Программа к учебнику А. Н. Колмогорова и др. «Алгебра и начала анализа», 10 класс (базовый уровень) icon

Программа к учебнику А. Н. Колмогорова и др. «Алгебра и начала анализа», 10 класс (базовый уровень)


Смотрите также:
Учебнику А. Н. Колмогорова и др. «Алгебра и начала анализа», 11 класс (базовый уровень)...
Учебнику С. М. Никольского и др. «Алгебра и начала анализа», 10 класс (базовый уровень)...
Учебнику А. Н. Колмогорова и др. «Алгебра и начала анализа», 10 класс (профильный уровень)...
Рабочая программа к учебнику С. М. Никольского и др. «Алгебра и начала анализа»...
Учебнику А. Г. Мордковича «Алгебра и начала анализа», 10-11 класс, (базовый уровень)...
Учебнику А. Г. Мордковича «Алгебра и начала анализа», 10-11 класс, (базовый уровень)...
Программа по алгебре и началам анализа для 10 класса составлена на основе примерной программы...
Учебнику "Алгебра и начала анализа. 10-11 класс."...
Рабочая программа по математике (профильный уровень) для 11 класса...
Учебный план 6 часов в неделю (из них 4 ч алгебра и начала анализа, 2 ч геометрия) Класс 11...
Название учебника...
Название учебника...



Программа

к учебнику А.Н. Колмогорова и др.

«Алгебра и начала анализа», 10 класс (базовый уровень).


Пояснительная записка.

Общая характеристика учебного предмета


При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления.

Цели


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.
Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится не менее 280 часов из расчета 4 часа в неделю.
Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Тематическое планирование составлено к УМК А.Н. Колмогорова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2000-2004 годов на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в журнале «Математика в школе » №2, 2005.

Курсивом в тематическом планировании выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников. Подчеркиванием выделен материал, содержащийся в Федеральном компоненте государственных образовательных стандартов среднего (полного) общего образования, но отсутствующий в учебнике А.Н. Колмогорова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2000-2004 годов. В скобках указан номер учебного пособия, представленного в списке литературы, где можно найти материал по указанной теме.

В примерном поурочном планировании первый вариант рассчитан на 2 часа в неделю в первом полугодии и 3часа в неделю во втором полугодии, второй вариант на 3 недельных часа.


^ Тематическое планирование к учебнику А.Н. Колмогорова и др.

«Алгебра и начала анализа», 10 класс (базовый уровень )

Тригонометрические функции любого угла (6часов/ 6 часов).

. Синус, косинус, тангенс и котангенс произвольного угла. Радианная мера угла

^ Основные тригонометрические формулы (8 часов/9 часов, из них контрольные работы – 1 час).

. Основные тригонометрические тождества. Формулы приведения. Преобразование простейших тригонометрических выражений.

^ Формулы сложения и их следствия (6 часов/7 часов).

Синус, косинус и тангенс суммы и разности двух аргументов. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование простейших тригонометрических выражений.

^ Тригонометрические функции числового аргумента (5 часов/ 6 часов, из них контрольные работы – 1 час).

Синус, косинус, тангенс и котангенс действительного числа. Тригонометрические функции и их графики.

^ Основные свойства функций (12 часов/ 13 часов, из них контрольные работы – 1 час).

Понятие функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, основной период, ограниченность. Преобразование графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой y=x, растяжение и сжатие вдоль осей координат.

Решение тригонометрических уравнений и неравенств (12 часов/ 14 часов, из них контрольные работы – 1 час).

Арксинус, арккосинус, арктангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений и их систем. Простейшие тригонометрические неравенства.

Обратная функция. ^ Область определения и область значений обратной функции. График обратной функции.

Производная (13 часов/ 15 часов, из них контрольные работы – 1 час).

^ Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечная геометрическая прогрессия и ее сумма.

^ Понятие о непрерывности функции

Понятие о производной. Производная суммы, разности, произведения, частного. Производные линейной, степенной и тригонометрических функций. Производная обратной функции и композиции данной функции с линейной.

^ Применение непрерывности и производной (7 часов/ 9 часов).

Использование непрерывности функций при решении неравенств. Метод интервалов. Уравнение касательной к графику функции. Нахождение скорости для процесса, заданного формулой или графиком. Вторая производная и ее физический смысл.

^ Применение производной к исследованию функции (12 часов/ 16 часов, из них контрольные работы – 1 час).

Применение производной к исследованию функций и построению графиков. Примеры использования производной для нахождения наилучшего решения в прикладных, в том числе социально-экономических, задачах.

Повторение курса алгебры и математического анализа за 10 класс (6 часов/ 8 часов.
^

ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ десятиклассников


В результате изучения математики на базовом уровне ученик должен

знать/понимать1

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа;

  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

^ Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики тригонометрических функций;

  • описывать по графику и в простейших случаях по формуле2 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь

  • вычислять производные изученных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  • решать рациональные уравнения и неравенства, простейшие тригонометрические уравнения, их системы;

  • составлять уравнения и неравенства по условию задачи;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей.



Список литература


1. Методические рекомендации к учебникам математики для 10-11 классов, журнал «Математика в школе» №2-2005год;

2.Алгебра и начала анализа: Учеб. для 10–11 кл. общеобразоват. учреждений /А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2004.

3.Дидактические материалы по алгебре и началам анализа для 10 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

4.Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. – М.: Просвещение, 2003.

5.Алгебра: Учеб. для 9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. С.А. Теляковского. – М.: Просвещение, 2004.

6.Алгебра и начала анализа: Учеб. для 11 кл. общеобразоват. учреждений /С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2003.

7. Алгебра для 9 класса: Учеб. пособие для учащихся шк. и кл. с углубл. изуч. математики /Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев; Под ред. Н.Я. Виленкина. – М.: Просвещение, 2001.



1 Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений

2 Требования, выделенные курсивом, не применяются при контроле уровня подготовки выпускников профильных классов гуманитарной направленности.




Скачать 86.19 Kb.
оставить комментарий
Дата25.09.2011
Размер86.19 Kb.
ТипПрограмма, Образовательные материалы
Добавить документ в свой блог или на сайт

отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

Рейтинг@Mail.ru
наверх