скачать ^ § 34. Преобразования Галилея. Механический принцип относительностиВ классической механике справедлив механический принцип относительности (принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Для его доказательства рассмотрим две системы отсчета: инерциальную систему ^ (с координатами х, у, z), которую условно будем считать неподвижной, и систему K' (с координатами x', у', z'), движущуюся относительно K равномерно и прямолинейно со скоростью u (u=const). Отсчет времени начнем с момента, когда начала координат обеих систем совпадают. Пусть в произвольный момент времени t расположение этих систем друг относительно друга имеет вид, изображенный на рис. 58. Скорость u направлена вдоль OO', радиус-вектор, проведенный из О в О', r0=ut. Найдем связь между координатами произвольной точки А в обеих системах. Из рис. 58 видно, что ![]() Уравнение (34.1) можно записать в проекциях на оси координат: ![]() Уравнения (34.1) и (34.2) носят название преобразований координат Галилея. В частном случае, когда система К' движется со скоростью т вдоль положительного направления оси х системы К (в начальный момент времени оси координат совпадают), преобразования координат Галилея имеют вид ![]() В классической механике предполагается, что ход времени не зависит от относительного движения систем отсчета, т. е. к преобразованиям (34.2) можно добавить еще одно уравнение: ![]() Записанные соотношения справедливы лишь в случае классической механики (u<<с), а при скоростях, сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца* (§ 36). * Х. Лоренц (1853—1928) — нидерландский физик-теоретик. Продифференцировав выражение (34.1) по времени (с учетом (34.3)), получим уравнение ![]() которое представляет собой правило сложения скоростей в классической механике. Ускорение в системе отсчета К ![]() Таким образом, ускорение точки ^ в системах отсчета К и К', движущихся друг относительно друга равномерно и прямолинейно, одинаково: ![]() Следовательно, если на точку А другие тела не действуют (а=0), то, согласно (34.5), и а'=0, т. е. система К' является инерциальной (точка движется относительно нее равномерно и прямолинейно или покоится). Таким образом, из соотношения (34.5) вытекает подтверждение механического принципа относительности: уравнения динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат. Галилей обратил внимание, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы не можем определить, покоится корабль или движется, не выглянув в окно. ![]() ^ Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (v<<с). Однако в конце XIX в. выяснилось, что выводы классической механики противоречат некоторым опытным данным, в частности при изучении движения быстрых заряженных частиц оказалось, что их движение не подчиняется законам механики. Далее возникли затруднения при попытках применить механику Ньютона к объяснению распространения света. Если источник и приемник света движутся друг относительно друга равномерно и прямолинейно, то, согласно классической механике, измеренная скорость должна зависеть от относительной скорости их движения. Американский физик А. Майкельсон (1852—1913) в 1881 г., а затем в 1887 г. совместно с Е. Морли (американский физик, 1838—1923) пытался обнаружить движение Земли относительно эфира (эфирный ветер) — опыт Майкельсона — Морли, применяя интерферометр, названный впоследствии интерферометром Майкельсона (см. § 175). Обнаружить эфирный ветер Майкельсону не удалось, как, впрочем, не удалось его обнаружить и в других многочисленных опытах. Опыты «упрямо» показывали, что скорости света в двух движущихся друг относительно друга системах равны. Это противоречило правилу сложения скоростей классической механики. Одновременно было показано противоречие между классической теорией и уравнениями (см. § 139) Дж. К. Максвелла (английский физик, 1831—1879), лежащими в основе понимания света как электромагнитной волны. Для объяснения этих и некоторых других опытных данных необходимо было создать новую механику, которая, объясняя эти факты, содержала бы ньютоновскую механику как предельный случай для малых скоростей (v<<с). Это и удалось сделать А. Эйнштейну, который пришел к выводу о том, что мирового эфира — особой среды, которая могла бы быть принята в качестве абсолютной системы, — не существует. Существование постоянной скорости распространения света в вакууме находилось в согласии с уравнениями Максвелла. Таким образом, А. Эйнштейн заложил основы специальной теории относительности. Эта теория представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно (см. § 13), а пространство однородно (см. § 9) и изотропно (см. § 19). Специальная теория относительности часто называется также релятивистской теорией, а специфические явления, описываемые этой теорией, — релятивистскими эффектами. В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 г. ^ никакие опыты (механические, электрические, оптические), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. ^ скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково. Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт. Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время. Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение, являясь тем самым обоснованием постулатов Эйнштейна — обоснованием специальной теории относительности. ^ Анализ явлений в инерциальных системах отсчета, проведенный А. Эйнштейном на основе сформулированных им постулатов, показал, что классические преобразования Галилея несовместимы с ними и, следовательно, должны быть заменены преобразованиями, удовлетворяющими постулатам теории относительности. Для иллюстрации этого вывода рассмотрим две инерциальные системы отсчета: ^ (с координатами х, у, z) и К' (с координатами х', у', z'), движущуюся относительно К (вдоль оси х) со скоростью v = const (рис. 59). Пусть в начальный момент времени t=t'=0, когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна, скорость света в обеих системах одна и та же и равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки А (рис. 59), пройдя расстояние х = ct, (36.1) то в системе К' координата светового импульса в момент достижения точки А х' = ct'. (36.2) где t' — время прохождения светового импульса от начала координат до точки А в системе К'. Вычитая (36.1) из (36.2), получаем х' – х = c(t' – t). Так как х' х (система К' перемещается по отношению к системе К), то t' t, т. е. отсчет времени в системах К и К' различен — отсчет времени имеет относительный характер (в классической физике считается, что время во всех инерциальных системах отсчета течет одинаково, т. е. t=t'). Эйнштейн показал, что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой: ![]() заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна (формулы представлены для случая, когда ^ движется относительно К со скоростью v вдоль оси х). Эти преобразования предложены Лоренцем в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла (см. § 139) инвариантны. ^ имеют вид ![]() Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при v. Это очевидно, так как если скорость движения системы К' относительно системы К равна v, то скорость движения К относительно К' равна –v. Из преобразований Лоренца вытекает также, что при малых скоростях (по сравнению со скоростью с), т. е. когда <<1, они переходят в классические преобразования Галилея (в этом заключается суть принципа соответствия), которые являются, следовательно, предельным случаем преобразований Лоренца. При v>c выражения (36.3) для х, t, х', t' теряют физический смысл (становятся мнимыми). Это находится, в свою очередь, в соответствии с тем, что движение со скоростью, большей скорости распространения света в вакууме, невозможно. Из преобразований Лоренца следует очень важный вывод о том, что как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой, в то время как в рамках преобразований Галилея эти величины считались абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, как пространственные, так и временные преобразования (см. (36.3)) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени — пространственные координаты, т. е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время. ![]() ^ 1. Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами x1 и x2 в моменты времени t1 и t2 происходят два события. В системе К' им соответствуют координаты ![]() ![]() ![]() ![]() ![]() т. е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета. Если события в системе К пространственно разобщены (х1 x2), но одновременны (t1 = t2), то в системе К', согласно преобразованиям Лоренца (36.3), ![]() Таким образом, в системе ^ эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. Знак разности ![]() ![]() ^ Пусть в некоторой точке (с координатой х), покоящейся относительно системы К, происходит событие, длительность которого (разность показаний часов в конце и начале события) = t2 – t1, где индексы 1 и 2 соответствуют началу и концу события. Длительность этого же события в системе К' ![]() причем началу и концу события, согласно (36.3), соответствуют ![]() Подставляя (37.2) в (37.1), получаем ![]() или ![]() Из соотношения (37.3) вытекает, что <', т. е. длительность события, происходящего в некоторой точке, наименьшая в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Этот результат может быть еще истолкован следующим образом: интервал времени ', отсчитанный по часам в системе К', с точки зрения наблюдателя в системе К, продолжительнее интервала , отсчитанного по его часам. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т. е. ход часов замедляется в системе отсчета, относительно которой часы движутся. На основании относительности понятий «неподвижная» и «движущаяся» системы соотношения для и ' обратимы. Из (37.3) следует, что замедление хода часов становится заметным лишь при скоростях, близких к скорости распространения света в вакууме. В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света ( ![]() ![]() Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с -мезонами. Среднее время жизни покоящихся -мезонов (по часам, движущимся вместе с ними) 2,210–8 с. Следовательно, -мезоны, образующиеся в верхних слоях атмосферы (на высоте 30 км) и движущиеся со скоростью, близкой к скорости с, должны были бы проходить расстояния с 6,6 м, т. е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни -мезона ' = / ![]() ![]() ^ Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет ![]() ![]() ![]() ![]() т. е. ![]() Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (37.4). Из выражения (37.4) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения в ![]() ![]() т. е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится. ^ Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К' в момент времени t' — координатами х', у', z', то ![]() представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и К'. Согласно преобразованиям Лоренца (36.3), ![]() Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности: ![]() Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с ux, а скорость и' относительно К' — с ![]() ![]() Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью с, то формулы (37.5) и (37.6) переходят в закон сложения скоростей в классической механике (см. (34.4)). Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью распространения света в вакууме) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей. Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна (см. § 35). Действительно, если u' = c, то формула (37.6) примет вид ![]() Докажем также, что если складываемые скорости сколь угодно близки к скорости с, то их результирующая скорость всегда меньше или равна с. В качестве примера рассмотрим предельный случай u' = v = с. После подстановки в формулу (37.6) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить. Скорость света в какой-либо среде, равная с/n (n — абсолютный показатель преломления среды), предельной величиной не является (подробнее см. § 189). ^ Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разнос. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-то реальной физической величины, не зависящей от системы отсчета, т. е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами (х, у, z, t), такой физической величиной является интервал между двумя событиями: ![]() где ![]() ![]() Покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив t = t2 – t1, x = x2 – x1, y = y2 – y1 и z = z2 – z1, выражение (38.1) можно записать в виде ![]() ![]() Интервал между теми же событиями в системе К' равен ![]() Согласно преобразованиям Лоренца (36.3), ![]() Подставив эти значения в (38.2), после элементарных преобразований получим, что ![]() ![]() Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета. Теория относительности, таким образом, сформулировала новое представление о пространстве и времени. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея — Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи — пространство-время. Пространство и время не существуют вне материи и независимо от нее. Дальнейшее развитие теории относительности (общая теория относительности, или теория тяготения) показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т. е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения. ^ Масса движущихся релятивистских частиц зависит от их скорости: ![]() где m0 — масса покоя частицы, т. е. масса, измеренная в той инерциальной системе отсчета, относительно которой частица находится в покое; с — скорость света в вакууме; т — масса частицы в системе отсчета, относительно которой она движется со скоростью v. Следовательно, масса одной и той же частицы различна в разных инерциальных системах отсчета. ![]() Из принципа относительности Эйнштейна (см. § 35), утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона ![]() оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса. Основной закон релятивистской динамики материальной точки имеет вид ![]() или ![]() где ![]() — релятивистский импульс материальной точки. Отметим, что уравнение (39.3) внешне совпадает с основным уравнением ньютоновской механики (6.7). Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (39.4). Таким образом, уравнение (39.2) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой. В силу однородности пространства (см. § 9) в релятивистской механике выполняется закон сохранения релятивистского импульса: релятивистский импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса. Анализ формул (39.1), (39.4) и (39.2) показывает, что при скоростях, значительно меньших скорости с, уравнение (39.2) переходит в основной закон (см. (6.5)) классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально переход осуществляется при с). Таким образом, классическая механика — это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме). Экспериментальное доказательство зависимости массы от скорости (39.1) является подтверждением справедливости специальной теории относительности. В дальнейшем (см. § 116) будет показано, что на основании этой зависимости производятся расчеты ускорителей. ^ Найдем кинетическую энергию релятивистской частицы. Раньше (§ 12) было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении: ![]() Учитывая, что dr = v dt, и подставив в (40.1) выражение (39.2), получаем ![]() Преобразовав данное выражение с учетом того, что vdv = vdv, и формулы (39.1), придем к выражению ![]() т. е. приращение кинетической энергии частицы пропорционально приращению ее массы. Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя m0, то, проинтегрировав (40.2), получим ![]() или кинетическая энергия релятивистской частицы имеет вид ![]() Выражение (40.4) при скоростях v«c переходит в классическое: ![]() (разлагая в ряд ![]() А. Эйнштейн обобщил положение (40.2), предположив, что оно справедливо не только для кинетической энергии частицы, но и для полной энергии, а именно любое изменение массы m сопровождается изменением полной энергии частицы, ![]() Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т: ![]() Уравнение (40.6), равно как и (40.5), выражает фундаментальный закон природы — закон взаимосвязи (пропорциональности) массы и энергии: полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле. Закон (40.6) можно, учитывая выражение (40.3), записать в виде ![]() ![]() откуда следует, что покоящееся тело (T=0) также обладает энергией ![]() называемой энергией покоя. В классической механике энергия покоя Е0 не учитывается, считая, что при v=0 энергия покоящегося тела равна нулю. В силу однородности времени (см. § 13) в релятивистской механике, как и в классической, выполняется закон сохранения энергии: полная энергия замкнутой системы сохраняется, т. е. не изменяется с течением времени. Из формул (40.6) и (39.4) найдем релятивистское соотношение между полной энергией и импульсом частицы: ![]() Возвращаясь к уравнению (40.6), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко воем формам энергии, т. е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса ![]() и, наоборот, со всякой массой связана энергия (40.6). Чтобы охарактеризовать прочность связи и устойчивость системы каких-либо частиц (например, атомного ядра как системы из протонов и нейтронов), вводят понятие энергии связи. Энергия связи системы равна работе, которую необходимо затратить, чтобы разложить эту систему на составные части (например, атомное ядро — на протоны и нейтроны). Энергия связи системы ![]() где m0i — масса покоя i-й частицы в свободном состоянии; М0 — масса покоя системы, состоящей из п частиц. Закон взаимосвязи (пропорциональности) массы и энергии блестяще подтвержден экспериментом о выделении энергии при протекании ядерных реакций. Он широко используется для расчета энергетических эффектов при ядерных реакциях и превращениях элементарных частиц. Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи. Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи — пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи. Задачи 7.1. Определить собственную длину стержня (длину, измеренную в системе, относительно которой стержень покоится), если в лабораторной системе (системе отсчета, связанной с измерительными приборами) его скорость v = 0,8 с, длина l = 1 м и угол между ним и направлением движения = 30°. ![]() 7.2. Собственное время жизни частицы отличается на 1,5% от времени жизни по неподвижным часам. Определить = v/с. [0,172] 7.3. Тело, масса покоя которого 2 кг, движется со скоростью 200 Мм/с в системе K', перемещающейся относительно системы К со скоростью 200 Мм/с. Определить: 1) скорость тела относительно системы К; 2) его массу в этой системе. [1) 277 Мм/с; 2) 5,2 кг] 7.4. Воспользовавшись тем, что интервал — инвариантная величина по отношению к преобразованиям координат, определить расстояние, которое пролетел -мезон с момента рождения до распада, если время его жизни в этой системе отсчета t = 5 мкс, а собственное время жизни (время, отсчитанное по часам, движущимся вместе с телом) t0 =2,2 мкс. [1,35 км] 7.5. Определить скорость, при которой релятивистский импульс частицы превышает ее ньютоновский импульс в пять раз. [0,98 с] 7.6. Определить скорость, полученную электроном, если он прошел ускоряющую разность потенциалов 1,2 МэВ. [2,86 Мм/с] 7.7. Определить релятивистский импульс электрона, кинетическая энергия которого 1 ГэВ. [5,3410–19 Нс]
|