Методика преподавания математики в средней школе: Общая методика: Учеб посо­бие для студентов пед ин-тов по спец. 2104 «Математика» и21056 «Физика» /А. icon

Методика преподавания математики в средней школе: Общая методика: Учеб посо­бие для студентов пед ин-тов по спец. 2104 «Математика» и21056 «Физика» /А.


3 чел. помогло.
Смотрите также:
Методика преподавания математики в средней школе. Частная методика. Составитель В. И. Мишин...
Методика преподавания физики в средней школе: Оптика. Квантовая физика: Пособие для учителя / С...
Методика преподавания письменного перевода в средней общеобразовательной школе...
Петров П. К. Пзо методика преподавания гимнастики в школе: Учеб для студ высш учеб заведений...
Периоды исторического развития математики...
Базовая учебная программа дисциплины «методика преподавания математики» для студентов...
Методика преподавания математики рабочая программа Программа лекционного курса Планы...
Методика преподавания математики рабочая программа Программа лекционного курса Планы...
Методика формирования исследовательской компетентности школьников в области приложений...
Учебно-методический комплекс по дисциплине методика преподавания математики (специальная) для...
Рабочая программа «Методика преподавания труда с практикумом» Для образовательных учреждений...
Методика преподавания русского языка как родного в средней школе: лингвометодический аспект...



страницы: 1   2   3   4   5   6   7
вернуться в начало

Литература


1. Ананчанка, К.А. Агульная методыка выкладання математыкi ý школе /К.А.Ананчанка. – Мн.: Универсiтэцкае, 1997.

2. Груденов, Я.И. Совершенствование методики работы учителя математики /Я.И Груденов. – М.: Просвещение, 1990.

3. Метельский , Н. В. Дидактика математики: Общая методика и ее проблемы: Учеб. по­собие для вузов. 2-е изд., перераб. / Н. В. Метельский. — Минск, 1982.

4. Саранцев, Г.И. Формирование математических понятий в средней школе /Г.И.Саранцев //Математика в школе. – 1998. -№6.


Задания для самостоятельной работы

1. Охарактеризуйте главные логические характеристики понятия, содержания понятия, объема по­нятия. Приведите пример понятия и выделите его содержание и объем. Проиллюстрируйте на примерах зависимость между содержа­нием и объемом понятия.

2. Укажите, что называется определением понятия. Как решает­ся вопрос о существовании понятий? Приведите примеры определений: через род и видовое отличие, генетического, индуктивного, аксиоматического. Приведите примеры определений, видовые отличия которых связаны конъюнктивно, дизъюнктивно.

3. Охарактеризуйте виды классификации понятий и требования, предъявляемые к правильной классификации. Приведите примеры дихотомической классификации и классификации по видоизмененном признаку.

4. Укажите, из каких этапов состоит организация усвоения по­нятия и его определения. Сравните два метода введения определений понятий: конк­ретно-индуктивный и абстрактно-дедуктивный.

5. Приведите примеры различных логических ошибок в опреде­лениях. Продумайте методику исправления ошибок с учащимися.

6. Охарактеризуйте уровни усвоения учащимися понятий. Приведите примеры.


^ Методические рекомендации

Всякое явление, любой процесс представляет собой единство со­держания и формы. Структуру отдельных мыслей и их особых сочета­ний называют формами мышления. Основными формами мышления являются понятия, суждения, умозаключения. Понятия — одна из главных составляющих содержания любого предмета, в том числе и предметов математического цикла. Термин "понятие" обычно применяется для обозначения мысленного образа некоторого класса вещей, процессов, отношений объективной реальности или нашего сознания. Математические понятия отражают в нашем мышлении определенные формы и отношения действительности, абстрагированные от реальных ситуаций.

^ Формирование математических понятий

Формирование понятий - сложный психологический процесс, начинающийся с образования простейших форм познания - ощущений - и протекающий часто по следующей схеме: ощущения - восприятие - представление - понятие.

Обычно разделяют этот процесс на две ступени: чувственную, состоящую в образовании ощущений, восприятия и представления, и логическую, заключающуюся в переходе от представления к понятию с помощью обобщения и абстрагирования.

Чувственная ступень в процессе формирования понятий соответствует первому этапу пути познания вообще, то есть "живому созерцанию", и поэтому ее осуществление требует широкого применения наглядности. Если ученику никогда не показывали модель куба или предметы, имеющие форму куба, то у него не может образоваться представления, а следовательно, и понятия куба.

Процесс формирования понятий будет эффективным, если он ориентирует учащихся на обобщение и абстрагирование существенных признаков (характеристического свойства) формируемого понятия.

Рассмотрим процесс формирования понятий на примере понятия куба.

Детям (6-7лет) показывают много предметов, отличающихся формой, размерами, окраской, материалом, из которого они сделаны, причем таких, что одни из них имеют форму куба, а другие нет. Дети, после того как им показывают на одно из этих тел и говорят, что это куб, безошибочно отбирают все те тела, которые имеют такую же форму, пренебрегая различиями, касающимися размера, окраски, материала. Здесь выделение из класса предметов подкласса, отождествление тел производится по одному еще недостаточно проанализированному признаку - внешней форме. Дети еще не знают свойств куба, они распознают его только по форме.

Дальнейшая работа по формированию понятия куба состоит в анализе этой формы с целью выяснения ее свойств. Учащимся предлагают путем наблюдения найти, что есть общего у всех отобранных тел, имеющих форму куба, чем они отличаются от остальных. Устанавливается, что у каждого куба 8 вершин, 6 граней. Но у некоторых тел, которые мы не отнесли к кубам, тоже 8 вершин и 6 граней. Оказывается, у куба все грани - квадраты (эта работа обычно проводится после аналогичной работы по выделению класса квадратов из множества плоских фигур).

Остается один шаг к образованию понятия куба - переход от представления к понятию путем абстрагирования, то есть отделения общих свойств от прочих, несущественных. Разумеется, на начальном этапе обучения нельзя еще говорить о полном абстрагировании этих свойств, у детей еще не образовывается понятие куба в чистом виде, они еще не определяют куб и противопоставляют его прямоугольному параллелепипеду с различными измерениями. В дальнейшем же, когда будет сконструирована логически упорядоченная система геометрических понятий (в рамках систематического курса геометрии), учащиеся узнают, что куб - это вид прямоугольного параллелепипеда. В этом - диалектика развития понятий.

Приведенный пример показывает, что процесс формирования понятий, как правило, длительный процесс, способствующий развитию обобщающей и абстрагирующей деятельности учащихся.

Однако формирование математических понятий не всегда протекает по приведенной выше схеме, начинающейся с ощущений. В частности, когда формируемое понятие связано, в той или иной форме, с категорией бесконечности (как, например, понятия прямой, плоскости, плотности множества рациональных чисел, предела и др.), то чувственная ступень играет меньшую роль, так как мы не в состоянии воспринимать бесконечное (ни в какой форме), и наглядность из средства, способствующего формированию понятия, иногда становится тормозящим фактором.

Например, бесконечность множества рациональных чисел, лежащих между любыми двумя рациональными числами, не подкрепляется, а, наоборот, "опровергается" конкретным восприятием конечного отрезка, содержащего это множество. Свойство плотности множества рациональных чисел нельзя обнаружить опытным путем, оно не подтверждается наглядными геометрическими представлениями, а устанавливается логически. Этот и другие многочисленные примеры подтверждают выводы психологов о том, что восприятие наглядного материала в силу объективных особенностей этого материала может играть не только положительную, но и отрицательную роль.

^ Пропедевтика понятий

Пропедевтика (гр. propaideuo- обучаю предварительно) – введение в какую-либо науку. Следовательно, речь идет о предварительной подготовке учащихся к формированию математических понятий.

Математические понятия – важнейшая неотъемлемая часть науки и учебного предмета математики. Каждая математическая наука и учебная дисциплина начинается с первичных, основных неопределяемых понятий. Все другие определяются и называются определяемыми, выводными или производными. Это можно сделать в систематических курсах математических дисциплин, т.е. на определенном уровне развития учащихся.

На начальной ступени обучения учащиеся знакомятся с большинством математических понятий наглядно, путем созерцания конкретных примеров или практического оперирования ими, например, при счете их. При этом учитель опирается на жизненный опыт учащихся.

Способы введения мат. понятий на начальном этапе изучения математики:

1) первое знакомство с математическими понятиями в начальных классах школы фиксируется с помощью термина и символа, без описания или определения понятия. Например, фигуры треугольник, квадрат, прямоугольник - еще в детском саду. Термин «меньше» и символ 2< 9; термин «сложение» и символ «+» и т.д.;

2) появляются первые определения (2 кл.) – «Сложение одинаковых слагаемых называется умножением»;

3) некоторые понятия вводятся только с помощью термина (например, год, неделя, час, минута и др.);

4) описательное введение понятий (нумерация в пределах тысячи, меры длины);

5) некоторые понятия определяются генетически (окружность, 1 м - это квадрат со стороной 1 м).

Велика роль пропедевтики алгебраического и геометрического материала, особенно в 5-6 классах, где наряду с систематическим курсом арифметики изучаются начала алгебры и геометрии. Например, в учебнике Латотина Л.А., Чеботаревского Б.Д. «Математика 4»: геометрические понятия – окружность, круг, угол, смежные и вертикальные углы, прямоугольный параллелепипед, объем; алгебраические понятия - уравнение, выражение и его значение.

Таким образом, в курсе математики ведется подготовка к изучению курсов алгебры и геометрии. Но не только на уроках математики, возможна пропедевтика и в других курсах, например, физики – понятие производной (мгновенная скорость), черчения – изображение пространственных фигур в стереометрии и др.

В отдельных случаях, когда изучение понятия представляет собой существенные трудности, период первоначального озна­комления с понятием растягивается во времени, на протяжении которого учащиеся многократно сталкиваются с понятием, по­степенно расширяя круг представлений о нем. Например, одно из важнейших понятий современного школьного курса матема­тики - функция. Усвоение этого понятия возможно лишь при ус­ловии перехода от статического к диалектическому мышлению, что совершается не вдруг. Само понятие функция вводится в седь­мом классе. Но в пятом и шестом классах сознание учащихся го­товится к восприятию этого понятия. В качестве пропедевтики понятия функция в учебниках пятого и шестого классов рассмат­риваются различные упражнения. Функция как зависимость, за­кон соответствия, соответствие между отдельными элементами некоторых множеств проявляют себя в таких упражнениях, как составление выражений, отыскание значений выражения в зави­симости от значений параметров, входящих в него. Функциональной пропедевтикой явля­ется изучение темы «Координатная плоскость».

^ Методика введения математических понятий

Организация введения понятий может быть реализована в рам­ках различных методов обучения: объяснительно-иллюстративно­го, когда учитель сам вводит новое понятие, и в рамках частично-поискового, когда учащиеся привлекаются к поиску нового опре­деления. Эти методы получили названия соответственно абстракт­но-дедуктивного и конкретно-индуктивного.

Схема применения конкретно-индуктивного метода:

- анализируется эмпирический материал (при этом, кроме индукции, привлекаются и другие логические методы: анализ, сравнение, абстрагирование, обобщение);

- выясняются общие признаки понятия, которые его характеризуют;

- формулируется определение;

- определение закрепляется путем приведения примеров и контрпримеров;

- дальнейшее усвоение понятия и его определения происходит в процессе их применения.

Схема применения абстрактно-дедуктивного метода:

- формулируется определение понятия;

- приводятся примеры и контрпримеры;

- дальнейшее усвоение понятия и его определения происходит в процессе их применения.

Абстрактно-дедуктивный метод применяется обычно в тех случаях, когда введение понятия хорошо подготовлено предшествующим обучением. Например, после введения понятия параллелограмма вводится понятие прямоугольника.

При том и другом методах содержанием обучения является выделение существенных свойств понятия и отделение их от несущественных. Конкретно-индуктивный метод требует больше учебного времени при своем использовании на уроке, но обеспечивает большую активность учащихся и обратную связь, на основании которой учитель делает выводы об эффективности работы по изучению понятий.

Введению определения на уроке предшествует работа учите­ля по выделению существенных и несущественных свойств понятия, определение которого подлежит изучению, анализу логичес­кой структуры этого определения, подбору примеров и контрпри­меров для закрепления и возможностей их вариации, анализу си­туаций, в которых наиболее часто встречается вводимое поня­тие. Анализ заканчивается выбором метода введения определе­ния.

Рассмотрим пример подготовки учителя к уроку по теме «Смежные углы». Определение смежных углов име­ет два существенных свойства: наличие у обоих углов общей сто­роны и то, что вторые стороны этих углов являются дополнитель­ными полупрямыми. Эти свойства связаны между собой конъюнктивно. Объект подпадает под понятие, если имеет место каждое свойство. Это значит, что контрпримеров этому понятию можно привести три: когда отсутствует первое или второе или оба свой­ства сразу. Какими несущественными свойствами обладает это понятие, то есть какие свойства допускают вариации? Это соотно­шения между величинами углов, произвольность расположения на плоскости. В методике Н.Н. Кабановой-Меллер предлагает­ся вместе с учащимися выделять и проговаривать не только суще­ственные свойства, но и несущественные. Такая работа позволя­ет учащимся легче узнавать объекты в наиболее часто встречаю­щихся задачных ситуациях, в которых участвуют смежные углы. Такими ситуациями для смежных углов являются ситуации, ког­да две прямые пересечены третьей прямой, в треугольниках, в разных видах четырехугольников.

Поскольку вводимое понятие смежных углов не очень слож­ное, то учитель может предпочесть частично-поисковый метод введения понятия. При этом цель урока может быть сформулиро­вана по-разному: получить определение смежных углов с помо­щью учащихся, научить учащихся его формулировать, узнавать смежные углы в различных ситуациях, подводить под определе­ние понятия смежных углов, исправлять ошибочные определения.

Рассмотрим фрагмент урока по введению понятия смежные углы. Классу представлены следующие рисунки:




а) б) в) г) д)


Далее процесс восприятия и осознания направляется вопроса­ми учителя к предложенным рисункам:

  • назовите рисунки, на которых изображены два угла, имеющие одну общую сторону;

  • назовите рисунки, на которых сторона одного угла является дополнительной полупрямой для стороны другого угла;

  • на каких рисунках изображены углы, которые одновременно удовлетворяют двум предъявленным требованиям?

В беседе роль учащихся может быть усилена, а вопросы можно поставить так, что уровень самостоятельности учащихся повы­сится:

  • что общего на рисунках а), б) и г)?

  • что общего на рисунках б), в) и г)?

  • назовите рисунки, изображения на которых удовлетворяют двум выделенным требованиям.

Далее учитель сообщает термин «смежные углы» и просит уче­ников сформулировать соответствующее определение. Для зак­репления выделенных существенных свойств учитель дает зада­ние обосновать, почему углы на рисунках а), в) и д) не являются смежными. Далее рассматривается, чем различаются смежные углы на рисунках б) и г) и чем вообще могут отличаться друг от друга пары смежных углов.

Психологи (В.И. Зыкова, М.А. Холодная) считают, что при изучении всякого понятия должно быть установлено соответствие нового знания личному интеллектуальному опыту учащихся, в ко­тором могут содержаться противоречия с новыми знаниями. С от­ношением «быть смежными» учащиеся сталкивались в быту: смеж­ные - соседние участки земли, помещения. Необходимо подчерк­нуть сходство и различие вновь вводимого понятия с имеющимися.

Интересным для учащихся может оказаться перевод на рус­ский язык различных математических терминов: радиус - спица колеса, хорда - струна, диаметр - поперечник (с греч.) и т. д., что раскрывает первоначальный смысл понятий, их происхожде­ние и связь математики с окружающей действительностью.

Применению всякого понятия на практике при решении задач предшествует узнавание его в некоторой конкретной ситуации, где оно может быть представлено в более или менее скрытой фор­ме. За этим при решении задач следуют обоснование узнавания (подведение под понятие) и выведение следствий (использование понятия).

В методике преподавания математики принято в каче­стве первых упражнений на закрепление вновь вводимых поня­тий предлагать упражнения на узнавание объектов с дальнейшим подведением под определение. Например, такими упражнениями на узнавание смежных углов могут быть задания выделить смеж­ные углы на рисунке и обосновать свои утверждения.

Это же понятие смежных углов может быть введено по-другому.

Например, учитель просит учащихся построить в тетради и на доске любой угол, а затем продолжить одну из его сторон - по­строить дополнительную полупрямую. Далее с помощью учащихся выясняется, какими существенными свойствами обладают два полученных угла, рассматриваются различные чертежи из тетра­дей учеников в качестве вариаций несущественных свойств, за­тем рассматриваются контрпримеры.

Дальнейшее усвоение понятия «смежные углы» проходит на этапе применения понятия.


^ Применение понятий и их определений

Знание определения еще не гарантирует усвоения понятия. Один из аспектов формализма в математических знаниях состоит именно в том, что некоторые учащиеся, зная точную формулировку определения, не распознают определяемый объект в различных ситуациях, где он встречается. Поэтому методика обучения должна разрабатывать систему работы с определениями, чтобы преодолеть возможный формализм в их усвоении.

В практике решения задач при оперировании понятиями и их определениями актуальными являются умения: 1) подведение под определение; 2) подведение под понятие; 3) выделение «зоны по­иска»; 4) выведение следствий из определения.

Названные умения можно формировать в рамках приемов ум­ственной деятельности - совокупности мыслительных операций, направленных на решение задач определенного типа.

Структура приема подведения под опре­деление зависит от логического строения определения, то есть от того, каким образом, конъюнктивно или дизъюнктивно, связаны существенные свойства в определении.

Рассмотрим несколько определений.

1. Целым выражением называется выражение, составленное из чисел и переменных с помощью действий сложения, вычита­ния, умножения и деления на число, отличное от нуля.

2. Целые и дробные выражения называются рациональными.

3. Треугольником называется фигура, состоящая из трех то­чек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки.

4. Трапецией называется четырехугольник, две стороны кото­рого параллельны, а две другие - нет.

5. Арифметическим квадратным корнем из числа а, называет­ся неотрицательное число, квадрат которого равен а.

6. Два вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Чем различаются действия подведения под определение в слу­чаях 1, 2 и 6 от аналогичных действий в случаях 3, 4, 5?

При подведении под определение, в котором существенные свойства связаны конъюнктивно (примеры 3,4,5), для отнесения некоторого объекта к множеству объектов, названных опреде­ленным термином, необходимо проверить наличие всех существенных свойств. Например, чтобы некоторое число b было арифме­тическим квадратным корнем из числа а, требуется выполнение двух условий: .

Если существенные свойства связаны между собой дизъюнк­тивно, то для отнесения объекта к множеству объектов, подпада­ющих под это понятие, достаточно выполнения отдельных суще­ственных свойств. Например, чтобы некоторое выражение мож­но было назвать рациональным, достаточно, чтобы оно было це­лым или дробным. Причем союз «или», который подразумевается в дизъюнктивно построенных определениях, обладает неразде­лительным смыслом. Например, чтобы выражение назвать целым, требуется, чтобы оно было построено с помощью любых действий, перечисленных в определении 1.

Рассмотрим, как могут выглядеть рассуждения при подведе­нии под определение, например, вписанного угла.

Вначале необходимо вспомнить определение: вписанным уг­лом называется угол, вершина которого лежит на окружности, а стороны пересекают окружность. Затем выделяются существен­ные свойства определения: 1) угол; 2) вершина лежит на окруж­ности; 3) стороны пересекают окружность. Выясняется, что необ­ходимо проверить наличие каждого свойства согласно структу­ре данного определения. Затем на каждом из рисунков



проверяется наличие перечисленных свойств и формулируются соответствующие выводы.

Иногда применение приема подведения объекта под определе­ние затруднено в силу того, что определение дано в форме, кото­рой трудно воспользоваться и которая требует предварительного анализа и переформулирования. Рассмотрим, например, опреде­ление квадратного уравнения с одной переменной. Квадратным называется уравнение вида:

ах2 + bх + с = 0, где а 0. Чтобы ответить на вопрос, являются ли, например, равенства (*) квад­ратными уравнениями с одной переменной, следует самостоятель­но выделить существенные свойства понятия, а именно: что это уравнение, что оно содержит одну переменную, что оно содержит в качестве одного из слагаемых вторую степень переменной со своим коэффициентом и не содержит степени переменной выше второй.

у-2х2=0; Зх2+5; 2х32-5 = 0; 7х2-6 = 0 (*)

Следовательно, чтобы подвести некоторый объект под поня­тие согласно его определению, учащиеся должны вспомнить оп­ределение, выявить его существенные свойства, установить свя­зи между ними, например, с помощью вопроса, все ли существен­ные свойства должны выполняться, затем проделать операции, адекватные логическому строению определения, - проверить на­личие требуемых свойств в рассматриваемом объекте и сделать вывод относительно принадлежности рассматриваемого объекта к понятию: если существенные свойства связаны конъюнктивно, то для отнесения объекта к понятию необходимо выполнение всех свойств, а если дизъюнктивно - то некоторых.

Опыт показывает, что выполнение нескольких упражнений на подведение под определение способствует не только осознанию определения, но и его непроизвольному запоминанию.

Несколько сложнее выглядит прием подведения под понятие. Как известно, что­бы отнести некоторый объект под какое-либо понятие, необяза­тельно пользоваться определением. Можно подводить под при­знаки понятия. Чем воспользоваться: определением или призна­ком, которым признаком из имеющихся - все это диктуется усло­виями конкретной задачи.

Рассмотрим, например, задачу «В параллелограмме ABCD точка Е- середина сто­роны ВС, a F - середина стороны AD. Докажите, что четырех­угольник BEDF- параллелограмм». Доказательство требуемого факта может быть основано на определении параллелограмма. Тогда предстоит доказывать па­раллельность BF и ED. Но доказательство можно построить на одном из признаков параллелограмма. И тогда предстоит дока­зывать, что либо диагонали BD и FE точкой пересечения делятся пополам, либо стороны BE и FD равны и параллельны, либо про­тиволежащие стороны этого четырехугольника попарно равны.

Все операции: актуализация определения и признаков, выбор из них необходимого средства, подведение под определение или выбранный признак и составляет из себя прием подведения под понятие.

Тесно связан с названными еще один прием - выделение «зоны поиска» некоторого понятия. «Зона поиска» это и есть совокуп­ность определения и различных признаков. Этот прием можно эффективно использовать в начале систематического курса гео­метрии, доказывая равенство отрезков и углов. Например, учащи­еся в ходе изучения курса начинают систематизировать достаточ­ные условия равенства отрезков. По мере изучения геометричес­кого материала этот список дополняется. Список полезно вести всем учащимся, например, на последней странице тетради. Приве­дем в качестве примера «зону поиска» равных отрезков. Итак, равные отрезки можно искать в следующих ситуациях: 1) два от­резка имеют равную длину; 2) два отрезка являются соответству­ющими сторонами равных треугольников; 3) два отрезка являют­ся боковыми сторонами равнобедренного треугольника; 4) два отрезка являются противоположными сторонами параллелограм­ма, любыми сторонами ромба; 5) один отрезок получен из другого некоторым движением; 6) отрезки являются половинами или равными частями равных отрезков и т. д.

Последний из рассматриваемых приемов - прием получения следствий - заключается в том, что при решении задачи перечис­ляются следствия из наличия какого-либо понятия, то есть выделя­ются все свойства этого понятия, содержащиеся в определении и полученные с помощью доказательств. Этот прием облегчает орга­низацию обучения решению задач в начальном курсе геометрии, когда для учащихся характерна жалоба: «Я не умею начинать решать задачу». Он составляет основной смысл решения задачи синтетическим методом, движения мысли от условия к заключе­нию.

Рассмотрим пример. Доказать, что в равных треугольниках соответственные медианы равны. Прием получения след­ствий в применении к данной задаче заключается в том, что пере­бираются все данные условия и из каждого из них делаются воз­можные выводы.

При этом приходится отвечать на вопросы: 1) что значит, что треугольники равны; 2) что значит, что BD и - медианы?

Рассмотрением перечисленных приемов мы переходим от понятий и их определений к процессу реше­ния задач, в ходе которого форми­руется понятие.

В изучении любого учебного предмета, и особенно математики, важен этап систематизации материала, когда выясняется место данного понятия в системе других понятий. Это достигается следующими путями:

установление связей между отдельными понятиями, теоремами;

разноплановой систематизацией материала по различным основаниям;

обобщением понятия; конкретизацией понятия.


^ Некоторые особенности усвоения математических понятий и их определений учащимся

В большинстве случаев в школьном преподавании применяется конкретно-индуктивный способ введения нового понятия, когда начинают с рассматривания конкретных примеров и путем мыслительных операций (анализа, сравнения, абстрагирования, обобщения, синтеза) приводят учащихся к образованию новых понятий. При умелом, продуманном проведении этого процесса учащееся почти всегда способны сами сформулировать определение нового понятия.

Конкретно-индуктивным методом вводятся понятия в пропедевтических циклах начал алгебры и геометрии в 1-6 классах, причем многие определяемые понятия там были введены без определений, описательно.

Приступая к изучению систематических курсов в 7 классе, пользуются всеми этими понятиями как известными. Так уже на первых уроках геометрии в 7 классе употребляются понятия “точка”, «прямая”, “ плоскость”, “ расстояние” и выясняется, что они будут первичными геометрическими понятиями, принимаемыми без определения, остальным понятиям даются определения.

Здесь же выясняется абстрактный характер геометрических понятий (точка не имеет размеров, прямая не ограничена, бесконечна и т. п.), мотивируется необходимость подобного абстрагирования, показывается логическое строение геометрии, роль аксиом и теорем.

Чтобы оценить правильность явных определений, надо знать правила определения понятий. Так как большинство определений в средней школе – определения через род и видовое отличие, то рассмотрим правила этих определений.

Требования к определению понятий:

1). Определяемое и определяющее понятия должны быть соизмеримы (т.е. совокупности, охватываемых ими предметов, должны совпадать). Нарушение этого требования приводит к ошибкам:

а) ошибка «слишком широкого определения», при которой объем определяющего понятия становится шире объема определяемого. Например, параллелограмм – это многоугольник, противоположные стороны которого параллельны. Контрпример – шестиугольник, противоположные стороны которого параллельны. Например, ромб—четырехугольник с взаимно перпендикулярными диагоналями (контпример - ромбоид).

б) ошибка «слишком узкого определения», при этом в качестве видового понятия берется отличительный признак не вида, а подвида. Объем определяющего понятия оказывается уже объема определяемого. Например, параллелограмм – это четырехугольник с равными сторонами. Исправление ошибки – пример параллелограмма, который не подпадает под это определение. Например, ромб—четырехугольник с прямыми углами и взаимно перпендикулярными диагоналями. Нарисовать ромб, но не квадрат.

Так как профилактика всегда лучше лечения, то соответствующую работу следует проводить непосредственно в процессе изучения данного понятия.

2). Запрещается порочный круг. Нарушение этого требования приводит к ошибкам:

а) определение понятия через само себя (тавтология), то есть определяемое содержится (явно или неявно) в определяющем. Например, «решение уравнения – это то число, которое является его решением». «Подобными называются фигуры, которые между собой подобны». «Геометрия – это наука о геометрических фигурах». Учителю следует разъяснять смысл и назначение определения;

б) круг в определении, то есть при определении используется другое понятие, которое в свою очередь определяется с помощью первого. Например, «Угол называется прямым, если его стороны взаимно перпендикулярны" и "Две прямые взаимно перпендикулярны, если они образуют прямой угол". «Умножением чисел называется действие, при помощи которого находят произведение этих чисел» и «Произведением чисел называется результат умножения этих чисел». В подобных случаях надо сопоставить оба определения, разъяснить суть ошибок.

3). Отсутствие в определении избыточности. Это означает, что в определении не должно быть указано лишних свойств, вытекающих из других свойств, также включенных в определение понятий. Например, «Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны и равны». Требование равенства противоположных сторон четырехугольника – избыточно. Это свойство параллелограмма, которое доказывается учащимися.

4). Необходимо, чтобы определяемый объект существовал. Например, «Тупоугольный треугольник – это треугольник, у которого все углы – тупые».

Важно обучать школьников отысканию лишних слов в определении.

Имеет смысл давать задания: отыскать лишние слова, например, в определении «Диаметром окружности называется отрезок, проходящий через ее центр, соединяющий две ее точки и делящий окружность пополам».

Полезны упражнения по сокращению определения путем использования термина (см. предыдущее определение).

Полезно давать задания на сравнение двух одинаково правильных и одинаково кратких определений с точки зрения того, какое из них легче проверить (подвести конкретный случай под определение).

Например, 1) диаметром окружности называется хорда, проходящая через центр;

2) диаметром окружности называется ее наибольшая хорда.

Одна из существенных рекомендаций психологов при усвоении понятий состоит в необходимости варьирования несущественных признаков понятия (принцип варьирования) как при конкретно-индуктивном, так и при абстрактно-дедуктивном методе.

Отсутствие необходимых вариаций часто приводит к формированию неправильных представлений о понятиях.

Например, при построении прямой, перпендикулярной данной прямой а и проходящей через данную точку А с помощью линейки и треугольника (математика 6 кл.) все прямые а выбирались горизонтально. Если потом предложить учащимся построить прямую b, перпендикулярную к прямой а, которая расположена не горизонтально, то почти у всех школьников прямая b все равно оказывается вертикальной.

Серьезным недостатком преподавания является неправильная методика исправления ошибок в определениях, даваемых учащимися. Если ученик неправильно дает определение понятия, то нельзя вызывать второго, третьего и т.д. ученика, пока кто-то не даст правильное определение, не выясняя, в чем ошибка (ее причина, сущность) и, следовательно, не предупреждая повторения ее другими учениками.

Важно требовать полных ответов учащихся. Они часто теряют определяющее слово. Например,

- Какие многоугольники называются подобными?

- Это, если углы одного равны углам другого.

Можно сделать выводы.

1. При введении математических понятий учащиеся должны понимать, что существуют различные их определения. В учебнике выбирается одно из них из методических соображений.

2. Не обязательно сразу давать учащимся определение в законченной форме. Полезна деятельность школьников по отысканию правильной формулировки, ее уточнению, отбрасыванию лишних слов.

3. При повторении определения на последующих уроках следует на примерах показывать ошибочность определений учащихся, либо подтверждать приемлемость определений.

4. Необходимо вести систематическую работу по выработке навыков подведения под определение.

Что значит, что понятие и его определение усвоено учащимся, какие уровни усвоения поня­тий возможны?

^ Уровни усвоения учащимися понятий можно пред­ставить в виде следующей последовательности. Учащийся:

- узнает понятия;

- знает формулировку определения;

- понимает значение каждого слова, каждой составной части определения, отделяет существенные свойства от несуществен­ных;

- может привести собственные примеры объектов, подходящих под определение;

- может доказать, почему некоторый объект подходит под опре­деление, а другой - нет;

- может использовать понятия в явных ситуациях при решении задач;

- может использовать понятия в неявных ситуациях, при реше­нии нестандартных задач.

Перечисленные уровни - конкретные дидактические цели изу­чения понятий.

Какие цели развития учащихся может ставить учитель при изу­чении определений? Это - учить правильно формулировать опре­деления, отделять существенные свойства от несущественных, понимать зависимость между существенными свойствами в опре­делении, осознавать приемы, которые используются при решении задач: подводить под определения, классифицировать, устанав­ливать связи между понятиями. Эти умения относятся к общим интеллектуальным умениям, так как используются в различных на­уках и школьных предметах. Эти умения являются умениями раз­витого понятийного логического мышления.


^ Занятия № 6, №7. Тема «Методика обучения учащихся теоремам и их доказательствам».




Скачать 1.22 Mb.
оставить комментарий
страница4/7
Дата28.09.2011
Размер1.22 Mb.
ТипЛитература, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7
средне
  1
хорошо
  2
отлично
  3
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

База данных защищена авторским правом ©exdat 2000-2014
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

Рейтинг@Mail.ru
наверх