Программа элективного курса для учащихся классов «готовимся к егэ по физике» icon

Программа элективного курса для учащихся классов «готовимся к егэ по физике»


Смотрите также:
Программа элективного курса для учащихся классов «готовимся к егэ по физике»...
Программа элективного курса для учащихся 11-х классов «готовимся к егэ по физике»...
Программа элективного курса для учащихся 10-11 классов «Готовимся к егэ по информатике»...
Программа элективного курса 11 класс 70 часов...
Тема: Готовимся к экзамену по биологии...
Приказ №176 от 31. 08...
Приказ №176 от 31. 08...
Пояснительная записка Программа элективного курса «Подготовка к егэ»...
Программа элективного курса для 11 класса «Подготовка к егэ по физике»...
Программа элективного курса по физике «Физика и биология» (Биофизика)...
Программа элективного курса для учащихся 10-11 класса Мисюрева Людмила Викторовна...
Программа элективного курса для учащихся 10-11 класса Срок реализации 5 лет...



Загрузка...
страницы:   1   2   3
скачать


ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА

КОМИТЕТ ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

школа (гимназия, лицей и т.д.) № ………….

……………………………..района



«СОГЛАСОВАНО»

Методист по физике НМЦ …. района

__________________________ФИО

«ДОПУЩЕНО»

Председатель президиума РЭС

_____________________В.Е.Фрадкин

«_____»_____________200_ г.


Председатель секции по ……. РЭС

______________ФИО

Протокол №____ от «____»_____200_г.



«УТВЕРЖДЕНО»

на педсовете ОУ № ………

протокол №……….

от «____»__________200_г.


Директор ОУ№ …________________ФИО



Программа


элективного курса для учащихся ……….классов

^ «ГОТОВИМСЯ К ЕГЭ ПО ФИЗИКЕ»

( ……..часов)


Авторы

Терновая Людмила Николаевна,

Бурцева Елена Николаевна,

Пивень Владимир Алексеевич.

Под ред. В.А. Касьянова

печатается по изданию

Терновая, Л.Н. Физика. Подготовка к ЕГЭ Элективный курс. /Л.Н. Терновая, Е.Н. Бурцева, В.А. Пивень; под ред. В.А. Касьянова. — М.: Издательство «Экзамен», 2007. — 128 с. (Серия «Элективный курс»)



Содержание

Введение

Программа элективного курса «Готовимся к ЕГЭ по физике»

Цель элективного курса

Методические особенности изучения курса

Формы и виды самостоятельной работы и ее контроля

Содержание программы


Тематическое и поурочное планирование учебного материала при прохождении курса в течение одного учебного года


Поурочное планирование с методическими рекомендациями при прохождении курса в течение одного учебного года


Тематическое планирование учебного материала при прохождении курса в течение двух лет


Методические рекомендации при прохождении курса в течение двух лет



Введение

Одна из проблем профилизации старших классов большинства общеобразовательных школ во многих случаях — недостаточное число учащихся для ком­плектования профильных классов. Поэтому удовлетво­рить запросы учащихся, собирающихся продолжить обучение в вузах и нуждающихся в изучении физики на профильном уровне, можно с помощью элективных курсов, дополняющих базовый уровень. Одним из таких курсов может быть «Готовимся к ЕГЭ по физике», где уровень обучения повышается не столько за счет расширения теоретической части курса физики, сколько за счет уг­лубления практической — решения разнообразных физических задач.

Мы предлагаем двухуровневую программу элек­тивного курса, рассчитанную на учащихся Х-XI классов, календарно-тематическое планирование этого курса, а также тексты работ для текущего и итогового контроля, которые могут одновременно служить репетиционными работами для подготовки к ЕГЭ. В конце изучения кур­са проводится тестирование.


^ Программа элективного курса «Готовимся к ЕГЭ по физике»


Цель элективного курса

  • обеспечить дополнительную поддержку учащих­ся классов универсального обучения для сдачи ЕГЭ по физике (эта часть программы напечатана прямым шрифтом и предусматривает решение задач главным образом базового и отчасти повышенного уровня);

  • развить содержание курса физики для изучения на профильном уровне (эта часть программы выде­лена курсивом и предусматривает решение задач по­вышенного и высокого уровня).


^ Методические особенности изучения курса

Курс опирается на знания, полученные при изуче­нии курса физики на базовом уровне. Основное средство и цель его освоения - решение задач. Лекции предназначены не для сообщения новых знаний, а для повторения тео­ретических основ, необходимых для выполнения прак­тических заданий, поэтому носят обзорный характер при минимальном объеме математических выкладок. Теоретический материал удобнее обобщить в виде таб­лиц, форму которых может предложить учитель, а заполнить их должен ученик самостоятельно. Ввиду предельно ограниченного времени, отводимого на про­хождение курса, его эффективность будет определяться именно самостоятельной работой ученика, для которой потребуется не менее 3-4 ч в неделю.

В процессе обучения важно фиксировать внимание обучаемых на выборе и разграничении физической и математической модели рассматриваемого явления, отработать стандартные алгоритмы решения физиче­ских задач в стандартных ситуациях и в измененных или новых ситуациях (для желающих изучить предмет и сдать экзамен на профильном уровне). При решении задач рекомендуется широко использовать аналогии, графические методы, физический эксперимент. Экспериментальные задачи включают в соответствующие разделы. При отсутствии в школе необходимой техни­ческой поддержки эксперимента рекомендуется ис­пользовать электронные пособия.

Изучение курса можно начинать как в X, так и в XI классе. Ниже приведены соответствующие учебные пла­ны и методические рекомендации.

В первом случае, рас­считанном на два года (Х—XI классы), программа преду­сматривает 68 ч аудиторных занятий, и ее выполнение позволяет довести курс физики до уровня профильного класса.

Во втором случае (XI класс) предусматривается 34 ч, которые обеспечивают приобретение навыков ре­шения задач для успешной сдачи ЕГЭ.

Программа, рас­считанная на 68 ч, может использоваться и в классах с повышенным уровнем изучения физики для углубления профильного учебного предмета.

Распределение часов для изучения различных раз­делов программы не является жестко детерминирован­ным. Оно может варьироваться в зависимости от подго­товленности и запросов учащихся.


^ Формы и виды самостоятельной работы и ее контроля

Самостоятельная работа предусматривается в виде выполнения домашних заданий. Минимально необхо­димый объем домашнего задания - 7-10 задач (1-2 за­дачи повышенного уровня с кратким ответом (тип В), 1-2 задачи повышенного или высокого уровня с развер­нутым ответом (тип С), остальные задачи базового уровня с выбором ответа (тип А).

Предусматриваются виды контроля, позволяющие оценивать динамику усвоения курса учащимися и по­лучить данные для определения дальнейшего совер­шенствования содержания курса:

— текущие (десятиминутные) контрольные работы в форме тестовых заданий с выбором ответа (подробнее работы представлены в следующих пособиях: Касьянов В.А. и др.) Физика: Тетрадь для контрольных работ. Базовый уровень. 10-11 класс: тесты». - М.:Дрофа, 2006; «Физика. Тетрадь для контрольных работ. Профиль­ный уровень. 10-11 класс». - М.: Дрофа, 2006;

— получасовые контрольные работы-тесты (по окончании каждого раздела);

— итоговое тестирование в форме репетиционного экзамена.

Ввиду малочисленности группы учащихся, доста­точно двух вариантов работы по 6 задач по любой теме (4 - тип А, 1 — тип В, 1 - тип С).

Оценивание задач контрольной работы: задачи ти­па А -1 балл, типа В - 2 балла, типа С - 4 балла.

Критерии оценивания контрольной работы:

Оценка «5» - 9– 10 баллов,

оценка «4» - 7-8 баллов,

оценка «3» - 4-6 баллов,

оценка «2» - 0-3 балла.

Так как целью контрольной работы в данном слу­чае является не столько оценка и сравнение достиже­ний учащихся, сколько предоставление им возможно­сти испытать свои силы, то нет смысла стремиться к безукоризненной равноценности содержания вариан­тов. Напротив, целесообразно охватить заданиями возможно более широкий круг вопросов, а на дом за­дать решить задачи другого варианта контрольной работы.

Для итогового тестирования рекомендуем использо­вать два или более вариантов по 10 заданий в каждом.

Распределение задач итогового тестирования по разделам:

тип А (с выбором ответа—7 задач): механика — 1 задача, молекулярная физика (1), электродинамика (электростатика или постоянный ток - 1, заряженные частицы и токи в магнитном поле или электромагнит­ная индукция — 1), колебания и волны (1), оптика (1), квантовая физика — 1 задача;

тип В (с кратким свободным ответом — 2 задачи): механика, молекулярная физика, электростатика, по­стоянный ток (1), магнитное поле, электромагнитная индукция, колебания и волны, оптика (1 задача из лю­бого раздела);

тип С (с развернутым свободным ответом –1 зада­ча): задача высокого уровня сложности из любого раз­дела или комбинированная задача с применением за­конов физики из разных разделов или экспериментальная задача (по фотографии экспери­ментальной установки).

Оценивание задач экзаменационной работы: задача типа А - 1 балл, типа В - 2 балла, типа С - 3 балла.

Критерии оценивания работы - итогового тестирования:

оценка «5» — 13-15 баллов,

«4» - 9-12 баллов

«3» - 6-8 баллов

«2» - 0-5 баллов.


^ Содержание программы

XI класс

(34 ч, 1 ч в неделю)

X-XI классы (68 ч, 1 ч в неделю)


1. Эксперимент—1ч(1ч)

Основы теории погрешностей. Погрешности прямых и косвенных измерений. Представление результатов измерений в форме таблиц и графиков.


2. Механика7 ч (11 ч)

Кинематика поступательного и вращательного движения. Уравнения движения. Графики основных кинематических параметров.

Динамика. Законы Ньютона. Силы в механике: си­лы тяжести, упругости, трения, гравитационного притяжения. Законы Кеплера.

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями - приложение законов Ньютона.

Законы сохранения импульса и энергии и их со­вместное применение в механике. Уравнение Бернулли - приложение закона сохранения энер­гии в гидро- и аэродинамике.


^ 3. Молекулярная физика и термодинамика – 7ч(12 ч)

Статистический и динамический подход к изучению тепловых процессов. Основное уравнение MKT газов.

^ Уравнение состояния идеального газа. Следствие из основного уравнения MKT. Изопроцессы. Определе­ние экстремальных параметров в процессах, не являющихся изопроцессами.

^ Газовые смеси. Полупроницаемые перегородки.

Первый закон термодинамики и его применение для различных процессов изменения состояния систе­мы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

^ Второй закон термодинамики. Расчет КПД тепло­вых двигателей, круговых процессов и цикла Карно.

Поверхностный слой жидкости, поверхност­ная энергия и натяжение. Смачивание, Капил­лярные явления. Давление Лапласа.


^ 4. Электродинамика – 8ч (16 ч)

Электростатика. Напряженность и потенциал электростатического поля точечного и распределенных зарядов. Графики напряженности и потенциала. Принцип суперпозиции электрических полей. Энергия взаимодействия зарядов.

Конденсаторы. Энергия электрического поля. Па­раллельное и последовательное соединения кон­денсаторов. Перезарядка конденсаторов. Движение зарядов в электрическом поле.

^ Постоянный ток. Закон Ома для однородного участ­ка и полной цепи. Расчет разветвленных электриче­ских цепей. Правила Кирхгофа. шунты и доба­вочные сопротивления. Нелинейные элементы в цепях постоянного тока.

^ Магнитное поле. Принцип суперпозиции магнит­ных полей. Силы Ампера и Лоренца. Суперпозиция электрического и магнитного полей.

Электромагнитная индукция. Применение зако­на электромагнитной индукции в задачах о движении металлических перемычек в магнит­ном поле. Самоиндукция. Энергия магнитного поля.


^ 5. Колебания и волны - 4 ч (10 ч)

Механические гармонические колебания. Простей­шие колебательные системы. Кинематика и динамика механических колебаний, превращения энергии. Резо­нанс.

^ Электромагнитные гармонические колебания. Ко­лебательный контур, превращения энергии в колеба­тельном контуре. Аналогия электромагнитных и меха­нических колебаний.

Переменный ток. Резонанс напряжений и то­ков в цепях переменного тока. Векторные диа­граммы.

Механические и электромагнитные волны. Эф­фект Доплера.


^ 6. Оптика - 4 ч (11 ч)

Геометрическая оптика. Закон отражения и пре­ломления света. Построение изображений неподвиж­ных и движущихся предметов в тонких линзах, пло­ских и сферических зеркалах. Оптические системы. Прохождение света сквозь призму.

Волновая оптика. Интерференция света, условия интерференционного максимума и минимума. Расчет интерференционной картины (опыт Юнга, зер­кало Ллойда, зеркала, бипризма Френеля, коль­ца Ньютона, тонкие пленки, просветление оптики). Дифракция света. Дифракционная решетка. Дисперсия света.

^ 7. Квантовая физика - 2 ч (6 ч)

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

Применение постулатов Бора для расчета линейча­тых спектров излучения и поглощения энергии водородоподобными атомами. Волны де Бройля для классической и релятивистской частиц.

^ Атомное ядро. Закон радиоактивного распада. Применение законов сохранения заряда, массового числа, импульса и энергии в задачах о ядерных пре­вращениях.


^ Итоговое тестирование — 1ч

Распределение времени между лекционными и практическими занятиями приведено в таблицах 1 и 2.


Таблица 1

Тематическое и поурочное планирование учебного материала при прохождении курса в течение одного учебного года

X класс (34 ч, 1 ч в неделю).




урока.

Тема

Вид занятия

Примечание

I. Эксперимент (1 ч)

1/1

Эксперимент

Лекция 1




^ II. Механика (7 ч)

2/1

Кинематика. Динамика

Лекция 2




3/2

Статика. Законы сохранения

Лекция 3




4/3

Кинематика

Практическое занятие 1




5/4

Динамика

Практическое занятие 2




6/5

Статика

Практическое занятие 3




7/6

Законы сохранения

Практическое занятие 4




8/7

Движение тел со связями

Контрольная работа № 1 «Механика»

Практическое занятие 5

0,5 ч

0,5 ч

^ III. Молекулярная физика и термодинамика (7 ч)

9/1

Основы MKT. Газо­вые законы

Лекция 4




10/2

Первый и второй законы термодина­мики

Лекция 5




11/3

Основное уравнение MKT

Практическое занятие 6




12/4


Уравнение состоя­ния идеального га­за. Газовые законы

Практическое занятие 7




13/5

Первый закон термо­динамики

Практическое занятие 8




14/6

Тепловые двигатели

Практическое занятие 9




15/7

Насыщенный пар

Контрольная рабо­та № 2 «Молекуляр­ная физика»

Практическое занятие 10


0,5 ч

0,5 ч

^ IV. Электродинамика (8 ч)

16/1

Электростатика. Конденсаторы

Лекция 6




17/2

Постоянный ток

Лекция 7




18/3

Электростатика

Практическое занятие 11




19/4

Конденсаторы

Практическое занятие 12




20/5

Постоянный ток

Практическое занятие 13




21/6

Магнитное поле. Электромагнитная

индукция

Лекция 8




22/7

Магнитное поле

Практическое занятие 14




23/8

Электромагнитная индукция
Контрольная работа № 3 «Электродинамика»


Практическое занятие 15

0,5 ч

0,5 ч

^ V. Колебания и волны (4 ч)

24/1

Колебания и волны

Лекция 9




25/2

Механические коле­бания и волны

Практическое занятие 16




26/3

Электромагнитные колебания и волны

Практическое занятие 17




27/4

Переменный ток

Контрольная работа № 4 «Колебания
и волны».


Практическое занятие 18

0,5 ч

0,5 ч

VI. Оптика (4 ч)

28/1

Геометрическая и волновая оптика

Лекция 10




29/2

Законы отражения и преломления све­та

Практическое занятие 19




30/3

Построение изобра­жений в линзах и плоских зеркалах

Практическое занятие 20




31/4

Волновая оптика

Контрольная рабо­та № б «Оптика»

Практическое занятие 21

0,5 ч

0,5 ч

^ VII. Квантовая физика (2 ч)

32/1

Квантовая физика

Лекция 11




33/2

Квантовая физика

Практическое занятие 22




34

Итоговое тестирова­ние








^ Поурочное планирование с методическими рекомендациями при прохождении курса в течение одного учебного года

XI класс, базовый уровень 34 ч, 1 ч в неделю


  1. Эксперимент (1ч)


Урок1/1

Лекция 1 «Эксперимент»

Основной материал. Основы теории, погрешностей. Погрешности прямых измерений. Представление результатов измерений в форме таблиц и графиков.


^ Методические рекомендации. На уроке кратко поясняют понятия абсолютной и относительной погрешностей, погрешностей прямых измерений (на примерах измерения различных физических величин соответствующими приборами); вводят понятие среднего значения физической вели­чины при прямых измерениях; приводят примеры представления результатов различных физических величин в форме таблиц и графиков. Акцент следует сделать на практическом применении основ теории погрешностей: сравнение результатов измерений и значимые и незначимые различия, учет погрешностей измерений при построении графиков. При практической оценке погрешности непосредственного измерения достаточно довольствоваться максимальной погрешностью отсчета по шкале, равной ± 1 цене деления прибора (в том числе и для электроизмерительных приборов). Необходимо привести примеры записи результата измерения с указанием абсолютной погрешности, обратив внимание на число значащих цифр в значении измеренной величины и в погрешности.

Экспериментальные задачи по различным разделам (фотографии, таблицы, схемы) в дальнейшем рассматривают на практических занятиях.


  1. Механика (7ч)


Урок 2/1

Лекция 2 «Кинематика. Динамика»

Основной материал. Кинематика поступательного и вращательного движения. Уравнения движения. Графики основных кинематических величии. Динамика. Законы Ньютона. Силы в механике.


^ Методические рекомендации. Вопросы следует рассматривать кратко (в обзорном плане), сопровождая пояснения практическими примерами. Особое внимание следует уделить выталкивающей силе - вопросу, изученному в основной школе и требующему повторения.



Урок 3 /2

Лекция 3 «Статика. Законы сохранения»

Основной материал. Статика. Момент силы. Условия равновесия тел. Гидростатика. Законы сохранения импульса и энергии


^ Методические рекомендации. Следует обратить внимание на понятие момента силы и вопрос о равновесии тела с закрепленной осью вращения. При рассмотрении закона сохранения импульса не­обходимо обратить внимание учеников на понятие замкнутой системы и на правильность записи закона сохранения импульса в проекциях на выбранные оси.


Урок 4/3

Практическое занятие 1 «Кинематика»

Методические рекомендации. Решить задачи по кинематике поступательного вращательного движения, в том числе задания в форме графиков и таблиц. Обратить внимание учащихся важность использования при решении задач «первых принципов» — основных законов и определений физи­ческих величин. Особенно удобно это сделать при вы­числении средней скорости движения в случаях, когда либо пройденный путь, либо время движения разбива­ется на несколько частей, продемонстрировав типич­ную ошибку – нахождение средней скорости как сред­него арифметического скоростей на различных отрезках пути или времени.


^ Урок5/4

Практическое занятие 2 «Динамика»

Методические рекомендации. Основное внимание следует уделить правильной записи второго закона Ньютона в проекциях на выбранные координатные оси. Необходимо также рас­смотреть задачи в графическом и табличном представ­лении.


Урок 6/5

Практическое занятие 3 «Статика»

Методические рекомендации. Следует уделить внимание правильному примене­нию уравнений, описывающих условия равновесия тел с закрепленной осью вращения. Обратить внимание на произвольность выбора оси вращения в задачах по ста­тике. Рассмотреть задачи о сообщающихся сосудах и действии архимедовой силы.

Урок 7/6

Практическое занятие 4 «Законы сохранения»

Методические рекомендации. Необходимо рассмотреть задачи на соударение (упругое и неупругое) тел, на разрыв тела на части, реактивное движение; взаимные превращения механической энергии (закон сохранения энергии). Под­черкнуть, что идеально упругие и идеально неупругие взаимодействия - всего лишь модели реальных взаимодействий, рассмотреть образец решения задачи о частично неупругом взаимодействии. При решении задач на применение закона сохранения механической энергии обратить внимание произвольность выбора начала отсчета потенциальной энергии тела в поле тяготения. Показать, что многих случаях использование закона сохранения энергии приводит к ответу быстрее и проще, чем использование второго закона Ньютона и формул кинематики.


Урок 8/7

Практическое занятие 5 «Движение тел со связями» (0,5 ч)

Методические рекомендации. Рассмотреть движение тел со связями, как прило­жение законов Ньютона. Обратить внимание учащихся на необходимость отыскания пар взаимодействующих тел и, соответственно, включение в уравнение движения только приложенных к телу реально существующих сил (ни в коем случае не их составляющих типа «скатывающей силы» или силы нормального давления, приложенной не к телу, а к опоре).

На второй половине урока: проводят контрольную работу № 1 «Механика».

  1. Молекулярная физика (7 ч)

Урок 9/1

Лекция 4 «Основы молекулярно-кинетической теории. Газовые законы»

Основной материал. Основное уравнение MKT газов. Средняя кинети­ческая. энергия поступательного движения молекул газа. Средняя квадратичная скорость. Уравнение со­стояния идеального газа - следствие из основного уравнения MKT. Изопроцессы. Газовые законы. Закон Дальтона.


^ Методические рекомендации. Необходимо обратить внимание на статистиче­ский характер основного уравнения MKT, на меха­низм давления газа; указать на применимость моде­ли идеального газа в любых случаях, когда рассматривается система невзаимодействующих час­тиц свободных электронов, фотонов и т.п. Уравне­ние состояния идеального газа рассмотреть как след­ствие основного уравнения MKT. Целесообразно этот вопрос рассмотреть в виде задачи на практическом занятии. Подробнее следует уделить внимание при­менению уравнения состояния идеального газа к га­зовым смесям.


Урок 10/2

Лекция 5 «Первый и второй законы термодинамики»

Основной материал. Первый закон термодинамики и его применение для различных процессов изменения состояния идеального газа. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар. Второй закон термодинамики, расчет КПД тепловых двигателей цикла Карно.


^ Методические рекомендации. Вопрос, требующий особого внимания - принципиальное отличие внутренней энергии от теплоты. Необходимо подчеркнуть, что внутренняя энергия функция состояния системы, а теплота и работа – способы изменения внутренней энергии, значение которых зависит не только от начального и конечного стояний системы, но и от пути перехода системы из одного состояния в другое.

В теме «Насыщенный пар» особое внимание уделить различию между насыщенным в ненасыщенным паром, различию между паром и газом, понятиям относительной и абсолютной влажности.


Урок 11/3

Практическое занятие 6 «Основное уравнение МКТ»

Методические рекомендации. Решение задач по материалу, изложенному в лекции 4.

Урок 12/4

Практическое занятие 7 «Уравнение состояния идеального газа. Газовые законы»

Методические рекомендации. Решение задач по материалу, изложенному в лек­ции 4.

Урок 13/5

Практическое занятие.8 «Первый закон термодинамики»

Методические рекомендации. Решение задач по теме «Первый закон термодина­мики и его применение для различных процессов из­менения состояния системы». При нахождении работы газа; в процессах, представленных графиками, обратить внимание учеников на то, что работа может быть найдена как площадь под графиком только в том случае, когда он построен в координатах (p,V). . При решении задач по теме «Термодинамика. Изменения агрегатного состояния вещества» использовать уравнение теплового баланса. Рассмотреть графически задачи об изменении агрегатного состояния вещества.

Урок 14/6

Практическое занятие 9 «Тепловые двигатели»

Методические рекомендации. Решение задач на расчёт КПД тепловых двигателей, в том числе работающих по циклу Карно (идеальный тепловой двигатель). Обратить внимание на невозможность нахождения КПД реальной тепловой машины по максимальной и минимальной температурам рабочего тела.


Урок 15/7

Практическое занятие 10 «Насыщенный пар» (0,5 ч)

Методические рекомендации. Решение задач на расчет относительной и абсолют­ной влажности. Использовать в задачах зависимость давления насыщенного пара от температуры.

Во второй половине урока проводят контрольную работу № 2 «Молекулярная физика».


  1. Электродинамика (8 ч)

Урок 16/1

Лекция 6 «Электростатика. Конденсаторы»

Основной материал. Напряженность и потенциал электростатического поля точечного заряда. Графики напряженности и по­тенциала. Принцип суперпозиции электрических по­лей. Энергия взаимодействия зарядов. Конденсаторы. Энергия электрического поля. Закон сохранения энер­гии при движении зарядов в электрическом поле.


^ Методические рекомендации. Обратить внимание на физический смысл потен­циала - потенциальной энергии единичного заряда в данной точке поля, на расчет энергии взаимодействия зарядов и её изменения. Работу перемещения заряда в электрическом поле рассмотреть на примере однородного поля конденсатора.

Перезарядку конденсаторов объясняют в этой теме как результат перемещения заряда в электрических цепях, не содержащих источников ЭДС, под действием кулоновских сил как внутренних сил системы.


Урок 17/2

Лекция 7 «Постоянный ток»

Основной материал. Закон Ома для однородного участка и полной цепи Расчет разветвленных электрических цепей. Работа мощность тока.


^ Методические рекомендации. Следует рассмотреть параллельное и последовательное соединения проводников, обратив внимание на расчет работы и мощности тока на участках разветвлённой цепи.


Урок 18/3

Практическое занятие 11 «Электростатика»

Методические рекомендации. Решение задач по теме «Электростатика», в том числе графических, для напряженности и потенциала. Обратить внимание: в отличие от напряженности по­тенциал внутри заряженной сферы не равен нулю! Решить задачи о суперпозиции электрических полей.


Урок 19/4

Практическое занятие 12 «Конденсаторы»

Методические рекомендации. Решение задач на определение энергии электриче­ского поля конденсатора и движение зарядов в элек­трическом поле плоского конденсатора.

Урок 20/5

Практическое занятие 13 «Постоянный ток»

Методические рекомендации. Решение задач по теме лекции 7 «Постоянный ток». Обратить внимание на построение эквивалентных схем, используя точки равного потенциала. Пояснить прин­цип использования точек равного потенциала примером.


Урок 21/6

Лекция 8 «Магнитное поле. Электромагнитная индукция»

Основной материал. Магнитное поле. Принцип суперпозиции магнит­ных полей. Силы Ампера и Лоренца. Электромагнитная индукция. Самоиндукция. Энергия магнитно поля.

Урок 22/7

Практическое занятие 14 «Магнитное поле»

Методические рекомендации. Принцип суперпозиции магнитных полей - реше­ние качественных задач с применением правила правой руки или правого винта. Решение задач на силу Ампера и Лоренца - обязательно с рисунком (демонстрация правила левой руки).

Урок 23/8

Практическое занятие 15 «Электромагнитная индукция» (0,5ч)

Методические рекомендации. Решение задач по теме с обязательным использова­нием графических, табличных и экспериментальных заданий. Важно предупредить распространенную ошибку учащихся: возникновение ЭДС индукции – следствие изменения магнитного потока, а не его существования.

Во второй половине урока проводится контрольная работа №3 «Электродинамика».


  1. Колебания и волны (4 ч)

Урок 24/1

Лекция 9 «Колебания и волны»

Основной материал. Механические гармонические колебания. Про­стейшие колебательные системы. Кинематика и ди­намика механических колебаний, превращения энергии. Резонанс. Электромагнитные гармониче­ские колебания. Колебательный контур, превраще­ния энергии в колебательном контуре. Аналогия электромагнитных и механических колебаний. Переменный ток. Механические и электромагнитные волны.


^ Методические рекомендации. В кратком изложении рассматривают кинематиче­ские и динамические характеристики малых (гармони­ческих) механических колебаний (координату, ско­рость, ускорение, возвращающую силу, энергию н т.д.), движение математического и пружинного маятников. Электромагнитные колебания в колебательном конту­ре и электромагнитные волны рассматривают по аналогии с механическими.

Урок 25/2

Практическое занятие 16 «Механические колебания и волны»

Методические рекомендации. Рассмотреть задачи на колебания математического и пружинного маятников (период, частота, превращение энергии). Кинематика механических колебаний – определение параметров колебаний по графикам, таблицам, нахождение скорости и ускорения гармони­ческих колебаний по уравнению зависимости смеще­ния от времени. Динамика механических колебаний - определение возвращающей силы по второму закону Ньютона.


Урок 26/3

Практическое занятие 17. «Электромагнитные колебания и волны»

Методические рекомендации. Рассмотреть задачи об электромагнитных колеба­ниях в идеальном колебательном контуре и волнах с определением периода, частоты, энергии и т.д.

Урок 27/4

Практическое занятие 18. «Переменный ток» (0,5 ч)

Методические рекомендации. Решение задач на применение закона Ома в цепях переменного тока с активным, индуктивным и емкост­ным сопротивлениями.

Во второй половине урока проводят контрольную работу № 4 «Колебания и волны».


  1. Оптика (4 ч)

Урок 28/1

Лекция 10 «Геометрическая и волновая оптика»*

Основной материал. Геометрическая оптика. Законы отражения и преломления света. Построение изображений неподвиж­ных предметов в тонких линзах, плоских зеркалах. Волновая оптика. Интерференция света, условия ин­терференционного максимума и минимума. Дифрак­ция света. Дифракционная решетка. Дисперсия света.


^ Методические рекомендации. Рекомендуется рассмотреть явление полного внут­реннего отражения. Кратко изложить материал с рисунками на построение изображений, проанализировать простейшие случаи интерференции света от когерентных источников, дифракцию света в дифракционной решетке.


Урок 29/2

Практическое занятие 19. «Законы отражения и преломления света»

Методические рекомендации. Решение задач на применение законов отражения преломления света, в том числе на явление полного внутреннего отражения. Рисунки при решении всех задач по геометрической оптике обязательны. Опыт показывает, что навыки в решении геометрических задач у учащихся недостаточны, чем и объясняются трудности при решении задач по геометрической оптике, этому обязательно подробное обоснование всех математических шагов в решении таких задач.

Урок 30/3

Практическое занятие 20. «Построение изображений в плоских зеркалах и линзах»

Методические рекомендации. Решение задач на построение изображений неподвижных предметов в плоских зеркалах (в том числе двойных) и тонких собирающих и рассеивающих линзах (с применением формулы тонкой линзы).


Урок 31/4

Практическое занятие 21 «Волновая оптика» (0,5 ч)

Методические рекомендации. Решение задач на простейшие случаи интерферен­ции и дифракции света в дифракционной решетке.

Во второй половине урока проводят контрольную работу № 5 «Оптика».



  1. Квантовая физика (2 ч)


Урок 32/1

Лекция 11. «Квантовая физика»

Основной материал. Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта. Применение постулатов Бора для расче­та линейчатых спектров излучения и поглощения энергии водородоподобными атомами. Атомное ядро. Закон радиоактивного распада. Применение законов сохранения заряда, массового числа в задачах о ядер­ных превращениях.


^ Методические рекомендации. При рассмотрении фотоэффекта показать график зависимости запирающего напряжения (максимальной кинетической энергии фотоэлектронов) от частоты падающего света и указать, какие физические величины могут быть определены из этого графика.

Применение постулатов Бора показать на конкретном примере линейчатого спектра водородоподобного атома (атома с одним валентным электроном).


Урок 33/2

Практическое занятие 22 «Квантовая физика»

Методические рекомендации. Решение задач по фотоэффекту с применением уравнения Эйнштейна, применению постулатов Бора, закона радиоактивного распада, ядерным превращениям (α- и β-распады, ядерные реакции и термоядерные реакции с применением законов заряда и массового числа).


Урок 34

Итоговое тестирование



Таблица 2





Скачать 0,62 Mb.
оставить комментарий
страница1/3
В.А. Касьянова
Дата27.09.2011
Размер0,62 Mb.
ТипПрограмма, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх