Учебное пособие Иркутск 2006 Рецензенты icon

Учебное пособие Иркутск 2006 Рецензенты



Смотрите также:
Учебное пособие Иркутск 2006 Рецензенты...
Учебное пособие Иркутск 2006 Печатается по решению редакционно-издательского совета гоу впо...
Учебное пособие Иркутск 2006 содержание...
Учебное пособие Иркутск 2008 удк 316...
Учебное пособие. Иркутск: Изд-во Иргту, 2007. 244 с. Публикации в отечественных...
Краткий курс лекций Москва 2006 удк 50 Рецензенты...
Учебное пособие Москва 2005 ббк 60. 55 Рецензенты : д ф. н., проф...
Учебное пособие Таганрог 2009 ббк 67. 99 Рецензенты...
Учебное пособие Москва 2006 нии гигиены и охраны здоровья детей и подростков гу нцзд рамн ниии...
Бюллетень новых поступлений за май 2008 года...
Учебное пособие Для студентов вузов Кемерово 2006...
Учебное пособие Рекомендовано учебно-методическим советом угаэс уфа 2006...



страницы: 1   2   3   4   5   6   7   8
вернуться в начало
скачать

^ 2.2.1. Выращивания кристаллов из растворов

Выращивание кристаллов из растворов один из самых простейших опытов, которые можно выполнить в любой студенческой или школьной лаборатории, или даже в домашних условиях. Можно очень легко вырастить прозрачные, великолепно ограненные кристаллики алюмокалиевых квасцов из водного раствора за несколько часов. Чтобы подготовить водный раствор алюмокалиевых квасцов, надо растворить в горячей воде истолченные в порошок белые алюмокалиевые квасцы. Количество порошка, которое следует взять, определяется растворимостью данного вещества. Например, при температуре воды 30 оС, растворится лишь 20 грамм на 100 грамм воды, а при 80оС, растворится 60 грамм алюмокалиевых квасцов на 100 грамм воды.[2,4, 21]

Характер растворимости устанавливается на диаграммах зависимости растворимости от различных параметров, и главным образом от температуры и концентрации растворов. Если исходное вещество обладает относительно высокой растворимостью с большим температурным коэффициентом растворимости (т. е. растворимость сильно зависит от температуры), то процесс кри­сталлизации целесообразно вести путем снижения температуры. При этом наиболее быстро достигается вначале кривая растворимости в точке с концентрацией Со, а затем и верхняя гра­ница метастабильной области с концентра­цией С.

Схема 2.14 Кривая температурной зависимости сильной растворимости



область пересыщения

метастабильная область

область недосыщения


Разница (С—Со) характеризует вели­чину пересыщения, необходимую для воз­никновения зародыша и его роста. Управ­ляя условиями процесса, при которых кон­центрация пересыщения «С» остается постоян­ной, добиваются выращивания очень со­вершенных кристаллов. Когда же зависи­мость растворимости от температуры вы­ражена слабо, верхняя граница метастабильной области может быть более рационально достигнута путем изотерми­ческого испарения.


Схема 2.15 Кривая температурной зависимости слабой растворимости




1- область пересыщения

2- метастабильная область

3- область недосыщения


Возможны и такие ва­рианты, при которых более краткий путь в метастабильной области достигается од­новременным снижением температуры и испарением.


Схема 2.16 Кривая температурной зависимости средней растворимости




1-область пересыщения

2-метастабильная область

3-область недосыщения


При отрицательном значении темпера­турного коэффициента растворимости (ког­да растворимость уменьшается с увеличе­нием температуры) для осуществления кристаллизации необходимо не понижение температуры (или испарение) раствора, а наоборот, повышение его температуры (или добавление новых порций растворителя).

Постоянный градиент пересыщения, обе­спечивающий рост кристаллов, можно со­здать и путем установления температур­ного градиента между зонами кристал­лизации и растворения исходной шихты. Перемещение раствора из одной зоны в другую может происходить либо само­произвольно за счет температурной или концентрационной конвекции, либо с по­мощью специальных насосов и мешалок.

Собственные исследования по получению кристаллов.

Можно сделать в домашних условиях опыт по выращиванию кристаллов из водного раствора алюмокалиевых квасцов. Для этого необходимо приготовить раствор алюмокалиевых квасцов, насыщенный при 15 оС. Необходимо было на 100 см 3 воды взять 12 грамм алюмокалиевых квасцов, или на 400 см3 воды взять 48 грамм квасцов. Квасцы необходимо растворить в горячей воде. Если же растворить в 400 грамм горячей воды 60 грамм квасцов, то получится раствор, пересыщенный при 15 оС на 12 грамм, по 3 грамма на каждые 100 см3 раствора. Поэтому- то и надо брать горячую воду: в холодной не растворилось бы больше 48 грамм. Эти лишние 12 грамм должны выделится из остывшего раствора. Но они не выделятся, пока раствор горячий, то есть еще недосыщенный. Для этого необходимо горячий раствор профильтровать и закрыть крышкой банку в которой находится профильтрованный раствор. При соблюдении всех этих предосторожностей раствор незакристаллизовывается, а остается пересыщенным. Также можно приготовить растворы других веществ, только количество растворяемого вещества надо брать иное, в зависимости от его растворимости. Пресыщенный раствор начнет кристаллизоваться, если в него попадает какая-нибудь «затравка». Для этого нужно, чтобы в раствор попало несколько пылинок квасцов. Попав в пересыщенный раствор, пылинки квасцов начнут расти, а уже если в растворе началась кристаллизация, она не остановится, пока не выделится весь избыток растворенного вещества. Так вырастают кристаллики квасцов.

Также можно вырастить один большой кристалл. Для этого в неостывший раствор надо положить или подвесить на нитке небольшой кристаллик – затравку. Сначала он немного растворится, а затем начнет расти. Если в сосуд с раствором опустить какой- нибудь предмет, на котором находится много затравок, то он весь обрастает кристалликами. Например, если опустить в раствор нитку, на которой есть кристаллические пылинки, то на них начнут осаждаться кристаллики, и в результате вырастает «нитка-бус» из многогранных кристалликов. Такие нитки по красоте могут соперничать с искусственно ограненными бусами, но, к сожалению, кристаллы, выращенные из водных растворов, обычно очень быстро тускнеют и легко разрушаются.

Также на затравке можно вырастить и один большой кристалл. Но для этого надо много терпения, аккуратности и настойчивости.

Кристаллы в сосудах можно растить и в сосудах, незакрытых крышкой. По мере испарения воды из открытого сосуда насыщенный раствор постепенно становится пересыщенным, и в нем начинают расти кристаллы.

Большие кристаллы удобнее выращивать из испаряющего раствора. Ведь вес кристалла, выросшего из пересыщенного раствора без испарения, равен весу излишка вещества в растворе. Например, если раствор пересыщен на 10 граммов и вода из него не испаряется, то из этого раствора не может вырасти больше чем 10 граммов кристаллов. А из испаряющего раствора постепенно выкристаллизуется не только излишек, но и все растворенное в нем вещество, если испарить всю воду. Еще лучше поставить сосуды с испаряющимся раствором в эксикатор- плотно закрытую банку особой формы, на дне которой находится какое-либо вещество, которое жадно поглощает воду, испаряющуюся из раствора ( серная кислота. Хлористый кальций и другие.


Рисунок 2.17 Выращивание кристаллов из раствора в эксикаторе.




В эксикаторе раствор испаряется гораздо скорее, а пыль в раствор не попадает, поэтому кристаллы растут здесь быстрее и без помех.

Кристалл растет из пересыщенного раствора, точнее, только из тех участков пересыщенного раствора, которые находятся рядом с кристаллом. Вырастая, кристалл «высасывает» все лишнее вещество вблизи себя, поэтому он оказывается уже окруженным слоем раствора, не пересыщенного а лишь насыщенного. Поэтому, если надо вырастить большие, хорошо ограненные, однородные кристаллы, то необходимо искусственно перемешивать раствор, тщательно регулировать температуру.[2]

В домашних условиях практически невозможно вырастить большие однородные кристаллы, так как температура в комнате никогда не остается постоянной, а при изменении температуры меняется растворимость вещества, и растворы оказываются то пересыщенными, то недосыщенными, кристаллы в них то растут, то растворяются. Поэтому большие однородные кристаллы необходимо растить в специальных термостатах или как сейчас называют автоклавах., это установки в которых автоматически поддерживается заданная температура.. Для перемешивания раствора устанавливают специальную мешалку или двигают кристалл в растворе или же, оставляя кристалл неподвижным, вращают весь кристаллизатор с раствором.[21]

При выращивании синтетических анало­гов ювелирных камней в промышленном производстве на специальных заводах с установленными приборами, широкое использование получи­ли методы кристаллизации из растворов в расплавах (метод флюса) и из гидротермальных растворов. Выращивание кристаллов методом флюса применяется при получении тугоплавких или инконгруэнтно плавящихся соединений, кристаллизация которых невозможна или очень трудоемка из монокомпонентного расплава. В качестве растворителей (флюса) служат расплавы легкоплавких окислов (РЬО, МоО3, ВаО,) и солей (KF, Na2CO3, PdF2, CaCI2, NaCI, BF3,и др.). Растворимость в них тугоплавких соединении должна быть не менее 10% (10—50%) при температурном коэффициенте растворимости порядка 1% на 10 °С. Желательным является подборка такого растворителя, который имел бы общие с кри­сталлизующимся веществом компоненты, а различающиеся компоненты резко отличались бы (для уменьшения возможностей изоморфизма) ионными радиусами. .[2,4, 21]

Выращивание кристаллов из растворов в расплаве осуществляют обычно при нормальном давлении. Процесс проводят в платиновых, иридиевых, графитовых или алундовых тиглях, которые помещают в печи электрического сопротивления. Выбор материала тигля определяется его устойчивостью к взаимодействию с исходным расплавом — растворителем. Кристалли­зацию проводят либо путем постепенного охлаждения расплава, насыщенного при определенной температуре компонентами выращиваемого кристалла, либо в изотер­мических условиях при испарении распла­ва (он должен обладать достаточно вы­сокой упругостью пара), либо методом температурного перепада. Мелкие (при­мерно до 1—1,5 см) кристаллы получают, как правило, при спонтанной кристаллиза­ции; для получения более крупных кристал­лов выращивание проводят на затравках.

Доставка материала к растущей поверх­ности достигается благодаря диффузии и конвекции. Роль последней увеличивается с уменьшением вязкости расплавов. Враще­ние затравки в расплаве или перемеши­вание его с помощью мешалок улучшает условия кристаллизации и увеличивает скорость роста кристаллов. Это связано с уменьшением толщины диффузионного слоя и увеличением доставки вещества растущей поверхности.

Кристаллизация путем медленного испарения и температурного перепада проис­ходит в изотермических условиях. Эти методы применяют в тех случаях, когда выращиваемый кристалл является устойчивой фазой в довольно узкой температурной зоне, и коэффициент распределения примесей обнаруживает заметную зависимость от температуры и скорости роста кристаллов.

Однако наиболее часто кристаллизация из раствора в расплаве осуществляется путем медленного охлаж­дения.[2,11,21]

При исследовательских работах кристал­лизацией из раствора в расплаве полу­чены кристаллы многих соединений, в том числе цинкит, рутил, бромеллит, молибдаты и вольфраматы кальция, кадмия, цинка и других элементов, магнетит, ге­матит, корунд и его окрашенные разно­видности, ортоферриты редких земель, ортохроматы, гранаты, редкоземельные бо­раты, титанаты бария, стронция и свинца, ниобаты и танталаты щелочных металлов и другие соединения. Методом флюса на­лажено промышленное выращивание кри­сталлов синтетического изумруда.

Для выращивания ювелирных кристаллов особенно перспективен гидротермальный метод температурного перепада, поскольку большинство природных ювелирных минералов образовы­вались из водных растворов при высоких температурах и давлениях.

Если воду нагреть под давлением в герметичном сосуде, ее температуру можно поднять выше ее обычной точки кипения 100 °С. Используя соответ­ствующий сосуд, называемый автоклавом, точку кипения можно поднять еще выше. При давлении 144,8 МПа точка кипения воды поднима­ется до 400 оС. Вода такой температуры и связанный с нею перегретый пар действуют как растворитель на многие минералы, в том числе кварц. В связи с такой высокой реакционной способностью перегретой воды внутренние стенки автоклава делают из благородных металлов, таких, как серебро. Гидротермальный метод синтеза повторяет природные процессы роста кварца и других минералов. Используя способность питающих материалов растворяться в перегретых воде и паре, можно получать пересыщенные вод­ные растворы, из которых ювелирные материалы осаждаются и выращивают­ся на затравках.

Как правило, кристаллы выращивают­ся на затравочных пластинках необходи­мой кристаллографической ориентации, обеспечивающей максимальные скорости роста и вхождение (или, наоборот, исклю­чающей вхождение) в кристаллы тех или иных примесей.

Выращивание кристаллов осуществляется в герметичных сосудах (автоклавах) высо­кого давления, изготовляемых из жаро­прочных сталей и сплавов, позволяющих проводить процесс при температурах 250— 600°С и давлениях в десятки и первые сотни мегапаскалей. Необходимость таких высо­ких температур и давлений обусловливается резким возрастанием при этом раст­воряющей способности воды и водных растворов электролитов.

Автоклавы представляют собой аппараты цилиндрической формы с соотношением длины к внутреннему диаметру порядка 8—9. Важнейшей деталью автоклава явля­ется затвор, обеспечивающий надежную герметизацию системы при высоких тем­пературах и давлениях в течение доволь­но длительного (до нескольких месяцев) времени. В автоклавах, работающих при давлениях ниже 60 Мпа, используются обычно зажимные затворы с прокладками, а при более высоких давлениях — само­уплотняющиеся затворы Бриджмэна, в основу которых положен принцип «некомпенсированной площади».[2,6,14]

Внутри автоклав разделен перфориро­ванной перегородкой на две примерно равные зоны: нижнюю — зону раство­рения, в которой помещается питающий материал (шихта), представленный веще­ством кристалла или его компонентами, и верхнюю — зону кристаллизации, в ко­торой размещаются затравочные пластины.


Схема 2.18 автоклава для выращивания кристаллов в гидротермальных растворах.





1-корпус автоклава, 2-крышка, 3-рамка с затравочными пластинками, 4-верхний нагреватель, 5-перегородка с отверстиями(диафрагма), 6-нижний нагреватель, 7-контейнер с шихтой, 8-теплоизоляция, 9-ввод для термоэлемента, 10-ввод для манометра.

Автоклав с шихтой и затравками на 70—80% объема заполняется исходным раствором. При нагревании автоклава жид­кость расширяется. Вначале, до полного заполнения ею всего объема, давление в системе равняется давлению насыщенных паров жидкости. Затем, после полного за­полнения жидкостью свободного объема, давление резко повышается и при данной температуре определяется составом раствора и его плотностью.

Нагрев автоклавов осуществляется в специальных электропечах сопротивления, причем промышленные установки, как пра­вило, имеют свои собственные селективные нагревательные элементы (наружные или внутренние), позволяющие создавать близ­кие к изотермическим зоны внутри авто­клава.

В нижней (шихтовой) зоне автоклава уста­навливается температура на несколько градусов (или первых десятков градусов) выше, чем в верхней зоне. В результате это­го более горячий (и, следовательно, менее плотный) раствор конвективно поднимается в верхнюю менее горячую зону, доставляя к затравочным пластинкам вещество для роста кристаллов. Охлаждение раствора до температуры верхней зоны создает относи­тельное пересыщение и приводит к росту кристаллов. Обедненный (до величины растворимости кристалла) и охлажденный (ставший относительно более плотным) раствор конвективно возвращается в ниж­нюю зону. Нагреваясь в ней, он насыща­ется недостающими компонентами за счет растворения шихты, вновь поднимается в зону кристаллизации и так далее. Таким образом, в системе создаются условия непрерывного роста кристаллов, и процесс может про­должаться практически до полного растворения шихты.

В основе конвективного перемещения раствора лежит разница плотностей нагретого и охлажденного растворов.

Если вещество обладает высокой растворимостью, что плотность раствора в нижней зоне при заданной разности температур стано­вится выше (или равной) плотности раство­и в верхней зоне, то метод температурного перепада в выбранной модификации для выращивания кристаллов неприменим. В таких случаях для нахожде­ния благоприятных условий роста необходимо либо поиск нового растворителя, либо иное расположение зон растворения и ро­ста кристаллов.

Несмотря на кажущуюся простоту гидротермального метода температурного пере­пада, в промышленном масштабе он ис­пользуется при выращивании весьма ограниченного числа кристаллов.. Сложность же метода определяется в том, что процесс протекает в герметичном толсто­стенном сосуде и практически недоступен для прямого наблюдения многокомпонентностью кристаллообразующей системы, и различных участках которой одновре­менно происходят процессы как на гра­нице кристалл — раствор (растворение шихты, рост кристаллов и др.), так и в объеме самого раствора (его перенос с растворенными компонентами, теплообменные явления в самом растворе, между ним и автоклавом, его арматурой, шихтой и растущими кристаллами). Практиче­ски любое из указанных явлений может лимитировать процесс роста кристаллов. Отработка методических приемов при выращивании кристалла на конкретном оборудовании сводится к нахождению та­ких условий, при которых процесс лими­тировался бы суммой микропроцессов, происходящих на границе раствор — кристалл, а процессы растворения и переноса вещества не были бы лимитирующими ста­диями. В этом случае скорость роста кристаллов будет пропорциональна ве­личине реального пересыщения. Если же в автоклаве имеет место недостаточный массообмен, то скорость роста становится зависимой не только от реального пересыщения, но и от массопереноса.

На практике необходимый (избыточный) массоперенос обычно подбирают экспери­ментально путем изменения площади от­верстий в перегородке. Эта величина, как правило, составляет первые проценты от площади всей перегородки. .[2,4, 21]


Большое значение при выращивании кристаллов в гидротермальных условиях имеет выбор затравочных пластин кристаллографической ориентации, поскольку кристалл во время роста ограня­ется комплексом граней и, в зависимости от соотношений скоростей их роста, при­обретает ту или иную форму. Обычно на­ходят такой срез, который обеспечивает наиболее высокие скорости роста и хоро­шее качество кристаллов. Скорости роста при промышленном выращивании кристал­лов гидротермальным методом темпера­турного перепада составляют, как правило, десятые доли миллиметров в сутки и реже достигают 1—2 мм/сут.

На процесс кристаллизации и измене­ние скоростей роста кристаллов при выбранных температуре, давлении, раство­рителе и площади отверстий в перего­родке можно активно влиять путем изме­нения температурного перепада. Мно­гочисленными исследователями установле­но, что при выращивании кристаллов в гидротермальных условиях методом тем­пературного перепада характер зависимо­сти скорости роста от температурного перепада носит прямоли­нейный характер. Это обус­ловлено тем, что зависимость растворимо­сти большинства веществ от температуры также имеет характер, близкий к прямоли­нейному. Поэтому зависимость объема от температурного перепада от­ражает по существу влияние на скорость роста пересыщения. Однако определить истинную величину реального пересыщения, как справедливо отмечено А. А Штернбергом, в усло­виях эксперимента практически невозможно из-за конвективного перемешивания раствора, даже если известны данные по растворимости кристалла при температу­рах нижней и верхней зон автоклава.

Роль состава растворителя при выращи­вании кристаллов — во многих случаях главенствующая, так как именно им зачастую определяются характер и степень конгруэнтности растворения шихтового ма­териала, возможность образования новых фаз, величина и температурный коэффициент растворимости.

Синтетические изумруд и рубин также можно получать гидротермальным методом. Впервые использовал этот метод для наращивания тонкого слоя синтетического изумруда на уже ограненный природный слабоокрашенный берилл в 1960 г. И. Лехлейтнерв Инсбруке (Австрия), под названием «эмерита», затем его изменили на «симеральд». [2,16,21]


^ 2.2. Выращивание кристаллов из газовой фазы

Кристаллизация из газовой фазы имеет ряд преимуществ перед другими методами выращивания кристаллов. Это низкие тем­пературы и пересыщения, обеспечивающие высокое совершенство кристаллов, лег­кость управления составом, слабое воздей­ствие тигля на процесс кристаллизации. Однако путем кристаллизации из газовой фазы можно получить кристаллы очень ограниченных (до 10—15 мм) размеров. Существует ряд методов выращивания кристаллов из газовой фазы, которые можно разделить на две основные груп­пы — методы, основанные на конденсации (метод сублимации, молекулярного пучка), и химические методы (в том числе транспортные реакции). Кристаллиза­ция из собственного пара особенно удобна, для тех веществ, которые сразу переходят из твердого состояния в газообразное, минуя жидкую фазу. Выращивание по ме­тоду сублимации производят в проточных и закрытых системах как в вакууме, так и в атмосфере газа. Кристаллизацию часто ведут в запаянных кварцевых трубках. В од­ной части трубки помещают исходное вещество. Вначале обе части трубки на­греваются до одинаковой температуры с установлением соответствующего этой температуре давления насыщенного пара. Затем одну часть трубки охлаждают до температуры, при которой возникают зародыши кристаллов. Далее температуру опять несколько повышают, чтобы не воз­никли новые зародыши, и при постоян­ных условиях ведут рост на затравки. Сублимацию используют для выращивания кристаллов сульфата кадмия, окиси цинка, карбида кремния и других веществ.

При выращивании кристаллов методами химических реакций состав газовой фазы отличается от состава растущего кристалла. Для кристаллизации могут быть использованы реакции восстановления, термическо­го разложения, окисления и другие.

Важнейшим из химических методов кристаллизации из газовой фазы явля­ется метод химических транспортных реак­ций, который получил наиболее широкое применение для выращивания интерметаллических соединений. Сущность метода химического переноса состоит в том, что твердое или жидкое вещество, взаимо­действуя по обратимой реакции с газооб­разным веществом-транспортером, обра­зует только газообразные продукты, кото­рые после переноса в другую часть систе­мы при изменении условий равновесия разлагаются с выделением кристалличе­ского вещества. В качестве транспортирую­щего агента используются легколетучие га­логены НСI, НI. При оценке тран­спортных свойств реакции решающее зна­чение имеет разность парциальных дав­лений над первичной и вторичной фазами транспортируемого вещества, она должна иметь достаточно большую величину.

Химический перенос может осуществ­ляться в закрытых системах посредством конвекции и диффузии или же в потоке. Открытая система с вынужденным гидро­динамическим режимом более эффектив­на. Здесь, при оптимальной скорости по­тока процесс переноса уже не является лимитирующей стадией процесса роста. [2,4]


^ 2.2.4.Синтез корундов

Выращивать кристаллы корунда трудно, потому, что у него необычно высокая температура плавления: 2030 оС. Невозможно найти тигли которые не разрушались бы от такого жара. Однако нашли метод выращивания и стали выращивать кристаллы методом Вернейля. Кристалл растет из расплава, но без всякого тигля, так как кристаллы рубина растут подобно как сталагмиты в пещере: мелкий- мелкий как пудра, порошок окиси алюминия сыплется непрерывной тонкой струйкой и попадает в пламя гремучего газа, где температура больше двух тысяч градусов, так что порошок тут же расплавляется. Мельчайшие капельки расплава падают вниз на подставку, на которой уже закреплен кристаллик- затравка, и, застывая, кристаллизуются. Так и нарастает кристалл, почти как в старой индийской легенде: падают кроваво- красные капли и застывают самоцветным камнем. [1,2,4, 5]

Рисунок 2.19 и схема 2.20 аппарата Вернейля.




Печь Вернейля состоит из вертикальной кислород –водородной горелки, дозатора порошка и керамического основания. С небольшими изменениями эту печь можно использовать для выращивания синтетических кристаллов корунда, шпинели, рутила. Когда синтезируется корунд, дозатор наполняют высокочистым порошком оксида алюминия. Последний, получают в результате перекристаллизации аммониевых квасцов из водного раствора и прокаливании их при 1100 оС. В процессе прокаливания в виде газов удаляются аммиак и диоксид серы, и остается чистый оксид алюминия. До прокаливания в квасцы добавляют 2-3% окрашивающей примеси. Примесями служат следующие вещества: окись хрома- для рубина, оксиды железа и титана- для синего сапфира, оксид никеля- для желтого сапфира, никель хром и железо- для оранжевого сапфира, марганец- для розового сапфира, медь- для голубовато-зеленого сапфира, кобальт –для темно-синего сапфира, оксиды ванадия и хрома- для получения эффекта смены цвета, имитирующего александрит(розовато-лиловый/светло-синий вместо красный/зеленый). Вибратор (или маленький подвижный молоток) постукивает по дозатору и заставляет порошок оксида алюминия сыпаться с контролируемой скоростью в поток кислорода. Поскольку порошок падает через кислород –водородное пламя с температурой 2200 оС, он плавиться и капает на вращающееся керамическое основание, находящееся в круглой камере из огнеупорного кирпича. . [1,2,4, 5]


Рисунок 2.21 Внутренняя часть печи Вернейля, в которой показана Буля.




Когда расплавленный порошок оксида алюминия начинает застывать, скорость его подачи увеличивается, пока не начинает формироваться корундовая Буля диаметром 15-25мм. По мере роста Були основание опускается, так чтобы верхняя часть кристалла находилась в самой горячей части пламени. Обычно Булю длинной 40-48мм и массой от 200 до 500 карат выращивают около 4 часов.


Рисунок 2.22 Набор типичных корундовых и шпинелевых буль, выращенных в печи Вернейля



Слово «Буля» происходит от французского «boule»-шар: первые кристаллы были круглые и напоминали металлические сферы, использовавшиеся во французской игре в шары.

Быстрый рост и последующее охлаждение Були приводят к возникновению в ней внутренних напряжений, которые вызывают растрескивание при распиливании её перпендикулярно удлинению. В результате Буля (если она еще не треснула) после удаления из печи расщепляется на две части по длине, при этом снимаются внутренние напряжения. Для получения максимального выхода камни обычно гранят из этих двух половинок Були так, чтобы их площадки были параллельны поверхности расщепления Були.
Наиболее важным условием для выращивания кристаллов высокого качества является равномерная подача порошка, поэтому большие усилия тратятся на приготовление питающего материала с тем, чтобы он обладал хорошей сыпучестью. Если порошок слишком грубый, внедрение крупных холодных частичек может вызвать затвердевание тонкого расплавленного слоя. Тогда зарождается много мелких кристаллов и Буля утрачивает структуру монокристалла. Применение слишком мелкого порошка связано с опасностью испарения глинозема в пламени. Оптимальные размеры частиц лежат в субмикронном интервале (меньше тысячных долей миллиметра). Частицы должны иметь правильную форму, так как только в этом случае они одинаково реагируют на воздействие вибратора. Вернейль получал глинозем из аммониевых квасцов, содержащих около 2,5% примеси хромовых квасцов. (Эта концентрация хрома обеспечивала получение камней красного цвета) Порошок такого состава нагревался до разложения квасцов и образования окислов, которые измельчались и просеивались через проволочное сито для селекции частиц необходимого размера. Вернейль в течение 2 часов выращивал кристаллы весом 2,5 – 3 г. (12 – 15 карат). Були были округлой формы, и некоторые из них имели диаметр 5-6 мм. Дополнительные усовершенствования методики и аппаратуры Вернейля позволя­ют, выращивать корунд не только в виде кристаллов, но и в виде стержней длиной 500— 800 мм и диаметром 15—50 мм. Можно также получать монокристалличе­ские диски диаметром до 300 мм и толщи­ной до 40 мм, используя горизонтально расположенную и вращающуюся затравку. Другие усовершенствования привели к получению монокристаллов корунда в виде труб, колец, пластин и других профи­лированных деталей.[21]

Методом Вернейля были впервые полу­чены и звездчатые рубины, и сапфиры. Их производство было освоено в 1947 г. Кристаллы выращивали обычным методом Вернейля, добавляя в шихту окись титана в количестве 0,1—0,3%. За­тем полученные кристаллы подвергали отжигу при температурах от 1100 (72 ч) до 1500°С (2 ч). Эта операция приводила к собирательной кристаллизации законо­мерно ориентированных тонких (шелко­вистых) иголочек рутила внутри кристалла. Пе­риодическое изменение условий кристал­лизации (подача газа, изменение темпера­туры и др.) позволяло получать кристаллы с концентрически расположенными коль­цами астеризма.[4,6,16,]


На протяжении многих десятилетий кристаллы рубина и других разновидностей корунда выращивались в промышленных масштабах исключительно методом Вер­нейля. Однако новые области примене­ния рубина и лейкосапфира потребовали разработки таких способов их выращива­ния, которые позволяли бы получать весь­ма совершенные в структурном отношении и достаточно крупные кристаллы. Такие способы были разработаны, причем за ру­бежом в их основу был положен метод Чохральского, а в Советском Союзе — ме­тод зонной плавки. Кроме того, были разработаны способы выращивания крис­таллов рубина и лейкосапфира из раство­ров в расплаве (метод флюса), из газовой фазы, а также в гидротер­мальных условиях.[11]

Очень большое число появилось научных работ по выращиванию корунда методом плавления в пламени. Главное внимание в них уделяется соотношению между дефектами в кристаллах и условиями, при которых выращивается Буля. Основное несовершенство этого метода выращивания кристаллов заключается в наличие ступенчатого градиента температур между горячей между горячей областью пламени, где располагается расплавленная вершина Були, и более холодной нижней частью. Резкое изменение температуры вдоль оси Були создает сильные напряжения в кристалле и, при и извлечении из печи Були часто растрескиваются (вдоль) с образованием двух полуцилиндрических фрагментов. Температурный градиент может быть уменьшен введением в печь дополнительных нагревателей. Для этих целей можно использовать электрический нагреватель, смонтированный вдоль оси в нижней части пламени, или четыре маленькие кислородно-водородные горелки, расположенные под прямым углом.
Поскольку установить, что рубины выращены при плавлении в пламени, довольно просто, предпринимались попытки получить материал, больше соответствующий природному, для чего применялись различные методы. Рубины, наиболее близкие к природным, получались теми методами, в которых использовались плавни.
В качестве растворителя используют фтористый свинец и смесь этой соли с окисью свинца или окисью бора. Кристаллы выращивались при охлаждении раствора от 1300 до 900 С со скоростью 2 С в час. Использую эту технологию, получают кристаллы рубина размером 4х4х1,2 см. Затравочный кристалл подвешивался на проволоке в средней части раствора, а в нижнюю часть помещали мелкие обломки рубина, которые служили питающим материалом для растущего кристалла.[6,16,]

Получение кристаллов корунда, окра­шенных в другие яркие цвета, является до­вольно сложной задачей, поскольку обус­ловливающие их хромофорные примеси, способные изоморфно замещать алюми­ний в структуре корунда (Fe3+, Мп3+, Тi3+, V3+), входят в него только в сотых и даже тысячных долях процента. Наиболее сложным оказалось получение синего сапфира. Попытки получить его ме­тодом Вернейля с добавкой в шихту окиси кобальта не привели к успеху; выращенные кристаллы имели неприятный серый оттенок, распределение окраски в них было пятнистым. Позднее было установлено, что цвет, близкий к природным сапфирам, может быть достигнут одновременным добавлением в шихту окиси титана и окиси железа.

Введение в корунд трехвалентного марганца приводит к окрашиванию кристаллов желтовато-розовый, титана — в розовато-фиолетовый и никеля — в желтый цвета. Однако наиболее яркие цвета с кра­сивыми оттенками получают введением в шихту смеси различных компонентов, которые представлены в таблице.


Таблица: 2.23 зависимость цвета синтетических корундов от вводимых примесных компонентов.

Цвет корунда

Состав добавки примесных компонентов

Красный, розовый

Cr2O3

Синий

TiO2+Fe2O3

Оранжевый

NiO+ Fe2O3

Оранжевый ( типа падпараджи)

NiO+ Cr2O3

Желтый

NiO

Зеленый ( типа турмалина)

Co2O3+ V2O3

Темно-красный ( типа граната)

Cr2O3+ TiO2+Fe2O3

фиолетовый

TiO2+Fe2O3+ Cr2O3



Другим методом промышленного вы­ращивания кристаллов рубина из расплава является метод Чохральского. Разогрев тигля с шихтой в этом случае осуществляется обычно с помощью высо­кочастотного генератора. Выращивание проводится на ориентированном затравоч­ном кристалле, закрепленном на держате­ле, способном поступательно перемещать­ся и вращаться с заданной скоростью. Кристалл вытягивается со скоростью 5—30 мм/ч при скорости вращения 10— 60 об/мин. Полученные кристаллы пред­ставляют собой стержни диаметром 25— 60 мм и длиной 200—250 мм. Они характеризуются довольно высокой однородностью и низкими (до 2 кгс/мм2) значениями остаточного напряжении. Блочность в кристаллах практически от­сутствует. В относительно большей мере она проявляется в кристаллах, выращен­ных в направлении оси С; такие кристаллы характеризуются и наиболее высокой (105—106 см2) плотностью дислокаций. Качество кристаллов может быть значительно улучшено последующим отжигом.[1,6,11,]

Наличие существенных радиальных и вертикальных температурных градиентов, а также ограниченность количества распла­ва заметно сказываются на распределении в кристалле примеси хрома и вследствие этого на их оптической однородности. Особенности конвективных потоков при вытягивании кристалла методом Чохральского приводят к максимальному захвату хрома в центральной приосевой части стержня-кристалла. При рассмотрении такого стержня вдоль длинной оси в цент­ральной его части наблюдается более плотно окрашенная область диаметром 1—2 мм. В кристаллах, выращенных методом Вернейля или Стокбаргера, повыше­ние концентрации примесного элемента и плотности окраски отмечается, наоборот, по периферии кристаллов.

Твердые и газовые включения в кристал­лах рубина, выращенных методом Чохральского, встречаются значительно реже, чем в вернейлевских рубинах. В наиболее совершенных кристаллах количество рас­сеивающих свет частиц размером более 0,5 мкм составляет не более одной на 1 см3 объема кристалла. Твердые части­цы представлены кристалликами из мате­риала тигля и окислов примесного ком­понента.

Метод Чохральского, позволяет получать кристаллы зна­чительно более однородные в структур­ном отношении, чем кристаллы, выращен­ные методом Вернейля, и это предопреде­ляет широкое использование его для по­лучения кристаллов, необходимых для на­учных и технических целей. Такие кристал­лы, несомненно, являются прекрасным материалом для изготовления ювелирных камней, но стоимость их еще значительно выше, чем вернейлевских рубинов, что связано как со сложностью самих кристал­лизационных установок, так и высокой стоимостью используемых тиглей.

Метод Чохральского был применен так­же для выращивания звездчатых рубинов и сапфиров из расплава, содержащего по­мимо обычных компонентов растворенную окись титана. Захват примеси титана при вытягивании кристаллов этим методом происходит значительно равномернее, чем при выращивании методом Вернейля. По­этому при последующем отжиге ориен­тированные кристаллики двуокиси титана распределяются по всему объему крис­ик равномерно, без характерных для вернейлевских ик четких слоев роста. [2,4,17]

Крупные кристаллы лейкосапфира мас­сой до 10 кг были выращены видоизменен­ным методом Киропулоса. При крис­таллизации расплав использовался на 100%. Шихтой служил бой кристаллов вернейлевского лейкосапфира. Скорость роста кристаллов достигала 250 г/ч. Кристаллы характеризуются высокой степенью совер­шенства. В них не наблюдаются ни блочность, ни слои, ни зоны роста. Вдоль цент­ральной оси кристаллов не обнаружива­ется оптическая неоднородность, харак­терная для кристаллов, выращенных мето­дом Чохральского.

Одним из лучших современных методов выращивания крупных кристаллов корунда высокого качества является метод Багдасарова, являющийся одним из модифика­ций метода горизонтальной зонной плавки. Окись алюминия с необходимой леги­рующей добавкой помещается в молибде­новый контейнер-лодочку в вакуумированной кристаллизационной камере. Лодочка перемещается в горизонтальном направле­и со скоростью порядка 10 мм/ч и про­ходит через локальную температурную об­ласть, обеспечивающую расплавление ших­ты в довольно узкой зоне, достаточной для испарения посторонних примесей. Расплавление шихты осуществляется с по­мощью вольфрамового нагревателя. Сис­тема молибденовых экранов-отражателей и водяного охлаждения обеспечивает на­дежную работу установок, позволяющих получать кристаллы в виде, пластин раз­мером до нескольких сотен миллиметров.

Кристаллы корунда могут быть выраще­ны из расплава глинозема путем его конт­ролируемого охлаждения при заданном температурном градиенте. Плавле­ние окиси алюминия с соответствующей добавкой окиси хрома проводится в мо­либденовом тигле в вакуумной (давление порядка ~0,14 Па) печи с графитовым нагревателем.


Схема 2.24 выращивания кристаллов корунда из расплава с помощью газового охлаждения.




1-нагреватель, 2- металлическая крышка, 3- расплав, 4- тигель, 5- затравочный кристалл, 6- ввод газа, 7- область роста кристалла ( стрелки показывают направление роста).

Дно тигля в средней части охлаждается регулируемым потоком газа (гелия) и вызывает локальное пе­реохлаждение, приводящее к росту крис­ик. Таким способом удается выращи­вать довольно крупные кристаллы с диа­метром до 150 мм и толщиной до 70 мм.

Монокристаллический корунд весьма высокого качества (плотность дислокаций около 102 см2, остаточные напряжения порядка 0,3—0,5 кгс/см2, может быть получен методом Стокбаргера. Цилиндри­ческий молибденовый контейнер с затрав­кой, закрепленной на его дне, и расплавом окиси алюминия равномерно с заданной скоростью перемещается вниз. Рост крис­ика происходит после прохождения поверхности раздела затравка — расплав изотермы температуры плавления корун­да. Длина выращенных кристаллов до 220 мм, диаметр до 50 мм.

Значительно меньшее распространение для выращивания монокристаллов лейкосапфира получил метод кристаллизации из газовой фазы. Процесс этот про­водится обычно в открытой проточной системе и состоит в подаче в зону кристал­лизации газовой смеси, состоящей из хло­ридов алюминия и хрома в потоке водо­рода и углекислоты. Вместо последней могут быть использованы СО и Аг. Крис­таллизация осуществляется при темпера­турах 1550—1750°С и связана с реакцией 2А1С13(газ) + ЗН2(газ)+ЗСО2(газ) –» А12О3 (кристалл)+ЗСО(газ)+6НС1(газ),

Кристаллы рубина выращиваются так­же методом флюса при использовании в качестве растворителей смеси окислов и фторидов свинца или последних с окисью бора. Растворимость корунда в расплавах этих соединений при температурах 1300— 1400° С может достигать 30—40%. Крис­таллизация осуществляется в платиновых удлиненных цилиндрических тиглях объ­емом несколько литров.

При использовании в качестве раствори­теля фтористого свинца (температура плавления 888° С) рост кристаллов корунда осуществляется в интервале температур 1200—1400° С. Шихту готовят из смеси РdF2 и А12О3 с соотношением 3:1 и с небольшой добавкой окиси хрома. Крис­таллизацию ведут после гомогенизации расплава при температуре 1400° С путем медленного охлаждения его со скоростью 1,5 град/ч. При этом образуются гексагональные пластинки размером в несколь­ко миллиметров (до 10—15 мм). Умень­шение скорости охлаждения приводит к появлению изометричных кристаллов. Такие кристаллы могут быть весьма со­вершенными в структурном отношении и практически не содержать дислокаций, но в них всегда отмечается неравномерность распределения окраски. Максималь­ный захват изоморфного хрома отмечает­ся наиболее медленно растущей гранью пинакоида {0001}, поэтому более интенсив­ную окраску имеют центральные участки кристаллов, сложенные пирамидой роста пинакоида. Периферические области крис­ик, представленные пирамидами роста более быстрорастущих граней ромбоэд­ров, окрашены менее интенсивно. Но вмес­те с этим в них может наблюдаться не­структурная примесь в виде мелких двух­фазных включений (твердая фаза — газ) захваченной маточной среды.

Первые крупные кристаллы рубина мас­сой до 100 кар были выращены, по-види­мому, методом флюса в 1956 г. По­лагают, что выращивание их осуществля­лось из раствора в расплаве молибдата лития.

Наиболее совершенные кристаллы руби­на, полученные методом флюса, имели форму гексагональных пластин размером до 3 см в поперечнике и толщиной до 1 см. Они были получены в платиновых тиглях из растворов окиси алюминия в рас­плаве состава РdО—РdF2—В2О3 с неболь­шой добавкой окиси хрома. Кристаллиза­ция осуществлялась в температурном ин­тервале 1260—950°С со скоростью охлаж­дения 1 град/ч. Скорости роста кристаллов .при выра­щивании методом флюса значительно (в 10—15 раз) уступают скоростям роста кристаллов из расплава. Даже при весьма длительном процессе размеры таких кристаллов не могут превысить первых санти­метров. Поскольку кристаллизация проис­ходит значительно ниже точки плавления, кристаллы характеризуются гранным ростом, имеют естественную кристаллогра­фическую огранку и, как следствие этого, отчетливое зонально – секториальное стро­ение и распределение примесей. Поэтому кристаллы рубина и сапфира, выращенные методом флюса, не могут пока конкури­ровать в области технического использова­ния с кристаллами, полученными из распла­ва. Однако такие кристаллы являются ве­ликолепным материалом для изготовле­ния ювелирных камней, наиболее близких по внутреннему строению и характеру окраски к природным рубинам.

Были предприняты также попытки выра­щивания рубина в гидротермальных рас­творах на затравках, представленных ока­танными обломками природных кристал­лов, предположительно из Бирмы. После их доращивания кристаллы приобретали форму усеченных гексагональных призм, ограниченных небольшими гранями ба­зального пинакоида. Внешний вид таких кристаллов был очень близок к природным. На ювелирном рынке они получили назва­ние «рекристаллизованных рубинов»

В последние годы разработаны новые методы выращивания корунда. Однородные, высокосовершенные кристаллы рубина и сапфира выращивают из расплава несколькими различными методами. В Институте кристаллографии имени А. В. Шубникова Х. С. Багдасаровым создан новый метод направленной кристаллизации, которым выращивают крупногабаритные кристаллы сапфира. Сейчас научились выращивать большие толстые пластины сапфира.[2,5,11,]





оставить комментарий
страница3/8
Дата25.09.2011
Размер1,76 Mb.
ТипУчебное пособие, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх