

Описание индивидуального события

Законы

2. Основной источ­ник информации

Письменные источники и тек­сты (хроники, мемуары, письма, документы), материальные ос­татки прошлого

Природа, взаимодействие с природой

3. Способ взаимо­действия с объектом знания

Опосредованное, через истори­ческие и археологические ис­точники

Прямое наблюдение, экспери­мент

4. Метод исследования

Описание индивидуального со­бытия или процесса

Генерализация, построение общих понятий

5. Особенности объектов знания

Неповторимые, не подлежащие воспроизведению

Повторяющиеся во времени и пространстве

6. Отношение к ценностям

Историческое знание целиком зависит от ценностей и оценок

Естественнонаучное знание само представляет ценность, но от ценностей и оценок не зависит

Противники неокантианцев доказывали, что в гуманитарном знании есть социологиче­ские закономерности и действуют общенаучные методы. В гуманитарном знании выделя­ется два типа законов: обществоведческие и экзистенциальные (строящиеся на личностно-психологическом анализе личности).





Скачать 2,97 Mb.
оставить комментарий
страница5/13
Дата27.09.2011
Размер2,97 Mb.
ТипУчебно-методическое пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   13
Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх