скачатьХАРАКТЕРИСТИКА ТЕКСТОВОЙ ЗАДАЧИ И МЕТОДИКА РАБОТЫ С НЕЙ(лекция)ПланХАРАКТЕРИСТИКА ТЕКСТОВОЙ ЗАДАЧИ И МЕТОДИКА РАБОТЫ С НЕЙ 1 (лекция) 1 План 2 1. ХАРАКТЕРИСТИКА ТЕКСТОВОЙ ЗАДАЧИ И МЕТОДИКА РАБОТЫ С НЕЙ 3 1.1 Понятие тестовой задачи 3 1.2 Роль задачи в начальном курсе математики 5 1.3 Виды арифметических задач 9 2. ОБУЧЕНИЕ ШКОЛЬНИКОВ ПРИЕМАМ РЕШЕНИЯ ТЕКСТОВЫХ АРИФМЕТИЧЕСКИХ ЗАДАЧ 11 2.1 Решение задач на совместное движение 11 2. Задачи, решаемые с помощью таблиц 14 2.3 Решение задач на нахождение части числа и числа по части 17 2.4 Задачи на проценты 24 2.5 Задачи на совместную работу 28 В обучении математике велика роль текстовых задач. Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащихся. Поэтому важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами. Текстовая задача – есть описание некоторой ситуации на естественном языке с требованием дать количественную характеристику какого-либо компонента этой ситуации, установить наличие или отсутствие некоторого отношения между её компонентами или определить вид этого отношения. Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа. Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач. Каждая задача – это единство условия и цели. Если нет одного из этих компонентов, то нет и задачи. Это очень важно иметь в виду, чтобы проводить анализ текста задачи с соблюдением такого единства. Это означает, что анализ условия задачи необходимо соотносить с вопросом задачи и, наоборот, вопрос задачи анализировать направленно с условием. Их нельзя разрывать, так как они составляют одно целое. Математическая задача – это связанный лаконический рассказ, в котором введены значения некоторых величин и предлагается отыскать другие неизвестные значения величин, зависимые от данных и связанные с ними определенными соотношениями, указанными в условии. Любая текстовая задача состоит из двух частей: условия и требования (вопроса). В условии соблюдаются сведения об объектах и некоторых величинах, характеризующих данные объекта, об известных и неизвестных значениях этих величин, об отношениях между ними. Требования задачи – это указание того, что нужно найти. Оно может быть выражено предложением в повелительной или вопросительной форме («Найти площадь треугольника.» или «Чему равна площадь прямоугольника?»). Рассмотрим задачу: На тракторе «Кировец» колхозное поле можно вспахать за 10 дней, а на тракторе «Казахстан» – за 15 дней. На вспашку поставлены оба трактора. За сколько дней будет вспахано это поле? В задаче пять неизвестных значений величин, одно из которых заключено в требовании задачи. Это значение величины называется искомым. Иногда задачи формируются таким образом, что часть условия или всё условие включено в одно предложение с требованием задачи. В реальной жизни довольно часто возникают самые разнообразные задачные ситуации. Сформулированные на их основе задачи могут содержать избыточную информацию, то есть, такую, которая не нужна для выполнения требования задачи. На основе возникающих в жизни задачных ситуаций могут быть сформулированы и задачи, в которых недостаточно информации для выполнения требований. Так в задаче: «Найти длину и ширину участка прямоугольной формы, если известно, что длина больше ширины на 3 метра» – недостаточно данных для ответа на её вопрос. Чтобы выполнить эту задачу, необходимо её дополнить недостающими данными. Одна и та же задача может рассматриваться как задача с достаточным числом данных в зависимости от имеющихся и решающих значений. Рассматривая задачу в узком смысле этого понятия, в ней можно выделить следующие составные элементы:
Задачи и решение их занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка. Понимая роль задачи и её место в обучении и воспитании ученика, учитель должен подходить к подбору задачи и выбору способов решения обоснованно и чётко знать, что должна дать ученику работа при решении данной им задачи. ^ Начальный курс математики раскрывается на системе целесообразно подобранных задач. Значительное место занимают в этой системе текстовые задачи. При рассмотрении смысла арифметических действий, связи существующей между действиями, и взаимосвязи между компонентами и результатами действий непременно используются соответствующие простые текстовые задачи (задачи, решаемые одним арифметическим действием). Текстовые задачи служат также одним из важнейших средств ознакомления детей с математическими отношениями, выражаемыми словами «быть на столько-то больше (меньше)», «быть на столько-то раз больше (меньше)». Они используются и в целях уяснения понятия доли (задачи на нахождение доли величины и искомого значения величины по доле). Текстовые задачи помогают и при формировании ряда геометрических понятий, а также при рассмотрении элементов алгебры. Если мы хотим сформировать у школьников правильное понятие о сложении, необходимо, чтобы дети решили достаточное количество простых задач на нахождение суммы, практически выполняя каждый раз операцию объединения множеств без общих элементов. Выступая в роли конкретного материала для формирования знаний, задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач формирует у детей практические умения, необходимые каждому человеку в повседневной жизни. Например, подсчитать стоимость покупки, вычислить в какое время надо выйти, чтобы не опоздать на поезд и т.п. Использование задач в качестве конкретной основы для ознакомления с новыми знаниями и для применения уже имеющихся у детей знаний играет исключительно важную роль в формировании у детей элементов материалистического мировоззрения. Решая задачи, ученик убеждается, что многие математические понятия, имеют корни в реальной жизни, в практике людей. Через решение задач дети знакомятся с важными в познавательном и воспитательном отношении фактами. Так, содержание многих задач, решаемых в начальных классах, отражает труд детей и взрослых, достижения нашей страны в области народного хозяйства, техники, науки, культуры. Сам процесс решения задач при определенной методике оказывает весьма положительное влияние на умственное развитие школьников, поскольку он требует выполнения умственных операций: анализа и синтеза, конкретизации и абстрагирования, сравнения, обобщения. Так, при решении любой задачи ученик выполняет анализ: отделяет вопрос от условия, выделяет данные и искомые числа; намечая план решения, он выполняет синтез, пользуясь при этом конкретизацией (мысленно рисует условие задачи), а затем абстрагированием (отвлекаясь от конкретной ситуации, выбирает арифметические действия); в результате многократного решения задач какого-либо вида ученик обобщает знания связей между данными и искомым в задачах этого вида, в результате чего обобщается способ решения задач этого вида. Задачи выполняют очень важную функцию в начальном курсе математики – они являются полезным средством развития у детей логического мышления, умения проводить анализ и синтез, обобщать, абстрагировать и конкретизировать, раскрывать связи, существующие между рассматриваемыми явлениями. Решение задач – упражнения, развивающие мышление. Мало того, решение задач способствует воспитанию терпения, настойчивости, воли, способствует пробуждению интереса к самому процессу поиска решения, дает возможность испытать глубокое удовлетворение, связанное с удачным решением. Овладение основами математики немыслимо без решения и разбора задачи, что является одним из важных звеньев в цепи познания математики, этот вид занятий не только активизирует изучение математики, но и прокладывает пути к глубокому пониманию её. Работа по осознанию хода решения той или иной математической задачи даёт импульс к развитию мышления ребенка. Решение задач нельзя считать самоцелью, в них следует видеть средство к углублённому изучению теоретических положений и вместе с тем средство развития мышления, путь осознания окружающей действительности, тропинку к пониманию мира. Кроме того, нельзя забывать, что решение задач воспитывает у детей многие положительные качества характера и развивает их эстетически. ^ Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные. Задача, для решения которой надо выполнить один раз арифметическое действие, называется простой. Задача, для решения которой надо выполнить несколько действий называется составной. Простые задачи в системе обучения математике играют чрезвычайно важную роль. С помощью решения простых задач формируется одно из центральных понятий начального курса математики – понятие об арифметических действиях и ряд других понятий. Умение решать простые задачи является подготовительной ступенью овладения учащимися умением решать составные задачи, так как решение составной задачи сводится к решению ряда простых задач. При решении простых задач происходит первое знакомство с задачей и её составными частями. В связи с решением простых задач дети овладевают основными приемами работы над задачей. На первом этапе знакомства детей с простой задачей перед учителем возникает одновременно несколько довольно сложных проблем:
При знакомстве с задачами и их решением нельзя избежать специфических терминов, но дети должны их понимать, чтобы осознавать смысл задачи. Работа с детьми по усвоению ими терминологии начинается с первых дней занятий в школе и ведётся систематически на протяжении всех лет обучения. Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия. Рассмотрим в качестве примера задачу: «В школе дежурили 8 девочек, а мальчиков на 2 больше. Сколько детей дежурило в школе?». Эта задача включает 2 простых:
Как видим, число, которое было искомым в первой задаче, стало данным во второй. Последовательное решение этих задач является решением составной задачи: 1) 8 + 2 = 10; 2) 8 + 10 = 18. Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время. Запись решения многих составных задач и составление по ним выражения связаны с использованием скобок. Скобки – математический знак, употребляемый для порядка действий. В скобки заключается то действие, которое нужно выполнить раньше. В решении составной задачи появилось существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которым вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи. ^ Начиная с 5-го класса, ученики часто встречаются с этими задачами. Еще в начальной школе учащимся дается понятие «общей скорости». В результате у них формируются не совсем правильные представления о скорости сближения и скорости удаления (данной терминологии в начальной школе нет). Чаще всего, решая задачу, учащиеся находят сумму. Начинать решать эти задачи лучше всего с введения понятий: «скорость сближения», «скорость удаления». Для наглядности можно использовать движение рук, объясняя, что тела могут двигаться в одном направлении и в разном. В обоих случаях может быть и скорость сближения и скорость удаления, но в разных случаях они находятся по-разному. После этого ученики записывают следующую таблицу: Таблица 1. ^
При разборе задачи даются следующие вопросы.
Пример №1. Из городов А и В, расстояние между которыми 600 км, одновременно, навстречу друг другу вышли грузовая и легковая машины. Скорость легковой 100 км/ч, а грузовой – 50 км/ч. Через сколько часов они встретятся? Учащиеся движением рук показывают, как движутся машины и делают следующие выводы:
Решение:
Ответ: через 4 часа Пример №2. Мужчина и мальчик вышли из совхоза в огород одновременно и идут одной и той же дорогой. Скорость мужчины 5 км/ч, а скорость мальчика 3 км/ч. Какое расстояние будет между ними через 3 часа? С помощью движения рук, выясняем:
Решение:
Ответ: 4 км. ^ При подготовке к решению таких задач можно удачно использовать карты сигналы (см. рис. 1).
^ Устный счет следует проводить с использованием данных карт, которые должны быть у каждого учащегося, что позволяет привлечь к работе весь класс. Пример №1. У первого мальчика на 5 марок больше, чем у второго. Как найти сколько у второго? Учащиеся поднимают карту №1 и объясняют, что к числу первого нужно прибавить 5, так как у него на 5 больше, выделяя интонацией «на … больше». ^ У второго 30 марок, а у первого в 3 раза меньше. Сколько марок у первого? Учащиеся должны поднять карту №4 и ответить: 10 марок, так как 30 : 3 = 10. Опорные слова – «в…меньше». Подбор задач на устный счет должен быть разнообразным, но каждый раз ученик должен давать объяснение, называя опорные слова. В таблице опорные слова лучше подчеркивать. ^ Всадник проехал 80 км за 5 часов. Сколько времени потратит на этот путь велосипедист, если его скорость на 24 км/ч больше скорости всадника? Таблица 2 Таблица для решения задачи из примера №3
При заполнении таблицы ученик должен подчеркнуть опорные слова и объяснить, что скорость всадника находится путем сложения 16 км/ч и 24 км/ч. Затем, устанавливая функциональную зависимость между величинами, учащиеся заполняют все строки и столбцы таблицы. После этого, в зависимости от поставленной задачи, ученик или отвечает на вопрос, или оформляет решение. Работая с таблицей, учащийся должен понимать, что при решении задачи все строки и столбцы должны быть заполнены данными задачи, и данными, которые получаются в результате использования функциональной зависимости между величинами. ^ Для подготовки к решению данных задач проводится работа по усвоению понятия дроби. При устном счете нужно добиться, чтобы каждый учащийся знал:
Дробная черта обозначает действие деления, а дробь ![]() Например. Выложить фигуру, изображающую дробь ![]() Наличие подобных конвертов дает возможность наглядного представления о сложении дробей с одинаковыми знаменателями и о вычитании из единицы дроби. Так как к работе привлечены все учащиеся и сложение видно наглядно, после двух примеров учащиеся сами формулируют правило сложении дробей с одинаковыми знаменателями. Рассмотрим вычитание. Из 1 вычтем ![]() ![]() С использованием этого материала дается понятие об основном свойстве дроби, когда на дробь ![]() ![]() Пример №1. В саду 120 деревьев. Березы составляют ![]() Изобразим число деревьев, начертив отрезок. Напишем данные, причем число частей ставим под отрезком, так как с этими числами нужно выполнять деление при решении задачи (см. рис.2). ![]() Рис. 2. Графическое изображение задачи из примера №1 Вопрос: Что означает дробь ![]() Ответ: Все количество деревьев разделили на 3 равные части и березы составляют 2 части. I способ: 120 / 3 = 40 (дер.) – составляют одну часть. 40*2 = 80 (дер.) – было берез. 120 - 80 = 40 (дер.) – было сосен. ^ 120 / 3 = 40 (дер.) 3 – 2 = 1 (часть) – составляют сосны. 40*1 = 40 (дер.) – составляют сосны. Ответ: 40 сосен. Пример №2. 10 га занято свеклой, что составляет ![]() 120 д. ? ![]() Рис. 3. Графическое изображение задачи из примера №2 Изобразим площадь поля отрезком. Выясняем, что обозначает дробь ![]() 10 / 2 = 5 (га) – составляет одна часть. Так как все поле составляет 5 частей, находим площадь поля. 5*5 = 25 (га) – площадь поля. Ответ: 25 га. Пример №3. Около дома стояло 7 машин. Из них – 2 белые. Какую часть всех машин составляют белые? ![]() 7 машин Рис. 4. Графическое изображение задачи из примера №3 Одна машина составляет ![]() ![]() На основе этой задачи нужно отработать такие вопросы: Какую часть составляют 15 мин. от часа? Какую часть составляют 300 г? От килограмма? - и т.д. Пример №4. Пионерский отряд решил собрать 12 кг макулатуры, собрал ![]() ![]() Рис. 5. Графическое изображение задачи из примера №4 В процессе решения задач нужно отметить, что плановое задание всегда принимается за 1 и поэтому 12 кг принимаем как ![]() ![]() ![]() На основе опорных чертежей можно решать и более сложные задачи. Пример №5. Покупатель израсходовал в первом магазине ![]() ![]() Решая эту задачу, нужно учитывать, что мы находим часть числа не от одной суммы, и поэтому чертеж следует дополнить. Решая подобные задачи, учащиеся должны постоянно работать с чертежом. ![]() ![]() ^ Объяснение ![]() Так как 60 рублей составляют ![]() 60 / 3 = 20 (руб.) – составляет 1 часть остатка Весь остаток составляет пять таких частей. Найдем остаток. 20*5 = 100 (руб.) – остаток после первого магазина Полученное число 100 ставим в верхней части чертежа. Замечаем, что 100 рублей составляет лишь 5 частей всех денег, так как по условию частей 7, а в первом магазине покупатель израсходовал 2. 7 – 2 = 5 (частей) – составляют 100 рублей. Найдем, сколько составляет 1 часть всех денег. 100 / 5 = 20 (руб.) – составляет 1 часть всех денег. Так как все деньги составляют 7 частей, найдем их количество. 20*7 = 140 (руб.) – было у покупателя. При устном счете учащиеся должны уметь составлять задачи по готовым чертежам. Например (рис 7.): а) ![]() ![]() б) ![]() ![]() Рис. 7. Решение задач по готовым чертежам В пятом классе после изучения деления и умножения дробей формулируем правило, позволяющее перейти к решению задач без помощи чертежей.
Процент – это сотая часть. наглядная иллюстрация процента может быть продемонстрирована на метровой школьной линейке с делениями по 1 см. В данном случае 1 см является сотой частью линейки, т.е. 1%. Можно дать следующие задания:
Затем работу можно продолжить на отрезках, задавая вопросы, например: Как показать 1% отрезка? Ответ: отрезок нужно разделить на 100 равных частей и взять одну часть. Или: покажите 5% и т.д. (см. рис. 8). ![]() ^ Условимся, что деление отрезка на 100 равных частей делаем словно. Приступая к решению задач, их нужно сравнить с задачами предыдущего пункта, что ускорит усвоение приемов решения. Пример №1. Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге? ![]() ^ Объяснение: Число страниц в Кинге неизвестно. Ставим знак вопроса. Но число страниц составляет 100%. Показываем это на отрезке, выполняя деление на условные 100 равных частей (для слабоуспевающих детей внизу отрезка можно ставить еще и число 100). Затем отмечаем число 138 и показываем, что оно составляет 23%. При решении задач предыдущего раздела и задач на проценты следует объяснить учащимся, что прежде всего нужно выяснить, сколько составляет 1 часть или 1%. Так как 138 страниц составляют 23%, то находим, сколько приходится на 1%. 138 / 23 = 6 (стр.) – составляет 1%. Так как число страниц в книге составляет 100%, то 6*100% = 600 (стр.) – в книге. Ответ: В книге 600 страниц. ^ Мальчик истратил на покупку 40% имевшихся у него денег, а на оставшиеся 30 копеек купил билет в кино. Сколько денег было у мальчика? ![]() ^ Объяснение: Количество всех денег неизвестно, ставим знак вопроса. Все деньги составляют 100%, поэтому разделим отрезок условно на 100 равных частей. Найдем, сколько процентов составляют 30 копеек. 100%-40% = 60% - составляют 30 копеек. Обозначаем 60% на чертеже. Найдем, сколько составляет 1% далее объяснение аналогичное. Пример №3. В школе 700 учащихся. Среди них 357 мальчиков. Сколько процентов учащихся этой школы составляют девочки? ![]() ^ Объяснение: Число учащихся 700 человек, что составляет 100%. Отрезок условно делим на сто равных частей. (Само выполнение чертежа подсказывает ученику первое действие). 700 / 100 = 7 (чел.) – составляют 1%. Узнаем, сколько процентов составляют мальчики. Для этого: 357 / 7 = 51% (Можно сказать и так: «Сколько раз в 357 содержится по 7%?») Работаем с чертежом. Узнаем, сколько процентов составляют девочки. 100%-51%=49% Ответ 49% При решении задачи чертеж должен быть постоянно в поле зрения учащихся, так как является наглядной иллюстрацией задачи. Пример №4. По плану рабочий должен был сделать 35 деталей. Однако он сделал 14 деталей сверх плана. На сколько процентов он перевыполнил план? ![]() Рис.12. Графическое изображение задачи из примера №4 Решая задачу, нужно объяснить, что план всегда составляет 100% и поэтому 35 деталей составляют 100%. Чтобы узнать, сколько составляет 1% нужно: 35 / 100 = 0,35 (дет.) Узнаем, сколько процентов составляют 14 деталей (сколько раз в 14 содержится по 0,35). После изучения обыкновенных дробей и правил нахождения части числа и числа по части большинство задач лучше решать, переходя от процентов к дроби. ^ Ученик прочитал 138 страниц, что составило 23% всех страниц книги. Сколько страниц в книге? 23% составляет 0,23. Так как известна часть количества страниц, а нужно найти все количество, то выполняем действие деления (по правилу, записанному выше): 138 / 0,23 = 13800 : 23=600 (стр.) Пример №2. Покупатель израсходовал в первом магазине 40% всех денег, а остальные - во втором. Сколько денег он израсходовал во втором магазин, если у него было 160 рублей? 40% составляют 0,4. так как известно все количество денег, а находим их часть, то выполняем действие умножения. 160*0,4 = 64 (руб.) – израсходовал покупатель в первом магазине. Находим, сколько израсходовал покупатель во втором магазине. 160 - 64=96 (руб.) Записываем ответ. ^ При решении этих задач нужно выяснить с учащимися, что возможны два случая:
Первые задачи удобно решать, используя таблицы. Пример. Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дней, второй работал на 2 дня меньше. Сколько деталей в день делал второй токарь? Составим таблицу (см. табл.3). Таблица 3 Условие задачи
Объяснение. Так как известны производительность и время работы первого токаря, найдем количество деталей, изготовленных первым токарем. 40*5 = 200 (дет.) – изготовил первый токарь. Работая с таблицей, делаем вывод, что можно найти, сколько деталей изготовил второй токарь. 350 – 200 = 150 (дет.) – изготовил второй токарь. Обратив внимание на опорные слова «на…меньше», делаем вывод, что можно найти, сколько дней работал второй. 5 – 2 = 3 (дня) – работал второй токарь. Зная количество и время работы второго токаря, находим его производительность: 150 / 3 = 50 (дет.) – изготовлял второй токарь в день. Уже при решении первых задач, нужно приучать детей к правильной терминологии. Для решения задач второго типа, текст задачи можно проиллюстрировать чертежами, что помогает учащимся зрительно видеть задачу. Пример 1. Новая машина может выкопать канаву за 8 часов, а старая – за 12. Новая работала 3 часа, а старая - 5 часов. Какую часть канавы осталось выкопать? ![]() Рис.13. Графическое изображение задачи из примера №1 Дадим наглядное представление этих задач. Условимся, что объем выполненной работы неизвестен, поэтому принимаем его за 1 и изображаем в виде отрезка, но отрезков будет три, так как возможны три случая:
Выясним, почему отрезки равной длины (обе машины выполняют одну и ту же работу). Разбор задачи. На сколько равных частей делим первый отрезок? На 8, так как работа выполняется за 8 часов. Что показывает 1 часть? Какую часть работы выполняет новая машина за 1 час, т.е. какова ее производительность? Так как новая машина работала 3 часа, то выполнила ![]() ![]() Аналогичные рассуждения проводим, рассматривая старую машину, и отмечаем на третьем отрезке - ![]() Далее рассматривается третий нижний отрезок, и по нему выясняется, как найти оставшуюся часть, т.е., отрезок, обозначенный знаком вопроса. В связи с экономией времени деление отрезков производится «на глаз», хотя очень полезно показать, как можно разделить быстро на 4 равные части (отрезок делится пополам, а затем каждая часть еще пополам). Аналогично деление на 8 и т.д. На 6 частей – сначала пополам, а потом каждую часть - на три. Пример №2. Два кузнеца, работая вместе, могут выполнить работу за 8 часов. За сколько часов может выполнить работу первый кузнец, если второй выполняет ее за 12 часов? Изображая чертеж, мы проводим те же рассуждения, что и в предыдущей задаче. ![]() ^ Разбор задачи. Первый отрезок делим на 8 равных частей, так как оба выполняют работу за 8 часов. Одна часть показывает, какую часть работы они выполняют вместе за 1 час, т.е., их совместную производительность. Аналогичные рассуждения проводим для расчета производительности второго кузнеца. Зная их совместную производительность и производительность второго, можно найти производительность первого. ![]() Результат показываем на чертеже. Выясняем, сколько часов нужно первому кузнецу для выполнения работы (сколько раз в 1 содержится по ![]() Ответ: 24 часа. ^
|