Краткий конспект лекций по дисциплине «Статистика» по специальности 080109. 65 «Бухгалтерский учет, анализ и аудит» Лекция 1 icon

Краткий конспект лекций по дисциплине «Статистика» по специальности 080109. 65 «Бухгалтерский учет, анализ и аудит» Лекция 1


Смотрите также:
Учебно-методический комплекс Для специальностей 080109 «Бухгалтерский учет...
Программа и методические рекомендации для специальности 080109 «Бухгалтерский учет...
Программа и методические рекомендации для специальности 080109 «Бухгалтерский учет...
Рабочая программа дисциплины "статистика" по специальности: 080109. 65 Бухгалтерский учет...
Рабочая программа дисциплина «Аудит в сфере сервиса» Специальность 080109 «Бухгалтерский учёт...
Методические материалы итоговой аттестации по специальности 080109 «бухгалтерский учет...
Учебно-методический комплекс по дисциплине «Финансовый менеджмент» специальность 080109...
Методические указания и тематика контрольных работ по дисциплине: «Учет на предприятиях малого...
Рабочая программа по дисциплине «налоги и налогообложение» по специальности: 060500 (080109)...
Рабочая программа По дисциплине «Учет и анализ в издательствах» По специальности 080109...
Программа для студентов 2-го курса специальности 080109 бухгалтерский учет, анализ и аудит (вБУ)...
Программа для студентов 5-го курса специальности 080109 бухгалтерский учет, анализ и аудит (вБУ)...



Загрузка...
страницы:   1   2   3   4   5   6   7   8
скачать

«Теория статистики: курс лекций» для дневного отделения стр.

Краткий конспект лекций по дисциплине «Статистика» по специальности 080109.65 «Бухгалтерский учет, анализ и аудит»

Лекция 1. Предмет, метод и задачи статистики.


В настоящее время данный термин употребляется в 4 значениях:

  1. наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественным содержанием – учебный предмет в высших и средних специальных учебных заведений;

  2. совокупность цифровых сведений, характеризующих состояние массовых явлений и процессов общественной жизни; статистические данные, представляемые в отчетности предприятий, организаций, отраслей экономики, а также публикуемых в сборниках, справочниках, периодической печати и в сети Интернет, которые являются результатом статистической работы;

  3. отрасль практической деятельности («статистический учет») по сбору, обработке, анализу и публикации массовых цифровых данных о самых различных явлениях и процессах общественной жизни1;

  4. некий параметр ряда случайных величин, получаемый по определенному алгоритму из результатов наблюдений, например, статистические критерии (критические статистики), применяющиеся при проверке различных гипотез (предположительных утверждений) относительно природы или значений отдельных показателей исследуемых данных, особенностей их распределения и пр.2

Рассмотрим основные понятия, используемые в статистике.

  1. ^ Статистическая совокупность – множество социально-экономических объектов или явлений общественной жизни, объединенных качественной основой, но отличающихся друг от друга отдельными признаками, т.е. однородных в одном отношении, но разнородных в другом. Таковы, например, совокупность домохозяйств, семей, предприятий, фирм и т.п.

  2. ^ Единица совокупности – первичный элемент статистической совокупности, являющийся носителем признаков и основой ведущегося при обследовании счета.

  3. Признак единицы совокупности – свойства единицы совокупности, которые различаются способами их измерения и другими особенностями, что дает основание для их классификации 1.

Таблица 1. Основная классификация признаков в статистике

^ Параметр классификации

Вид признака

Пример признака

По характеру выражения

Описательные (атрибутивные)

Цвет волос человека

Количественные (числовые)

Рост человека

По способу измерения

Первичные (объемные)

Вес человека

Вторичные (расчетные)

Производительность труда

По характеру вариации

Альтернативные

Пол человека

Дискретные

Возраст человека

Интервальные

Возраст группы людей

По отношению ко времени

Моментные

Количество денег в кармане человека

Периодные

Заработная плата человека за месяц

  1. ^ Статистический показатель – понятие, отображающее количественные характеристики (размеры) или соотношения признаков общественных явлений. Статистические показатели можно подразделить на первичные (объемные) – характеризуют либо общее число единиц совокупности (объем совокупности), либо сумму значений какого-либо признака (объем признака) и выражаются абсолютными величинами и вторичные (расчетные) – задаются на единицу первичного показателя и выражаются относительными и средними величинами. Статистические показатели могут быть плановыми, отчетными и прогностическими.

  2. ^ Система статистических показателей – совокупность статистических показателей, отражающая взаимосвязи, которые объективно существуют между явлениями. Она охватывает все стороны общественной жизни как на макро-, так и на микроуровне. С изменением условий жизни общества меняются и системы статистических показателей, совершенствуется методология их расчета.

Совокупность приемов, пользуясь которыми статистика исследует свой предмет, составляет метод статистики. Можно выделить 3 группы статистических методов (этапов статистического исследования): 1) статистическое наблюдение; 2) сводка и 3) научный анализ исследуемых явлений.
^

Лекция 2. Источники статистической информации.


Люди по-разному относятся к статистической информации: одни не воспринимают ее, другие безоговорочно верят, а третьи согласны с мнением английского политика Дизраэли: «Существует 3 типа лжи: ложь, наглая ложь и статистика»3, однако ему же принадлежит следующее утверждение: «В жизни, как правило, преуспевает больше тот, кто располагает лучшей информацией»4.

Статистическое наблюдение является начальным этапом статистического исследования, поэтому от того, насколько полными и качественными окажутся собранные первичные данные, зависят в значительной степени и конечные результаты работы, и выводы исследователей. В статистической практике используются разные формы, виды и способы наблюдения.

Различают 3 формы организации наблюдения: статистическая отчетность, специально организованные статистические обследования и регистры.

1. ^ Статистическая отчетность – это особая форма организации сбора данных государственной статистикой о деятельности хозяйствующих субъектов, которые обязаны заполнять документы-бланки, называемые формами статистической отчетности. Форма статистической отчетности – это специальный документ-бланк, содержащий перечень определенных показателей, сведений, характеризующих ту или иную хозяйственую единицу и результаты ее деятельности, заполняемый на основе данных опертивного или бухгалтерского учета и представляемые в государственные статистические органы для дальнейшего обобщения. Перечень и содержание форм статистической отчетности утверждается органами государственной статистики и является обязательной для установленного круга предприятий и организаций. Каждая форма отчетности имеет шифр и название. В соответствии со сроками представления отчетность бывает суточная (ежедневная), недельная, месячная, квартальная, полугодовая и годовая. Все эти виды отчетности, кроме годовой, объединяют одним названием – текущая отчетность. Каждая форма отчетности должна прдставляться в установленные для нее сроки.

2. Круг являений общественной жизни настолько велик, что полный охват их отчетностью невозможен. Во всех случаях, когда необходимо получить сведения, по которым отсутствует отчетность, когда требуется уточнить или дополнить данные той или иной отчетности либо провести разовое детальное, всестороннее обследование каких-либо объектов, применяют специально организованные статистические наблюдения, проводимые в виде переписей или специальных обследований (выборочных или сплошных). Такие обследования используются как органами статистики, так и отдельными хозяйствующими субъектами.

3. Наблюдение через регистры – сравнительно новая форма организации статистического наблюдения, основанная на применении компьютерных технологий. Регистр – это поименованный и постоянно уточняемый перечень тех или иных единиц наблюдения, созданный для непрерывного длительного статистического наблюдения за определенной совокупностью, в котором содержится информация о каждой единице совокупности (например, ЕГРПО – Единый государственный регистр предприятий и организаций).

Необходимо отметить, что все 3 организационные формы статистического наблюдения не противостоят, а дополняют друг друга, позволяя более глубоко, всесторонне изучать отдельные явления и процессы общественной жизни.

По времени регистрации фактов различают текущее (непрерывное) и прерывное наблюдение. Последнее, в свою очередь, подразделяется на единовременное и периодическое.

По охвату единиц наблюдения различают сплошное, когда наблюдению подлежат все единицы изучаемой совокупности, и несплошное. Несплошное наблюдение подразделяется на следующие виды: 1) наблюдение основного массива (исключаются из наблюдения малозначимые единицы); 2) анкетное (добровольное заполнение анкет приводит к несплошному виду наблюдения); 3) выборочное (случайный отбор единиц из изучаемой совокупности); 4) монографическое (детальное изучение какой-то одной единицы совокупности).

По источникам собираемых сведений различают следующие способы наблюдения: 1) непосредственное (осмотр, измерение, взвешивание); 2) документальное (на основе отчетности); 3) опрос (сведения регистрируются со слов опрашиваемой единицы наблюдения). Способы опроса: экспидиционный, саморегистрация, корреспондентский и явочный.

Любое статистическое исследование необходимо начинать с точной формулировки его цели и конкретных задач, а следовательно и тех сведений, которые могут быть получены в процессе наблюдения. После этого определяется объект и единица наблюдения, разрабатывается программа, выбирается вид и способ наблюдения.

^ Объект наблюдения – совокупность социально-экономических явлений и процессов, которые подлежат исследованию, или точные границы, в пределах которых будут регистрироваться статистические сведения. В ряде случаев пользуются цензом. Ценз – ограничительный признак, которому должны удовлетворять все единицы изучаемой совокупности. Единицей наблюдения называется составная часть объекта исследования, которая служит основой счета и обладает признаками, подлежащими регистрации при наблюдении. Программа наблюдения – перечень вопросов, по которым собираются сведения, либо перечень признаков или показателей, подлежащих регистрации. Она оформляется в виде бланка (анкеты, формуляра), в который заносятся первичные сведения. К нему прилагается инструкция (или указания на самих формулярах), разъясняющая смысл вопросов.
^

Лекция 3. Группировка и сводка материалов статистических наблюдений


Сводка – научно организованная обработка материалов наблюдения (по заранее разработанной программе), включающая в себя кроме обязательного контроля собранных данных, систематизацию, группировку материалов, составление таблиц, получение итогов по группам и в целом. Программа сводки включает определение групп и подгрупп, системы показателей и видов таблиц. По технике и способу выполнения сводка может быть ручной либо механизированной.

Группировка – разбиение совокупности на группы, однородные по какому-либо признаку или объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам. Устойчивое разграничение объектов называется классификацией или стандартом, в котором каждая атрибутивная запись может быть отнесена лишь к одной группе или подгруппе. Метод группировки основывается на двух категориях – группировочном признаке и интервале.

^ Группировочный признак – признак, по которому происходит объединение отдельных единиц совокупности в однородные группы. Он может носить как количественный, так и качественный характер. В ряде случаев группировка, которая представляется чисто качественной, в конечном итоге оказывается основанной на количественном признаке. Такова, например, классификация промышленных предприятий по отраслям. Поскольку одно и то же предприятие выпускает продукцию разных видов, статистика решает этот вопрос по количественному преобладанию того или иного вида.

Интервал очерчивает количественные границы групп и представляет собой промежуток между максимальным и минимальным значениями признака в группе. Интервалы бывают равные, неравные, закрытые (когда имеется верхняя и нижняя граница) и открытые (когда одна из границ отсутствует).

Статистические группировки и классификации преследуют цели выделения качественно однородных совокупностей, изучения структуры совокупности, исследования взаимосвязи факторных и результативных признаков. Каждой из этих целей соответствует особый вид группировки: типологическая, структурная и аналитическая.

В зависимости от числа положенных в основание группировки признаков различают простые и многомерные группировки. Простая группировка выполняется по одному признаку. Среди простых группировок особо выделяются ряды распределения. Ряд распределения – группировка, в которой для характеристики групп, упорядоченно расположенных по значению признака применяется один показатель – численность группы (более подробно об этом – тема 3 и 4).

^ Многомерная группировка производится по двум и более признакам. Частным случаем многомерной группировки является комбинационная группировка, базирующаяся на двух и более признаках, взятых во взаимосвязи.

По отношениям между признаками выделяют: иерархические группировки, выполняемые по двум и более признакам, при этом значения второго признака определяются областью значений первого (например, классификация отраслей промышленности по подотраслям); неиерархические группировки, когда строгой зависимости значений второго признака от первого не существует.

По очередности обработки информации группировки бывают первичными, составленные на основе первичных данных, и вторичные, являющиеся результатом перегруппировки ранее уже сгруппированного материала.

В соответствии со временным критерием различают статические группировки, дающие характеристику совокупности на определенный момент или за определенный период, и динамические, показывающие переходы единиц из одних групп в другие.

Формы представления статистических данных

Статистические данные должны быть представлены так, чтобы ими можно было пользоваться. Существует 3 основных формы представления статистических данных:

  1. текстовая – включение данных в текст;

  2. табличная – представление данных в таблицах;

  3. графическая – выражение данных в виде графиков.

Текстовая форма применяется при малом количестве цифровых данных.

Табличная форма применяется чаще всего, так как является более эффективной формой представления статистических данных. В отличие от математических таблиц, которые по начальным условиям позволяют получить тот или иной результат, статистические таблицы рассказывают языком цифр об изучаемых объектах.

Статистическая таблица – это система строк и столбцов, в которых в определенной последовательности и связи излагается статистическая информация о социально-экономических явлениях.

Таблица 2. Внешняя торговля РФ за 2000 – 2006 годы, млрд.долл.

Показатель

2000

2001

2002

2003

2004

2005

2006

Внешнеторговый оборот

149,9

155,6

168,3

212

280,6

368,9

468,4

Экспорт

105

101,9

107,3

135,9

183,2

243,6

304,5

Импорт

44,9

53,8

61

76,1

97,4

125,3

163,9

Сальдо торгового баланса

60,1

48,1

46,3

59,9

85,8

118,3

140,7

           в том числе:

 

 

 

 

 

 

 

   со странами дальнего зарубежья

 

 

 

 

 

 

 

      экспорт

90,8

86,6

90,9

114,6

153

210,1

261,1

      импорт

31,4

40,7

48,8

61

77,5

103,5

138,6

      сальдо торгового баланса

59,3

45,9

42,1

53,6

75,5

106,6

122,5

Например, в табл. 2 представлена информация о внешней торговле России, выражать которую в текстовой форме было бы неэффективным.

Различают подлежащее и сказуемое статистической таблицы. В подлежащем указывается характеризуемый объект – либо единицы совокупности, либо группы единиц, либо совокупность в целом. В сказуемом дается характеристика подлежащего, обычно в числовой форме. Обязателен заголовок таблицы, в котором указывается к какой категории и к какому времени относятся данные таблицы.

По характеру подлежащего статистические таблицы подразделяются на простые, групповые и комбинационные. В подлежащем простой таблицы объект изучения не подразделяется на группы, а дается либо перечень всех единиц совокупности, либо указывается совокупность в целом (например, табл. 5). В подлежащем групповой таблицы объект изучения подразделяется на группы по одному признаку, а в сказуемом указываются число единиц в группах (абсолютное или в процентах) и сводные показатели по группам (например, табл. 4). В подлежащем комбинационной таблицы совокупность подразделяется на группы не по одному, а по нескольким признакам (например, табл. 2).

При построении таблиц необходимо руководствоваться следующими общими правилами.

  1. Подлежащее таблицы располагается в левой (реже – верхней) части, а сказуемое – в правой (реже – нижней).

  2. Заголовки столбцов содержат названия показателей и их единицы измерения.

  3. Итоговая строка завершает таблицу и располагается в ее конце, но иногда бывает первой: в этом случае во второй строке делается запись «в том числе», и последующие строки содержат составляющие итоговой строки.

  4. Цифровые данные записываются с одной и той же степенью точности в пределах каждого столбца, при этом разряды чисел располагаются под разрядами, а целая часть отделяется от дробной запятой.

  5. В таблице не должно быть пустых клеток: если данные равны нулю, то ставится знак «–» (прочерк); если данные не известны, то делается запись «сведений нет» или ставится знак «…» (троеточие). Если значение показателя не равно нулю, но первая значащая цифра появляется после принятой степени точности, то делается запись 0,0 (если, скажем, была принята степень точности 0,1).

Иногда статистические таблицы дополняются графиками, когда ставится цель подчеркнуть какую-то особенность данных, провести их сравнение. Графическая форма является самой эффективной формой представления данных с точки зрения их восприятия. С помощью графиков достигается наглядность характеристики структуры, динамики, взаимосвязи явлений, их сравнения.

^ Статистические графики – это условные изображения числовых величин и их соотношений посредством линий, геометрических фигур, рисунков или географических карт-схем. Графическая форма облегчает рассмотрение статистических данных, делает их наглядными, выразительными, обозримыми. Однако графики имеют определенные ограничения: прежде всего, график не может включить столько данных, сколько может войти в таблицу; кроме того, на графике показываются всегда округленные данные – не точные, а приблизительные. Таким образом, график используется только для изображения общей ситуации, а не деталей. Последний недостаток – трудоемкость построения графиков. Он может быть преодолен использованием персонального компьютера (например, «Мастером диаграмм» из пакета Microsoft Office Excel).

По способу построения графики делятся на диаграммы, картограммы и картодиаграммы.

Наиболее распространенным способом графического изображения данных являются диаграммы, которые бывают следующих видов: линейные, радиальные, точечные, плоскостные, объемные, фигурные. Вид диаграмм зависит от вида представляемых данных и задачи построения. В любом случае график обязательно сопровождается заголовком – над или под полем графика. В заголовке указывается, какой показатель изображен, по какой территории и за какое время.

Линейные графики используются для представления количественных переменных: характеристики вариации их значений, динамики, взаимосвязи между переменными. Вариация данных анализируется с помощью полигона распределения, кумуляты (кривой «меньше, чем») и огивы (кривой «больше, чем»). Полигон распределения рассматривается в теме 4 (напр., рис. 5.). Для построения кумуляты значения варьирующего признака откладываются по оси абсцисс, а на оси ординат помещаются накопленные итоги частот или частостей (от f1 до ∑f). Для построения огивы на оси ординат помещаются накопленные итоги частот в обратном порядке (от ∑f до f1). Кумуляту и огиву по данным табл. 4. изобразим на рис. 1.



Рис. 1. Кумулята и огива распределения товаров по величине таможенной стоимости

Применение линейных графиков в анализе динамики рассматривается в теме 5 (напр., рис. 6), а использование их для анализа связей – в теме 6 (напр., рис.). В теме 6 также рассмотрено использование точечных диаграмм (напр., рис. ).

Линейные графики подразделяются на одномерные, используемые для представления данных по одной переменной, и двумерные – по двум переменным. Примером одномерного линейного графика является полигон распределения, а двумерного – линия регрессии (напр., рис. ).

Иногда при больших изменениях показателя прибегают к логарифмической шкале. Например, если значения показателя изменяются от 1 до 1000, то это может вызвать затруднения при построении графика. В таких случаях переходят к логарифмам значений показателя, которые не будут столь сильно различаться: lg 1 = 0, lg 1000 = 3.

Среди плоскостных диаграмм по частоте использования выделяются столбиковые диаграммы (гистограммы), на которых показатель представляется в виде столбика, высота которого соответствует значению показателя (напр., рис. 4).

Пропорциональность площади той или иной геометрической фигуры величине показателя лежит в основе других видов плоскостных диаграмм: треугольных, квадратных, прямоугольных. Можно использовать и сравнение площадей круга – в этом случае задается радиус окружности.

^ Ленточная диаграмма представляет показатели в виде горизонтально вытянутых прямоугольников, а в остальном не отличается от столбиковой диаграммы.

Из плоскостных диаграмм часто используется секторная диаграмма, которая применяется для иллюстрации структуры изучаемой совокупности. Вся совокупность принимается за 100%, ей соответствует общая площадь круга, площади секторов соответствуют частям совокупности. Построим секторную диаграмму структуры внешней торговли РФ в 2006 году по данным табл. 2 (см. рис. 2). При использовании компьютерных программ секторные диаграммы строятся в объемном виде, то есть не в двух, а в трех плоскостях (см. рис. 3).



Рис. 2. Простая секторная диаграмма Рис. 3. Объемная секторная диаграмма

Фигурные (картинные) диаграммы усиливают наглядность изображения, так как включают рисунок изображаемого показателя, размер которого соответствует размеру показателя.

При построении графика одинаково важно все – правильный выбор графического изображения, пропорций, соблюдение правил оформления графиков. Подробнее эти вопросы освещаются в [8] и [5].

Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений. Они показывают размещение изучаемого явления, его интенсивность на определенной территории – в республике, области, экономическом или административном округе и т.д.. Построение картограмм и картодиаграмм рассматривается в специальной литературе, например [3].
^

Лекция 4. Абсолютные и относительные величины.

Абсолютные величины


Для характеристики массовых явлений статистика использует статистические величины (показатели), которые характеризуют группы единиц или совокупность (явление) в целом. Статистические величины (показатели) подразделяются на абсолютные, относительные и средние.

Результаты статистических наблюдений представляют собой абсолютные величины, отражающие уровень развития какого-либо явления или процесса (например, величина экспорта/импорта i-го товара в j-ю страну). Абсолютные величины обозначаются X, а их общее количество в статистической совокупности N.

Абсолютные величины всегда имеют свою единицу измерения (размерность), присущую изучаемому явлению. Широко распространены следующие виды единиц измерения:

  1. натуральные, подразделяющиеся на простые (например, штуки, тонны, метры) и сложные (составные), представляющие собой комбинацию двух разноименных величин (например, киловатт-час);

  2. условно-натуральные (например, алкогольные напитки учитываются в дкл 100% спирта, а различные виды топлива соизмеряют по условному топливу с теплотворной способностью 7000 ккал/кг или 29,3 МДж/кг.);

  3. стоимостные, позволяющие соизмерить в денежной форме товары, которые нельзя соизмерить в натуральной форме (доллары США, рубли и т.д.).

Количество единиц с одинаковым значением признака обозначается f и называется частота. Очевидно, что суммируя число всех единиц с одинаковыми значениями признака5, получаем N, то есть (2):

. (2)

Анализируя абсолютные величины, например, статистические данные о торговле, необходимо сопоставлять эти данные во времени и пространстве, исследовать закономерности их изменения и развития, изучать структуру совокупностей. С помощью абсолютных величин эти задачи не выполнимы, в этом случае необходимо использовать относительные величины.
^

Относительные величины


Относительная величина – это результат деления (сравнения) двух абсолютных величин. В числителе дроби стоит величина, которую сравнивают, а в знаменателе – величина, с которой сравнивают (база сравнения).

Различают относительные величины динамики, структуры, координации, сравнения и интенсивности, для краткости именуемые в дальнейшем индексами.

^ Индекс динамики характеризует изменение какого-либо явления во времени. Он представляет собой отношение значений одной и той же абсолютной величины в разные периоды времени. Данный индекс определяется по формуле (2):

, (2)

где цифры означают: 1 – отчетный или анализируемый период, 0 – прошлый или базисный период.

Критериальным значением индекса динамики служит единица (или 100%), то есть если >1, то имеет место рост (увеличение) явления во времени; если =1 – стабильность; если <1 – наблюдается спад (уменьшение) явления. Еще одно название индекса динамики – индекс изменения, вычитая из которого единицу (100%), получают темп изменения (динамики)с критериальным значением 0, который определяется по формуле (2):

. (2)

Если ^ T>0, то имеет место рост явления; Т=0 – стабильность, Т<0 – спад.

Индекс планового задания – это отношение планового значения признака к базисному. Он определяется по формуле (2):

, (2)

где X1 – планируемое значение; X0 – базисное значение признака.

Например, таможенное управление перечислило в федеральный бюджет в 2006 году 160 млрд.руб., а на следующий год запланировали перечислить 200 млрд.руб., значит по формуле (2): iпз = 200/160 = 1,25, то есть плановое задание для таможенного управления на 2007 год составляет 125% от предыдущего года.

Для определения процента выполнения плана необходимо рассчитать индекс выполнения плана, то есть отношение наблюдаемого значения признака к плановому (оптимальному, максимально возможному) значению по формуле (2):

. (2)

Например, на январь-ноябрь 2006 года таможенные органы запланировали перечислить в федеральный бюджет 1,955 трлн. руб., но фактически перечислили 2,59 трлн. руб., значит по формуле (2): iВП = 2,59/1,955 = 1,325, или 132,5%, то есть плановое задание выполнили на 132,5%.

^ Индекс структуры (доля) – это отношение какой-либо части объекта (совокупности) ко всему объекту. Он определяется по формуле (2):

(2)

В рассмотренном выше примере про экспорт нефтепродуктов в страны СНГ, была рассчитана доля этого экспорта в Грузию по формуле (2): d=10,7/4142 = 0,0026, или 2,6.

^ Индекс координации – это отношение какой-либо части объекта к другой его части, принятой за основу (базу сравнения). Он определяется по формуле (2):

. (2)

Например, импорт России в 2006 году составил 163,9 млрд.долл., тогда, сравнив его с экспортом (база сравнения), рассчитаем индекс координации по формуле (2): iК  = 163,9/304,5 = 0,538, который показывает соотношение между двумя составными частями внешнеторгового оборота, то есть величина импорта России в 2006 году составляет 53,8% от величины экспорта. Меняя базу сравнения на импорт, по той же формуле получим: iК  = 304,5/163,9 = 1,858, то есть экспорт России в 2006 году в 1,858 раза больше импорта, или экспорт составляет 185,8% от импорта.

^ Индекс сравнения – это сравнение (соотношение) разных объектов по одинаковым признакам. Он определяется по формуле (2):

, (2)

где А, Б – сравниваемые объекты.

В рассмотренном выше примере, в котором сопоставлялись величины экспорта США и России, был рассчитан именно индекс сравнения по формуле (2): iс = 904,383/243,569 = 3,71. Меняя базу сравнения (то есть экспорт России – объект А, а экспорт США – объект Б), по той же формуле получим: iс = 243,569/904,383 = 0,27, то есть экспорт России составляет 27% от экспорта США.

Индекс интенсивности – это соотношение разных признаков одного объекта между собой. Он определяется по формуле (2):

. (2)

где X – один признак объекта; Y – другой признак этого же объекта

Например, показатели выработки продукции в единицу рабочего времени, затрат на единицу продукции, цены единицы продукции и т.д.
^

Лекция 5. Средние величины.


Как уже неоднократно было сказано ранее, статистика изучает массовые явления и процессы. Каждое из таких явлений обладает как общими для всей совокупности, так и особенными, индивидуальными свойствами. Различие между индивидуальными явлениями называют вариацией, о ней подробно будет рассказано в теме 3. Здесь же рассмотрим другое свойство массовых явлений – присущую им близость характеристик отдельных явлений. В этом свойстве заключается причина широчайшего применения средних величин. Главное значение средних величин состоит в их обобщающей функции, то есть замене множества различных индивидуальных значений признака средней величиной, характеризующей всю совокупность явлений.

Виды средних величин различаются прежде всего тем, какое свойство, какой параметр исходной варьирующей массы индивидуальных значений признака должен быть сохранен неизменным.

^ Средней арифметической величиной называется такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Иначе можно сказать, что средняя арифметическая величина – среднее слагаемое. При ее вычислении общий объем признака мысленно распределяется поровну между всеми единицами совокупности. Исходя из определения, формула средней арифметической величины имеет вид (2):

. (2)

По формуле (2) вычисляются средние величины первичных признаков, если известны индивидуальные значения признака. Если изучаемая совокупность велика, исходная информация чаще представляет собой ряд распределения или группировку, как, например, табл. 3.

Таблица 3. Распределение студентов группы дневного отделения по возрасту

Возраст студентов, X

17

18

19

20

21

Число студентов, f

3

5

7

4

2

Средний возраст должен представлять собой результат равномерного распределения общего (суммарного) возраста всех студентов. Общий (суммарный) возраст всех студентов, согласно исходной информации табл. 3, можно получить как сумму произведений значений признака в каждой группе Xi, на число студентов с таким возрастом fi (частоты). Получим формулу (2):

, (2)

где i – число групп.

Такую форму средней арифметической величины называют взвешенной арифметической средн в отличие от простой средней, рассчитанной по формуле (2). В качестве весов здесь выступают количество единиц совокупности в разных группах. Название «вес» выражает тот факт, что разные значения признака имеют неодинаковую «важность» при расчете средней величины. «Важнее», весомее возраст студентов 18, 19, 20 лет, а такие значения возраста как 17, 20 или 21 при расчете средней не играют большой роли – их «вес» мал.

По формуле (2) по данным табл. 3 имеем:

= 18,857 (лет).

Как видим, средняя арифметическая величина может быть дробным числом, если даже индивидуальные значения признака могут принимать только целые значения. Ничего необычного для метода средних в этом не заключено, так как из сущности средней не следует, что она обязана быть реальным значением признака, которое могло бы встретиться у какой-либо единицы совокупности.

Если при группировке значения осредняемого признака заданы интервалами, то при расчете средней арифметической величины в качестве значения признака в группах принимают середины этих интервалов, то есть исходят из предположения о равномерном распределении единиц совокупности по интервалу значений признака. Для открытых интервалов в первой и последней группе, если таковые есть, значения признака надо определить экспертным путем исходя из сущности, свойств признака и совокупности. При отсутствии возможности экспертной оценки значения признака в открытых интервалах, для нахождения недостающей границы открытого интервала применяют размах (разность между значениями конца и начала интервала) соседнего интервала (принцип «соседа»).

Например, по данным табл. 4 можно минимальную и максимальную величину веса студентов определить затруднительно, поэтому воспользуемся принципом «соседа» – применим размах соседнего интервала, который у второго и предпоследнего составляет 10 кг, значит первый интервал будет от 50 до 60 кг, а последний – от 80 до 90 кг. Середины интервалов определяем как полусумму нижней и верхней границы интервалов.

Таблица 4. Распределение студентов по весу

Группы студентов

по весу, кг

Количество

студентов, чел.

Середина

интервала Xi

Xi’fi

До 60

6

55

330

60 – 70

8

65

520

70 – 80

5

75

375

Более 80

2

85

170

Итого

21

66,429

1395

Средний вес студентов, рассчитанный по формуле (2) с заменой точных значений признака в группах серединами интервалов, составил:

кг,

что и записано в итоговую строку в 3-м столбце табл. 4. Следует обратить внимание, что итог объемного показателя – это сумма, а итог по столбцам относительных показателей или средних групповых величин – средняя.

Средняя арифметическая величина обладает свойствами, знание которых полезно как при ее использовании, так и при ее расчете.

  1. Сумма отклонений индивидуальных значений признака от его среднего значения равна нулю. Доказательство6:



  1. Если каждое индивидуальное значение признака умножить или разделить на постоянное число, то и средняя увеличится или уменьшится во столько же раз. Доказательство:



Вследствие этого свойства индивидуальные значения признака можно сократить в c раз, произвести расчет средней и результат умножить на c.

  1. Если к каждому индивидуальному значению признака прибавить или из каждого значения вычесть постоянное число, то средняя величина возрастет или уменьшится на это же число. Доказательство:



Это свойство полезно использовать при расчете средней величины из многозначных и слабоварьирующих значений признака аналогично предыдущему свойству.

  1. Если веса средней взвешенной умножить или разделить на постоянное число, средняя величина не изменится. Доказательство:



Используя это свойство, при расчетах следует сокращать веса на их общий сомножитель либо выражать многозначные числа весов в более крупных единицах измерениях.

  1. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем от любого другого числа. Доказательство: составим сумму квадратов отклонений от переменной a: , чтобы найти экстремум этой функции, найдем ее производную по a и приравняем ее нулю, т.е. , отсюда получаем ; ; ; . Таким образом, экстремум суммы квадратов отклонений достигает максимума при a=. Так как логически ясно, что максимума функция иметь не может, этот экстремум является минимумом.

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменную сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной. Ее формула следующая:

. (2)

Главной сферой применения квадратической средней в силу пятого свойства средней арифметической величины является измерение вариации признака в совокупности.

Аналогично, если по условиям задачи необходимо сохранить неизменной сумму кубов индивидуальных значений признака при их замене на среднюю величину, мы приходим к средней кубической величине, имеющей вид:

. (2)

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину, имеющую следующий вид:

. (2)

Основное применение средняя геометрическая находит при определении средних относительных изменений, о чем сказано в теме 6. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения признака, который качественно был бы равноудален как от максимального, так и от минимального значения признака.

Когда статистическая информация не содержит частот f по отдельным вариантам Xi совокупности, а представлена как их произведение Xf, тогда применяется формула средней гармонической взвешенной, для получения которой обозначим Xf=w, откуда f=w/X, и, подставив эти обозначения в формулу (2), получим формулу (2):

. (2)

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны действительные веса f, а известно w=Xf. В тех случаях, когда вес каждого варианта w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой (2):

. (2)

Все рассмотренные выше виды средних величин принадлежат к общему типу степенных средних, имеющему следующий вид:

=. (2)

При m = 1 получаем среднюю арифметическую; при m = 2 – среднюю квадратическую;

при m = 3 – среднюю кубическую; при m = 0 – среднюю геометрическую; при m = –1 – среднюю гармоническую. Чем выше показатель степени m, тем больше значение средней величины (если индивидуальные значения признака варьируют). В итоге, можно построить следующее соотношение, которое называется правилом мажорантности средних:

. (2)
^

Построение ряда распределения


Признаки, изучаемые статистикой, варьируются (отличаются друг от друга) у различных единиц совокупности в один и тот же период или момент времени. Например, величина внешнеторгового оборота варьируется по подразделениям ФТС; величина экспорта (импорта) варьируется по направлениям экспорта (по разным странам-партнерам по внешней торговле), по видам товаров и т.п.

Причиной вариации являются разные условия существования разных единиц совокупности. Например, огромное число причин влияет на масштабы внешней торговли различных стран мира.

Для управления и изучения вариации статистикой разработаны специальные методы исследования вариации, система показателей, с помощью которой вариация измеряется, характеризуются ее свойства.

Первым этапом статистического изучения вариации является построение ряда распределения (или вариационного ряда) – упорядоченного распределения единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

  1. ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака (например, таблица 5); если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (ели признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

  2. дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака Xi и числа единиц совокупности с данным значением признака fi – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

  3. интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака Xi и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Построим ряд распределения внешнеторгового оборота (ВО) по таможенным постам России, для чего необходимо провести статистическое наблюдение, то есть собрать первичный статистический материал, который представляет собой величину ВО по таможенным постам.

Результаты наблюдения ВО по 35 таможенным постам региона за отчетный период представим в виде ранжированного по возрастанию величины ВО ряда распределения (таблица 5).

Таблица 5. Внешнеторговый оборот (ВО) по 35 таможенным постам, млн.долл.

поста

ВО

поста

ВО

поста

ВО

1

24,16

13

54,12

25

65,31

2

27,06

14

54,91

26

69,24

3

29,12

15

55,74

27

71,39

4

31,17

16

55,91

28

77,12

5

37,08

17

56,07

29

79,12

6

39,11

18

56,80

30

84,34

7

41,58

19

56,93

31

86,89

8

44,84

20

57,07

32

91,74

9

46,80

21

58,39

33

96,01

10

48,37

22

59,61

34

106,84

11

51,44

23

59,95

35

111,16

12

52,56

24

62,05

Итого

2100,00

Определим средний размер ВО по формуле (2), приняв за ^ X величину ВО, а за N – численность постов:

== 2100/35 = 60 (млн.долл.)

Дисперсию (о ней будет рассказано чуть позднее – на 4-м этапе анализа вариации в этой теме) определим по формуле :

= = 445,778 (млн.долл.2)

Построим интервальный ряд распределения ВО по таможенным постам, для чего необходимо выбрать оптимальное число групп (интервалов признака) и установить длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной7. Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в ряду распределения определяют по формуле Стерждесса (2) или (2):

(2) или , (2)

где k – число групп (округляемое до ближайшего целого числа); N – численность совокупности.

Из формулы Стерджесса видно, что число групп – функция объема данных (N).

Зная число групп, рассчитывают длину (размах) интервала8 по формуле (2):

, (2)

где Xмax и Xmin — максимальное и минимальное значения в совокупности.

В нашем примере про ВО по формуле Стерждесса (2) определим число групп:

k = 1 + 3,322lg35 = 1+ 3,322*1,544 = 6,129 ≈ 6.

Рассчитаем длину (размах) интервала по формуле (2):

h = (111,16 – 24,16)/6 = 87/6 = 14,5 (млн.долл.).

Теперь построим интервальный ряд с 6 группами с интервалом 14,5 млн.долл. (см. первые 3 столбца табл. 6).

Таблица 6. Интервальный ряд распределения ВО по таможенным постам, млн.долл.

i

Группы постов по величине ВО

Xi

Число постов

fi

Середина интервала

Хi

Хifi

Накопл. частота

fi

| Хi -| fi

(Хi -)2 fi

(Хi -)3 fi

(Хi -)4 fi

1

24,16 – 38,66

5

31,41

157,05

5

147,071

4326,001

-127246,23

3742856,97

2

38,66 – 53,16

7

45,91

321,37

12

104,400

1557,051

-23222,31

346344,16

3

53,16 – 67,66

13

60,41

785,33

25

5,386

2,231

-0,92

0,38

4

67,66 – 82,16

4

74,91

299,64

29

56,343

793,629

11178,84

157461,90

5

82,16 – 96,66

4

89,41

357,64

33

114,343

3268,572

93434,47

2670891,13

6

96,66 – 111,16

2

103,91

207,82

35

86,171

3712,758

159966,81

6892284,32




Итого

35




2128,85




513,714

13660,243

114110,66

13809838,86

Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат. Графическое изображение распределения таможенных постов в выборке по величине ВО приведено на рис. 4. Диаграмма такого типа называется гистограммой9.



Рис. 4. Гистограмма распределения Рис. 5. Полигон распределения

Данные табл. 6 и рис. 4 показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.

Если имеется дискретный ряд распределения или используются середины интервалов (как в нашем примере про ВО – в таблице 6 в 4-м столбце рассчитаны середины интервалов как полусумма значений начала и конца интервала), то графическое изображение такого ряда называется полигоном (см. рис. 5)10, которое получается соединением прямыми точек с координатами Xi и fi.
^

Расчет структурных характеристик ряда распределения


При изучении вариации применяются такие характеристики ряда распределения, которые описывают количественно его структуру, строение. Такова, например, медиана – величина варьирующего признака, делящая совокупность на две равные части – со значением признака меньше медианы и со значением признака больше медианы11. В нашем примере про ВО (табл. 5) медиана – это 18-й таможенный пост из 35 с величиной ВО 56,8 млн.долл. Из этого примера видно принципиальное различие между медианой и средней величиной: медиана не зависит от значений на краях ранжированного ряда. Даже если бы ВО 35-го таможенного поста был в 10 раз больше, величина медианы не изменилась бы. Поэтому медиану часто используют как более надежный показатель типичного значения признака, нежели средняя арифметическая, если ряд значений неоднороден, включает резкие отклонения от средней. В интервальном ряду распределения для нахождения медианы применяется формула:

, (2)

где Ме – медиана;

X0 – нижняя граница интервала, в котором находится медиана;

h – величина (размах) интервала;

– накопленная частота в интервале, предшествующем медианному;

fMe – частота в медианном интервале.

В табл. 6 медианным является среднее из 35 значений, т.е. 18-е от начала значение ВО. Как видно из столбца накопленных частот (6-й столбец), оно находится в третьем интервале. Тогда по формуле (2):

(млн.долл.).

Аналогично медиане вычисляются значения признака, делящие совокупность на 4 равные по численности части – квартили, которые обозначаются заглавной латинской буквой Q с подписным значком номера квартиля. Ясно, что Q2 совпадает с Ме. Для первого и третьего квартилей приводим формулы и расчет по данным табл. 6:

(млн.долл.)

(млн.долл.)

Так как Q2 = Ме = 59,30 млн.долл., видно, что различие между первым квартилем и медианой (–15,87) больше, чем между медианой и третьим квартилем (12,89). Этот факт свидетельствует о наличии некоторой несимметричности в средней области распределения, что заметно и на рис. 4.

Значения признака, делящие ряд на 5 равных частей, называются квинтилями, на 10 частей – децилями, на 100 частей – перцентилями. Эти характеристики применяются при необходимости подробного изучения структуры ряда распределения12.

Безусловно, важное значение имеет такая величина признака, которая встречается в изучаемом ряду распределения чаще всего. Такую величину принято называть модой. В дискретном ряду мода определяется без вычисления как значение признака с наибольшей частотой. Обычно встречаются ряды с одним модальным значением признака. Если в ряду распределения встречаются 2 или несколько равных (и даже несколько различных, но больших чем соседние) значений признака, то он считается соответственно бимодальным или мультимодальным. Это свидетельствует о неоднородности совокупности, возможно, представляющей собой агрегат нескольких совокупностей с разными модами. В интервальном ряду распределения интервал с наибольшей частотой является модальным. Внутри этого интервала находят условное значение признака, вблизи которого плотность распределения (число единиц совокупности, приходящихся на единицу измерения варьирующего признака) достигает максимума. Это условное значение и считается точечной модой. Логично предположить, что такая точечная мода располагается ближе к той из границ интервала, за которой частота в соседнем интервале больше частоты в интервале за другой границей модального интервала. Отсюда получаем обычно применяемую формулу (2):

, (2)

где Мо – мода;

Х0 – нижнее значение модального интервала;

fMo – частота в модальном интервале;

fMo-1 – частота в предыдущем интервале;

fMo+1 – частота в следующем интервале за модальным;

h – величина интервала.

По данным табл. 6 рассчитаем точечную моду по формуле (2):

(млн.долл.).

К изучению структуры ряда распределения средняя арифметическая величина также имеет отношение, хотя основное значение этого обобщающего показателя другое. В интервальном ряду распределения ВО по таможенным постам средняя арифметическая рассчитывается как взвешенная по частоте середина интервалов X (расчет числителя – в 5-м столбце табл. 6) по формуле (2):

== 2128,85/35 = 60,82 (млн.долл.).

Различие между средней арифметической величиной (60,82), медианой (59,30) и модой (58,96) в нашем примере невелико. Чем ближе распределение по форме к нормальному закону, тем ближе значения медианы, моды и средней величины между собой.
^

Лекция.6. Ряды динамики.


Одной из важнейших задач статистики является изучение изменений анализируемых показателей во времени, то есть их динамика. Эта задача решается при помощи анализа рядов динамики (временных рядов).

^ Ряд динамики – это числовые значения определенного статистического показателя в последовательные моменты или периоды времени (т.е. расположенные в хронологическом порядке).

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называют уровнями ряда и обычно обозначают через y. Первый член ряда y1 называют начальным (базисным) уровнем, а последний yn – конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t.

Ряды динамики, как правило, представляют в виде таблицы (см. табл. 7) или графически (см. рис. 6), причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.

Таблица 7. Внешнеторговый оборот (ВО) России за период 2000-2006 гг.

Год

2000

2001

2002

2003

2004

2005

2006

Млрд. долл. США

149,9

155,6

168,3

212,0

280,6

368,9

468,4



Рис. 6. Внешнеторговый оборот (ВО) России за период 2000-2006 гг.

Данные табл. 7 и рис. 6 наглядно иллюстрируют ежегодный рост внешнеторгового оборота (ВО) в России за период 2000-2006 гг.
^

Показатели изменения уровней ряда динамики


Анализ рядов динамики начинается с определения того, как именно изменяются уровни ряда (увеличиваются, уменьшаются или остаются неизменными) в абсолютном и относительном выражении. Чтобы проследить за направлением и размером изменений уровней во времени, для рядов динамики рассчитывают показатели изменения уровней ряда динамики:

  • абсолютное изменение (абсолютный прирост);

  • относительное изменение (темп роста или индекс динамики);

  • темп изменения (темп прироста).

Все эти показатели могут определяться базисным способом, когда уровень данного периода сравнивается с первым (базисным) периодом, либо цепным способом – когда сравниваются два уровня соседних периодов.

^ Абсолютное изменение (абсолютный прирост) уровней рассчитывается как разность между двумя уровнями ряда по формуле (2) – для базисного способа сравнения или по формуле (2) – для цепного. Оно показывает, на сколько (в единицах показателей ряда) уровень одного (i-того) периода больше или меньше уровня какого-либо предшествующего периода, и, следовательно, может иметь знак «+» (при увеличении уровней) или «–» (при уменьшении уровней).

; (2) . (2)

В табл. 8 в столбце 3 рассчитаны базисные абсолютные изменения по формуле (2), а в столбце 4 – цепные абсолютные изменения по формуле (2).

Таблица 8. Анализ динамики ВО России

Год

y









, %

,%

2000

149,9



















2001

155,6

5,7

5,7

1,038

1,038

3,8

3,8

2002

168,3

18,4

12,7

1,123

1,082

12,3

8,2

2003

212,0

62,1

43,7

1,414

1,260

41,4

26,0

2004

280,6

130,7

68,6

1,872

1,324

87,2

32,4

2005

368,9

219,0

88,3

2,461

1,315

146,1

31,5

2006

468,4

318,5

99,5

3,125

1,270

212,5

27,0

Итого

1803,7




318,5




3,125







Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть

. (2)

В нашем примере про ВО подтверждается правильность расчета абсолютных изменений по формуле (2): = 318,5 рассчитана в итоговой строке 4-го столбца, а = 318,5 – в предпоследней строке 3-го столбца табл. 8.

^ Относительное изменение (темп роста или индекс динамики) уровней рассчитывается как отношение (деление) двух уровней ряда по формуле (2) – для базисного способа сравнения или по формуле (2) – для цепного.

; (2) . (2)

Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при >1) или какую его часть составляет (при <1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%.

В табл. 8 в столбце 5 рассчитаны базисные относительные изменения по формуле (2), а в столбце 6 – цепные относительные изменения по формуле (2).

Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть

. (2)

В нашем примере про ВО подтверждается правильность расчета относительных изменений по формуле (2): = 1,038*1,082*1,260*1,324*1,315*1,270 = 3,125 рассчитано по данным 6-го столбца, а = 3,125 – в предпоследней строке 5-го столбца табл. 8.

^ Темп изменения (темп прироста) уровней – относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле (2):

, (2)

или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле (2):

. (2)

В табл. 8 в столбце 7 рассчитаны базисные темпы изменения ВО по формуле (2), а в столбце 8 – цепные темпы изменения по формуле (2). Все расчеты в табл. 8 свидетельствуют о ежегодном росте ВО России за период 2000-2006 гг.
^

Средние показатели ряда динамики


Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщить в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении динамики изменений того или иного показателя ВЭД в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики служит прежде всего средний уровень ряда . Для разных видов рядов динамики он рассчитывается неодинаково. Ряды динамики бывают равномерные (с равными интервалами времени между уровнями), для которых средний уровень определяется по простой формуле средней величины, и неравномерные (с неравными интервалами), для которых используются формулы средних взвешенных (по интервалам времени) величин. В интервальном ряду динамики (в котором время задано в виде промежутков времени, к которым относятся уровни) определяется по формуле средней арифметической, а в моментном ряду (в котором время задано в виде конкретных моментов времени или дат, к которым относятся уровни) – по формуле средней хронологической. В табл. 9 приводятся виды рядов динамики и соответствующие формулы для расчета их среднего уровня .

Таблица 9. Виды средних величин, применяемых при расчете среднего уровня

^ Вид ряда динамики

Название средней величины

Формула средней величины

^ Номер формулы

Равномерный интервальный

Арифметическая простая



(2)

Равномерный моментный

Хронологическая простая



(2)

Неравномерный интервальный

Арифметическая взвешенная



(2)

Неравномерный моментный

Хронологическая взвешенная



(2)

В нашем примере про ВО России за период 2000-2006 гг. имеем равномерный интервальный ряд динамики, поэтому его средний уровень определяем по формуле (2): = 1803,7/7 = 257,671, то есть ВО России в период 2000-2006 гг. составлял ежегодно в среднем 257,671 млрд. долл. США.

Кроме среднего уровня ряда рассчитываются и другие средние показатели:

  • среднее абсолютное изменение (средний абсолютный прирост);

  • среднее относительное изменение (средний темп роста);

  • средний темп изменения (средний темп прироста).

Каждый из этих показателей может рассчитываться базисным и цепным способом.

^ Базисное среднее абсолютное изменение – это частное от деления последнего базисного абсолютного изменения на количество изменений уровней (2); цепное среднее абсолютное изменение уровней ряда – это частное от деления суммы всех цепных абсолютных изменений на количество изменений (2):

Б = (2) Ц = (2)

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Очевидно, что числители формулы (2) и (2) равны между собой по формуле (2), значит, среднее абсолютное изменение не зависит от способа расчета (базисный или цепной), так как результат получится одинаковый. В нашей задаче по формуле (2) или (2):

= 318,5/6 = 53,083, то есть ежегодно в среднем ВО растет на 53,083 млрд. долл.

Наряду со средним абсолютным изменением рассчитывается и среднее относительное. ^ Базисное среднее относительное изменение определяется по формуле (2), а цепное среднее относительное изменение – по формуле (2):

Б== (2) Ц= (2)

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. В нашем примере про ВО: = = 1,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет в 1,209 раза.

Вычитанием 100% из среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики. В нашем примере про ВО: = 1,209 – 1 = 0,209, то есть ежегодно в среднем в период 2000-2006 гг. ВО России растет на 20,9%.
^

Методы выявления основной тенденции (тренда) в рядах динамики


Одна из основных задач изучения рядов динамики – выявить основную тенденцию (закономерность) в изменении уровней ряда, именуемую трендом. Закономерность в изменении уровней ряда в одних случаях проявляется наглядно, в других – может маскироваться колебаниями случайного или неслучайного характера. Поэтому, чтобы сделать правильные выводы о закономерностях развития того или иного показателя, надо суметь отделить тренд от колебаний, вызванных случайными кратковременными причинами. На основании выделенного тренда можно экстраполировать (прогнозировать) развитие явления в будущем. С этой целью (устранить колебания, вызванные случайными причинами) ряды динамики подвергают обработке.

Существует несколько методов обработки рядов динамики, помогающих выявить основную тенденцию изменения уровней ряда, а именно: метод укрупнения интервалов, метод скользящей средней и аналитическое выравнивание. Во всех методах вместо фактических уровней при обработке ряда рассчитываются иные (расчетные) уровни, в которых тем или иным способом взаимопогашается действие случайных факторов и тем самым уменьшается колеблемость уровней. Последние в результате становятся как бы «выравненными», «сглаженными» по отношению к исходным фактическим данным. Такие методы обработки рядов динамики называются сглаживанием или выравниванием рядов динамики.

Простейший метод сглаживания уровней ряда – укрупнения интервалов, для определяется итоговое значение или средняя величина исследуемого показателя. Этот метод особенно эффективен, если первоначальные уровни ряда относятся к коротким промежуткам времени. Например, если имеются данные о ежесуточном производстве мороженого на предприятии за месяц, то, естественно, в таком ряду возможны значительные колебания уровней, так как чем меньше период, за который приводятся данные, тем больше влияние случайных факторов. Чтобы устранить это влияние, рекомендуется укрупнить интервалы времени, например до 5 или 10 дней, и для этих укрупненных интервалов рассчитать общий или среднесуточный объем производства (соответственно по пятидневкам или декадам). В ряду с укрупненными интервалами времени закономерность изменения уровней будет более наглядной. Или, например, имеются ежемесячные данные о производстве мороженого – табл.12, еще более сильно укрупним интервалы – до трех месяцев (см. табл.).

По своей сути метод скользящей средней похож на метод укрупнения интервалов, но в данном случае фактические уровни заменяются средними уровнями, рассчитанными для последовательно подвижных (скользящих) укрупненных интервалов, охватывающих m уровней ряда. Например, если принять m=3, то сначала рассчитывается средняя величина из первых трех уровней, затем находится средняя величина из 2-го, 3-го и 4-го уровней, потом из 3-го, 4-го и 5-го и т.д., т.е. каждый раз в сумме трех уровней появляется новый уровень, а два остаются прежними, что и обусловливает взаимопогашение случайных колебаний в средних уровнях. Рассчитанные из m членов скользящие средние относятся к середине (центру) каждого рассматриваемого интервала.

Сглаживание методом скользящей средней можно проводить по любому числу членов m, но удобнее, если m – нечетное число, так как в этом случае скользящая средняя сразу относится к конкретной временнОй точке – середине (центру) интервала. Если же m – четное, то скользящая средняя относится к промежутку между временнЫми точками: например, при сглаживании по четырем членам (m=4) средняя из первых четырех уровней будет находиться между второй и третьей временной точкой, следующая – между третьей и четвертой и т.д. Тогда, чтобы сглаженные уровни относились непосредственно к конкретным временнЫм точкам, из каждой пары смежных промежуточных значений скользящих средних находят среднюю арифметическую, которую относят к временной точке, находящейся между смежными. Такой прием двойного расчета сглаженных уровней называется центрированием.

Недостатком метода скользящей средней является то, что сглаженный ряд укорачивается по сравнению с фактическим с двух концов: при нечетном m на (m-1)/2, а при четном m – на m/2 с каждого конца. Применяя этот метод, надо помнить, что он сглаживает (устраняет) лишь случайные колебания. Если же, например, ряд содержит сезонную волну (см. 6.6), она сохранится и после сглаживания методом скользящей средней. Кроме того, этот метод сглаживания, как и метод укрупнения интервалов не позволяет выражать общую тенденцию изменения уровней в виде математической модели.

Наиболее совершенным методом обработки рядов динамики в целях устранения случайных колебаний и выявления тренда является выравнивание уровней ряда по аналитическим формулам (или аналитическое выравнивание). Суть аналитического выравнивания заключается в замене эмпирических (фактических, исходных) уровней yi теоретическими , которые рассчитаны по определенному уравнению, принятому за математическую модель тренда, где теоретические уровни рассматриваются как функция времени: = f(t).

При этом каждый фактический уровень yi рассматривается обычно как сумма двух составляющих:

, (2)

где f(t) =­ ­- систематическая составляющая, отражающая тренд и выраженная определенным уравнением; - случайная величина, вызывающая колебания уровней вокруг тренда.

Задача аналитического выравнивания сводится к следующему:

  1. определение на основе фактических данных формы (вида) гипотетической функции = f(t), способной наиболее адекватно отразить тенденцию развития исследуемого показателя;

  2. нахождение по эмпирическим данным параметров указанной функции (уравнения);

  3. расчет по найденному уравнению теоретических (выравненных) уровней.

В аналитическом выравнивании наиболее часто используются простейшие функции, представленные в табл. 10, где обозначено - теоретические (выравненные) уровни (читается как «игрек, выравненный по t»); t – условное обозначение времени (1, 2, 3 …); a0, a1, a2, ... – параметры аналитической функции; k – число гармоник (при выравнивании по ряду Фурье).

Выбор той или иной функции для выравнивания ряда динамики осуществляется на основании графического изображения эмпирических данных. Если по тем или иным причинам уровни эмпирического ряда трудно описать одной функцией, следует разбить анализируемый период на отдельные части и затем выровнять каждую часть по соответствующей кривой.

Таблица 10. Виды математических функций13, используемые при выравнивании

^ Название функции

Вид функции

Формула

Прямая линия



(2)

Парабола 2-го порядка

или

(2)

Парабола 3-го порядка




(2)

Гипербола




(2)

Показательная




(2)

Степенная




(2)

Ряд Фурье




(2)

Нередко один и тот же ряд можно выровнять по разным аналитическим функциям и получить довольно близкие результаты. В нашем примере про ВО России можно произвести выравнивание и по прямой линии, и по параболе. Чтобы решить вопрос о том, использование какой кривой дает лучший результат, обычно сопоставляют суммы квадратов отклонений эмпирических уровней от теоретических (остатки), рассчитанным по разным функциям, то есть:

. (2)

Та функция, при которой эта сумма минимальна, считается наиболее адекватной, приемлемой. Однако сравнивать непосредственно суммы квадратов отклонений можно в том случае, если сравниваемые уравнения имеют одинаковое число параметров. Если же число параметров k разное, то каждую сумму квадратов делят на разность (nk), выступающую в роли числа степеней свободы, и сравнивают уже квадраты отклонений уровней, рассчитанные на одну степень свободы (т.е. остаточные дисперсии на одну степень свободы).

Параметры искомых уравнений (a0, a1, a2, ...) при аналитическом выравнивании могут быть определены по-разному, но наиболее распространенным методом является метод наименьших квадратов (МНК). При этом методе учитываются все эмпирические уровни и должна обеспечиваться минимальная сумма квадратов отклонений эмпирических значений уровней y от теоретических уровней :

. (2)

В частности, при выравнивании по прямой вида (2) параметры и отыскиваются по МНК следующим образом. В формуле (2) вместо записываем его конкретное выражение . Тогда . Дальнейшее решение сводится к задаче на экстремум, т.е. к определению того, при каком значении и функция двух переменных S может достигнуть минимума. Как известно, для этого надо найти частные производные S по и , приравнять их к нулю и после элементарных преобразований решить систему двух уравнений с двумя неизвестными.

В соответствии с вышеизложенным найдем частные производные:



Сократив каждое уравнение на 2, раскрыв скобки и перенеся члены с y в правую сторону, а остальные – оставив в левой, получим систему нормальных уравнений:

(2)

где n – количество уровней ряда; t – порядковый номер в условном обозначении периода или момента времени; y – уровни эмпирического ряда.

Эта система и, соответственно, расчет параметров и упрощаются, если отсчет времени ведется от середины ряда14. Например, при нечетном числе уровней (как в нашем примере про ВО России – 7 уровней) серединная точка времени (год, месяц) принимается за нуль, тогда предшествующие периоды обозначаются соответственно –1, –2, –3 и т.д., а следующие за средним (центральным) – соответственно 1, 2, 3 и т.д. (см. 3-й столбец табл. 11). При четном числе уровней два серединных момента (периода) времени обозначают –1 и +1, а все последующие и предыдущие, соответственно, через два интервала: , , и т.д.

При таком порядке отсчета времени (от середины ряда) = 0, поэтому, система нормальных уравнений (2) упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

(2)

Как видим, при такой нумерации периодов параметр представляет собой средний уровень равномерного интервального ряда, то есть формулу (2). Определим по формуле (2) параметры уравнения прямой для нашего примера про ВО России, для чего исходные данные и все расчеты необходимых сумм представим в табл. 11.

Таблица 11. Вспомогательные расчеты для линейного тренда

Год

y

t

t2

yt









2000

149,9

-3

9

-449,7

97,557

2739,775

25636,584

11614,681

2001

155,6

-2

4

-311,2

150,929

21,822

11394,038

10418,577

2002

168,3

-1

1

-168,3

204,300

1296,000

2848,509

7987,252

2003

212

0

0

0

257,671

2085,879

0,000

2085,879

2004

280,6

1

1

280,6

311,043

926,768

2848,509

525,719

2005

368,9

2

4

737,8

364,414

20,122

11394,038

12371,795

2006

468,4

3

9

1405,2

417,786

2561,806

25636,584

44406,531

Итого

1803,7

0

28

1494,4

1803,700

9652,171

79758,263

89410,434




оставить комментарий
страница1/8
Дата10.10.2011
Размер1,57 Mb.
ТипКонспект, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3   4   5   6   7   8
не очень плохо
  1
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх