Учебное пособие написано в соответствии с действующей программой курса физики для инженерно-технических специальностей высших учебных заведений и предназ­начено для студентов высших технических учебных заведений дневной формы обучения с ограниченным числом часов по физике, icon

Учебное пособие написано в соответствии с действующей программой курса физики для инженерно-технических специальностей высших учебных заведений и предназ­начено для студентов высших технических учебных заведений дневной формы обучения с ограниченным числом часов по физике,


14 чел. помогло.

Смотрите также:
Учебное пособие написано в соответствии с действующей программой курса физики для...
Методические указания и контрольные задания (с программой) для студентов-заочников...
Учебное пособие для студентов и технических работников вузов Издательство Московского...
Учебное пособие для студентов и технических работников вузов Издательство Московского...
Учебное пособие Рекомендовано Учебно-методическим объединением по образованию в области...
Учебник разработан в соответствии с программой подготовки студентов высших учебных заведений по...
Учебник разработан в соответствии с программой подготовки студентов высших учебных заведений по...
Учебное пособие для студентов факультетов психоло­гии высших учебных заведений по специальностям...
Учебное пособие для студентов факультетов психоло­гии высших учебных заведений по специальностям...
Учебное пособие для студентов дефектологических факультетов высших педагогических учебных...
Рабочая программа и задание на курсовой проект с методическими указаниями для студентов VI курса...
Практикум на основе компетентностного подхода учебное пособие для преподавателей...



страницы: 1   2   3   4   5   6   7   8   9   ...   41
вернуться в начало
скачать
^

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения


Механика — часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение. Механическое движе­ние — это изменение с течением времени взаимного расположения тел или их частей.

Развитие механики как науки начинается с III в. до н. э., когда древнегреческий ученый Архимед (287—212 до н. э.) сформулировал закон равновесия рычага и законы равновесия плавающих тел. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564—1642) н окончательно сформулированы английским ученым И. Ньютоном (1643—1727).

Механика Галилея—Ньютона называется классической механикой. В ней изучаются законы движения макроскопических тел, скорости которых малы по сравнению со скоростью света с в вакууме. Законы движения макроскопических тел со скоростями, сравнимыми со скоростью с, изучаются релятивистской механикой, основанной на специальной теории относительности, сформулированной А. Эйнштейном (1879—1955). Для описания движения микроскопических тел (отдельные атомы и элементарные частицы) законы классической механики неприменимы — они заменяются законами китовой механики.

В первой части нашего курса мы будем изучать механику Галилея—Ньютона, т.е. рассматривать движение макроскопических тел со скоростями, значительно меньшими скорости с. В классической механике общепринята концепция пространства и времени, разработанная И. Ньютоном и господствовавшая в естествознании на протяжении XVII—XIX вв. Механика Галилея—Ньютона рассматривает пространство и время как объективные формы существования материи, но в отрыве друг от друга и от движения материальных тел, что соответствовало уровню знаний того времени.

Механика делится на три раздела: I) кинематику; 2) динамику; 3) статику.

Кинематика изучает движение тел, не рассматривая причины, которые это движение обусловливают.

Динамика изучает законы движения тел и причины, которые вызывают или изменя­ют это движение.

Статика изучает законы равновесия системы тел. Если известны законы движения тел, то из них можно установить и законы равновесия. Поэтому законы статики отдельно от законов динамики физика не рассматривает.

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь. Понятие материальной точки — абстрактное, но его введение облегчает решение практических задач. Например, изучая движение планет по орбитам вокруг Солнца, можно принять их за материальные точки.

Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между собой части, каждая из которых рассматривается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы материальных точек. В механике сначала изучают движение одной материальной точки, а затем переходят к изучению движения системы материальных точек.

Под воздействием тел друг на друга тела могут деформироваться, т. е. изменять свою форму и размеры. Поэтому в механике вводится еще одна модель — абсолютно твердое тело. Абсолютно твердым телом называется тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между двумя точками (или точнее между двумя частицами) этого тела остается постоянным.

Любое движение твердого тела можно представить как комбинацию поступатель­ного и вращательного движений. Поступательное движение — это движение, при кото­ром любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Вращательное движение — это движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения.

Движение тел происходит в пространстве и во времени. Поэтому для описания движения материальной точки надо знать, в каких местах пространства эта точка находилась и в какие моменты времени она проходила то или иное положение.

Положение материальной точки определяется по отношению к какому-либо друго­му, произвольно выбранному телу, называемому телом отсчета. С ним связывается система отсчета — совокупность системы координат и часов, связанных с телом от­счета. В декартовой системе координат, используемой наиболее часто, положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r, проведенным из начала системы координат в данную точку (рис. 1).

При движении материальной точки ее координаты с течением времени изменяются. В общем случае ее движение определяется скалярными уравнениями

x = x(t), у = y(t), z = z(t), (1.1)

эквивалентными векторному уравнению

r = r(t). (1.2)

Уравнения (1.1) и соответственно (1.2) называются кинематическими уравнениями дви­жения материальной точки.

Число независимых координат, полностью определяющих положение точки в про­странстве, называется числом степеней свободы. Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя степенями свободы (координаты х, у и z), если она движется по некоторой поверхности, то двумя степенями свободы, если вдоль некоторой линии, то одной степенью свободы.



Исключая t в уравнениях (1.1) и (1.2), получим уравнение траектории движения материальной точки. Траектория движения материальной точки — линия, описыва­емая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис. 2). Отсчет времени начнем с момента, когда точка находилась в положении А. Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной путиs и является скалярной функцией времени: s = s(t). Векторr = r r0, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |r| равен пройденному пути s.
^

§ 2. Скорость


Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r0 (рис. 3). В течение малого промежутка времени t точка пройдет путь s и получит элементарное (бесконечно малое) перемещение r.

^ Вектором средней скорости называется отношение приращения r радиу­са-вектора точки к промежутку времени t:

(2.1)

Направление вектора средней скорости совпадает с направлением r. При неог­раниченном уменьшении t средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:





Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения t путь s все больше будет приближаться к |r|, поэтому модуль мгновенной скорости



Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

(2.2)

При неравномерном движении — модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной v — средней скоро­стью неравномерного движения:



Из рис. 3 вытекает, что v> |v|, так как s > |r|, и только в случае прямолиней­ного движения



Если выражение ds = vdt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + t, то найдем длину пути, пройденного точкой за время t:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид



Длина пути, пройденного точкой за промежуток времени от t1 до t2, дается интегралом


^

§ 3. Ускорение и его составляющие


В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время t движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v1 = v + v. Перенесем вектор v1 в точку А и найдем v (рис. 4).

^ Средним ускорением неравномерного движения в интервале от t до t + t называется векторная величина, равная отношению изменения скорости v к интервалу вре­мени t



^ Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:



Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор v на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v1. Очевидно, что вектор , равный , определяет изменение скорости за время t по моду­лю: . Вторая же составляющая вектора v характеризует изменение ско­рости за время t по направлению.

Тангенциальная составляющая ускорения



т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Найдем вторую составляющую ускорения. Допустим, что точка ^ В достаточно близка к точке А, поэтому s можно считать дугой окружности некоторого радиуса r, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует vn/AB = v1/r, но так как AB = vt, то



В пределе при получим .



Поскольку , угол ^ EAD стремится к нулю, а так как треугольник EAD равнобед­ренный, то угол ADE между v и vn стремится к прямому. Следовательно, при векторы vn и v оказываются взаимно перпендикулярными. Tax как вектор скорости направлен по касательной к траектории, то вектор vn, перпендикулярный вектору скорости, направлен к центру ее кривизны. Вторая составляющая ускорения, равная



называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением).

^ Полное ускорение тела есть геометрическая сумма тангенциальной и нормальной составляющих (рис.5):



Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная состав­ляющая ускорения — быстроту изменения скорости по направлению (направлена к цен­тру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения движе­ние можно классифицировать следующим образом:

1) , аn = 0 прямолинейное равномерное движение;

2) , аn = 0 прямолинейное равнопеременное движение. При таком виде движения



Если начальный момент времени t1=0, а начальная скорость v1=v0, то, обозначив t2=t и v2=v, получим , откуда



Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения





3) , аn = 0 — прямолинейное движение с переменным ускорением;

4) , аn = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы an=v2/r следует, что радиус кривизны должен быть посто­янным. Следовательно, движение по окружности является равномерным;

5) , равномерное криволинейное движение;

6) , — криволинейное равнопеременное движение;

7) , — криволинейное движение с переменным ускорением.
^

§ 4. Угловая скорость и угловое ускорение


Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени t зададим углом . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняется правилу правого винта (рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваются псевдовекторами или аксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

^ Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:



Вектор направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор (рис.7). Размерность угловой скорости dim =T1, а ее единица — ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)



т. е.





В векторном виде формулу для линейной скорости можно написать как векторное произведение:



При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2. Так как промежутку времени t = T соответствует = 2, то = 2/T, откуда



Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:



откуда



Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:



При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном — противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения



Нормальная составляющая ускорения





Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота , угловая скорость , угловое ускорение ) выражается следующими формулами:



В случае равнопеременного движения точки по окружности (=const)



где 0 — начальная угловая скорость.

Задачи

1.1. Зависимость пройденного телом пути от времени задается уравнением s=A+Bt+Ct2+Dt3 (С=0,1 м/с2, D=0,03 м/с3). Определить: 1) время после начала движения, через которое ускорение а тела будет равно 2 м/с2; 2) среднее ускорение а тела за этот промежу­ток времени. [1) 10 с; 2) 1,1 м/с2]

1.2. Пренебрегая сопротивлением воздуха, определить угол, под которым тело брошено к гори­зонту, если максимальная высота подъема тела равна 1/4 дальности его полета. [45°]

1.3. Колесо радиусом R=0,1 м вращается так, что зависимость угловой скорости от времени задается уравнением  = 2At + 5Bt4 (A = 2 рад/с2 и B = 1 рад/с5). Определить полное ускорение точек обода колеса через t=1 с после начала вращения и число оборотов, сделан­ных колесом за это время. [а=8,5 м/с2; N=0,48]

1.4. Нормальное ускорение точки, движущейся по окружности радиусом r=4 м, задается уравне­нием an=A+Bt+Ct2 (А=1 м/с2, B=6 м/с3, С=3 м/с4). Определить: 1) тангенциальное ускорение точки; 2) путь, пройденный точкой за время t1= 5 с после начала движения; 3) полное ускорение для момента времени t2=1 с. [1) 6 м/с2; 2) 85 м; 3) 6,32 м/с2]

1.5. Частота вращения колеса при равнозамедленном движении за t=1 мин уменьшилась от 300 до 180 мин–1. Определить: 1) угловое ускорение колеса; 2) число полных оборотов, сделанных колесом за это время. [1) 0,21 рад/с2; 2) 240]

1.6. Диск радиусом ^ R=10 см вращается вокруг неподвижной оси так, что зависимость угла поворота радиуса диска от времени задается уравнением =A+Bt+Ct2+Dt3 (B=1 рад/с, С=1 рад/с2, D=1 рад/с3). Определить для точек на ободе колеса к концу второй секунды после начала движения: 1) тангенциальное ускорение ; 2) нормальное ускорение аn; 3) полное ускорение а. [1) 1,4 м/с2; 2) 28,9 м/с2; 3) 28,9 м/с2]




Скачать 8,01 Mb.
оставить комментарий
страница2/41
Дата27.09.2011
Размер8,01 Mb.
ТипУчебное пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   ...   41
плохо
  19
не очень плохо
  3
средне
  9
хорошо
  2
отлично
  17
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх