Задачи: изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования; изучить опыт работы учителей, преподающих данный курс icon

Задачи: изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования; изучить опыт работы учителей, преподающих данный курс


Смотрите также:
Задачи исследования: Изучить психолого-педагогическую и методическую литературу по теме...
Задачи исследования: Изучить психолого педагогическую и методическую литературу по проблеме...
Задачи проекта: Изучить научно-методическую литературу по теме проекта...
Задачи : Проанализировать педагогическую и методическую литературу по данной теме...
Задачи работы: Изучить литературу по обозначенной тематике...
Задачи исследования: Изучить печатную литературу во исследуемому вопросу закон сохранения массы...
Задачи работы : Проанализировать статистические данные солнечно-земных связей...
Задачи: Изучить литературу по теме и получить теоретическое представление о сущности...
Задачи: Изучить методическую литературу по развитию речи на уроках русского языка в начальной...
Методические рекомендации для выполнения контрольной работы по дисциплине «Управление...
Задачи Как на основе познавательной деятельности развить творчество младших школьников во...
Задачи, поставленные в работе: Подобрать и изучить литературу по теме...



Загрузка...
скачать
САМООБРАЗОВАТЕЛЬНАЯ РАБОТА

УЧИТЕЛЯ МАТЕМАТИКИ

Клёнской Елены Георгиевны



  1. Общешкольная тема: «Повышение качества, результативности, эффективности учебно-воспитательного процесса на основе его демократизации и гуманизации, достижений науки и передового опыта».



  1. Индивидуальная тема самообразования: «Методика преподавания теории вероятностей и статистики в курсе алгебры основной школы».



  1. Работа начата: сентябрь 2009 года



  1. Предполагается закончить работу: май 2012 года.



  1. Цели и задачи самообразования по теме.



Цели: изучить теоретические аспекты и практические рекомендации по методике изучения стохастической линии в курсе математики основной школы, применить некоторые из них при изучении этого раздела школьниками, разработать методику изучения некоторых вопросов стохастической линии в курсе математики основной школы

Задачи:

- изучить и проанализировать научную, учебно-методическую и психолого-педагогическую литературу по теме исследования;

- изучить опыт работы учителей, преподающих данный курс

- на основе опытного преподавания проанализировать, как воспринимается этот материал учащимися: степень заинтересованности при изучении этого материала, уровень доступности, трудности, возникающие при изучении этого материала, качество усвоения.

- на основе анализа литературы и опытного преподавания разработать методику изучения некоторых вопросов стохастической линии в курсе математики основной школы.



  1. ^ Основные вопросы, намеченные для изучения, этапы проработки материала:



- Провести обзор научной, методической и научно-популярной литературы по теме исследования.

- Какие учебники и учебные пособия применяются для изучения стохастики в основной школе; провести сравнительный анализ.

- Выяснить, каковы основные принципы построения методики изучения стохастической линии в курсе математики основной школы.

7. Литература по теме:

1. Гмурман В.Е. «Теория вероятностей и математическая статистика».

2. Колмогоров А.Н., Журбенко И.Г., Прохоров А.В. «Введение в теорию вероятностей»

3. В. Феллер «Введение в теорию вероятностей и ее приложения»

4. статья «О подготовке учителей к обучению школьников стохастике», Селютин В. Д.

5. статья «О формировании первоначальных стохастических представлений», Селютин В.Д.

6. статья Бунимовича Е. А. «Вероятностно-статистическая линия в базовом курсе математики»

7. статья Булычева В. А. «Вероятность вокруг нас и в школьном учебнике математики»

8. "Математика 5", "Математика 6" под редакцией Г.В. Дорофеева и И.Ф. Шарыгина

9. "Математика 7", "Математика 8" и "Математика 9" под редакцией Г.В. Дорофеева.

10. Мордкович А. Г., Семенов П. В. События. Вероятности. Статистическая обработка данных: Дополнительные параграфы к курсу алгебры 7-9 кл.

11. Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: учебное пособие для 7-9 кл. общеобразовательных учреждений.

^ Анализ работы над темой самообразования в 2009-2010 году.

В настоящее время теория вероятностей завоевала очень серьезное место в науке и прикладной деятельности. Её идеи, методы и результаты не только используются, но и буквально пронизывают все естественные и технические науки, экономику, планирование, организацию производства, связи, а также такие далекие, казалось бы, от математики науки, как лингвистику и археологию. Сейчас без достаточно развитых представлений о случайных событиях и их вероятностях, без хорошего представления о том, что явления и процессы, с которыми мы имеем дело, подчиняются сложным законам теории вероятностей, невозможна продуктивная деятельность людей ни в одной сфере жизни общества.

Мы должны научить жить наших детей в вероятностной ситуации, а это, значит, извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Именно ориентация на формирование личности, способной жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно-статистического мышления у подрастающего поколения, а значит, эта задача должна быть решена уже в школьном курсе математики.

Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых методик, изменения в требованиях к математической подготовке учащихся. И с этой точки зрения, когда речь идет о формировании личности с помощью математики, необходимость развития у всех школьников вероятностной интуиции и статистического мышления становится насущной задачей.

Одновременно с этим само знакомство школьников с этой, очень своеобразной, областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначным "да" и "нет" существует еще "быть может", причем это "быть может" поддается строгой количественной оценке, способствует устранению укоренившегося ощущения, что происходящее на уроках математики никак не связано с окружающим миром, с повседневной жизнью. Согласно данным ученых-физиологов и психологов, а также по многочисленным наблюдениям учителей математики, в среднем звене школы заметно падение интереса к математике и связано это с тем, что у ученика зачастую создается ощущение непроницаемой стены между изучаемыми абстрактно-формальными объектами и реальным миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету "математика", пропаганде его значимости и универсальности.

Опыт преподавания в школе основ теории вероятностей в период реформы 60-70 гг. на формально-логическом уровне дал в основном негативные результаты, что привело к изъятию этого раздела из школьных программ: материал оказался сложным, плохо усваивался учащимися. К тому же неоднократно проводимые исследования знаний учащихся старших математических классов показали, сколь мало эти знания способствуют развитию вероятностной интуиции и статистического мышления.

Однако совсем недавно было вновь принято решение ввести этот материал в курс математики основной школы. Внедрение вероятностно-статистической линии в базовый школьный курс математики породило немало проблем. К его появлению оказались не готовы буквально все - от учителей математики до авторов учебников.

Поэтому свою работу над темой самообразования я начала с поиска и изучения различной литературы по данной теме.

Число различных определений математической вероятности, предложенное теми или иными авторами научной литературы, очень велико. С другой стороны, каждое из них можно отнести к одной из 4 групп определений математической вероятности:

· определения, сводящие понятие вероятности к понятию «равновозможности» как к более примитивному понятию, - классическое определение вероятности.

· геометрическое определение вероятности.

· определения, основанные на частоте появления события в длинной серии экспериментов, - статистическое определение вероятности.

· аксиоматическое определение вероятности.

В научной литературе последовательность введения понятия вероятности различна.

^ Гмурман В.Е. в книге «Теория вероятностей и математическая статистика» рассматривает сначала классическое понятие вероятности, затем указывает его недостатки и вводит статистическое понятие вероятности и геометрическую вероятность. Далее он излагает теоремы сложения и умножения вероятностей и их следствия. Материал, посвященный статистике, содержит все понятия, касающиеся статистического распределения выборки, также рассматриваются понятия полигона и гистограммы частот.

^ Гнеденко Б.В. в книге «Курс теории вероятностей» тоже начинает введение в теорию вероятностей с классического определения. Позже, указывая его ограниченность, он вводит вначале геометрическое, а затем и статистическое определение вероятности. В более позднем издании в соавторстве с Хинчиным А.Я. в книге «Элементарное введение в теорию вероятностей» он использует только статистическое понятие вероятности.

^ Колмогоров А.Н., Журбенко И.Г., Прохоров А.В. в книге «Введение в теорию вероятностей» на простых примерах вводят основные понятия теории вероятностей. Первым рассматривается классическое определение вероятности, вторым - статистическое.

^ Пугачев В.С. в книге с тем же названием за основное определение берет статистическое определение вероятности и использует только его.

В. Феллер в книге «Введение в теорию вероятностей и ее приложения» определяет вероятность через сумму вероятностей элементарных событий и дает статистическое понятие вероятности.

^ Вентцель Е.С. в книге «Теория вероятностей» вначале вводит классическое определение вероятности. Далее, указывая недостаток такого толкования вероятности, вводится понятие частоты случайного события и на его основе дается статистическое определение вероятности. Также книга содержит сведения из области статистики. В частности, рассмотрены такие понятия, как статистическая совокупность, статистический (интервальный ряд), гистограмма.

Нетрудно заметить, что большинство авторов научной литературы, начинает излагать теорию вероятностей с классического определения вероятности. Я считаю, что это наиболее удобный путь введения понятия вероятности в высшей школе, так как он соответствует истории развития этого понятия и наиболее прост.

Завершая анализ научной литературы, хотелось бы отметить, что учебников для высшей школы, содержащих интересующий нас материал, существует достаточно много, но они не пригодны для среднего школьника, в силу сложности изложения темы. Поэтому главная проблема, стоящая перед учителями и авторами будущих учебников, состоит в том, что следует отобрать и сделать понятным для ученика обширный материал по теории вероятностей, которая преподается в вузе.

Обратимся теперь к методическим источникам.

Поскольку вероятностно-статистическая линия была введена в школьный курс математики не так давно, то в настоящее время существуют проблемы не только с реализацией этого материала в школьных учебниках, но и с готовностью самих учителей математики преподавать этот материал. Об этом и говорит в статье «О подготовке учителей к обучению школьников стохастике» Селютин В. Д. Автор считает, что школьников нельзя ориентировать на вузовские варианты построения курса теории вероятностей, поэтому учитель обязан владеть специфической методикой, направленной на развитие особого типа мышления и формирование особых, недетерминированных представлений у учащихся. Главным при изучении этой темы должен стать практический опыт учащихся, поэтому начинать обучение желательно с тех задач, в которых статистические сведения заданы изначально и требуется найти решение поставленной проблемы на фоне реальной ситуации.

Еще одна статья этого автора «О формировании первоначальных стохастических представлений» посвящена проблемам развития вероятностно-статистического мышления на первых этапах обучения. Селютин В. Д. рассматривает трудности изучения и восприятия учащимися этого материала и ставит вопрос о том, как, с помощью каких средств можно организовать формирование первоначальных стохастических представлений у школьников. Автор предлагает стохастические игры, эксперименты со случайными исходами, статистические исследования, мысленные статистические эксперименты и моделирование и рассматривает примеры их использования.

В статье Бунимовича Е. А. «Вероятностно-статистическая линия в базовом курсе математики» обоснована необходимость внедрения этой линии в школьный курс математики, ее значимость и важность для современного образования. Автор пишет о результатах проведенной экспериментальной работы по изучению вероятностных представлений школьников, на основании которых можно сделать вывод о том, что даже хорошее знание и понимание других разделов математики само по себе не обеспечивает развития вероятностного мышления и не избавляет даже от тривиальных вероятностных заблуждений и предрассудков. Поэтому нужен особый подход при изучении этой темы, который, в первую очередь, будет направлен на формирование жизненно необходимых представлений о вероятности и статистике.

В статье Булычева В. А. «Вероятность вокруг нас и в школьном учебнике математики» рассмотрены задачи последнего раздела «Вероятность вокруг нас» учебника «Математика - 6» под редакцией Г. В. Дорофеева и И. Ф. Шарыгина. Главная особенность этих задач - их проблемность. Это не задачи-упражнения, а задачи-проблемы. Именно поэтому многие их них имеют не совсем «математические» формулировки, оставляя ученику возможность самостоятельно сделать постановку, точно описать условие и сформулировать вопрос.

Таким образом, авторы всей вышеперечисленной методической литературы признают сложность и новизну этого материала и сходятся во мнении, что процесс обучения стохастике должен быть организован таким образом, чтобы изучаемые явления и закономерности не просто усваивались и запоминались учащимися, но и способствовали формированию правильных стохастических представлений, пониманию тесных взаимосвязей между вероятностно-статистической линией и деятельностью любого человека, развитию умений применять полученные знания в повседневной жизни .

Согласно требованиям государственного стандарта по математике содержание материала, обязательного изучаемого по данной теме в курсе основной школы, должно включать:

· Понятие и примеры случайных событий;

· Понятия частоты события и вероятности;

· Равновозможные события и подсчет их вероятности;

· Представление о геометрической вероятности;

· Представление данных в виде таблиц, диаграмм, графиков;

· Средние результаты измерений;

· Понятие о статистическом выводе на основе выборки.

Согласно требованиям стандарта по математике после изучения данной темы учащиеся должны уметь:

· Находить вероятности случайных событий в простейших случаях;

· Находить частоту событий, используя собственные наблюдения и готовые статистические данные;

· Вычислять средние значения результатов измерений;

и использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

· Сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставление модели с реальной ситуацией;

· Понимания статистических рассуждений;

· Анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц.

Попытаемся проанализировать ныне действующие учебники и учебные пособия с позиции требований государственного стандарта по математике по данной теме.

Попытка построения полноправной вероятностно-статистической линии предпринята в рамках учебных комплектов: "Математика 5", "Математика 6" под редакцией Г.В. Дорофеева и И.Ф. Шарыгина, а также "Математика 7", "Математика 8" и "Математика 9" под редакцией Г.В. Дорофеева.

В учебнике для 5 класса представлены начальные сведения из области статистики, в частности, представление данных в виде таблиц и диаграмм. Материал выделен в отдельную главу, которая так и называется - "Таблицы и диаграммы". В этой главе авторы учат школьников извлекать и анализировать информацию, представленную на диаграмме или в виде таблицы. Задачный материал, представленный в учебнике, особым разнообразием не отличается. В основном, школьники учатся работать с готовыми таблицами и диаграммами, сравнительно немного заданий на самостоятельное составление таблиц и диаграмм по представленной информации. Также немного заданий, подчеркивающих удобство использования таблиц и диаграмм для представления разнообразной информации, что является, на мой взгляд, существенным недостатком, поскольку таблицы и диаграммы значительно структурируют информацию, помещаемую в них, делают ее более наглядной, а на это в учебнике не сделан соответствующий упор.

В 6 классе авторы снова возвращаются к этому материалу, где знакомят учащихся с уже более сложными таблицами, а также указывают на различия в применении столбчатых и круговых диаграмм. Задания более сложные по сравнению с 5 классом, но их недостаточно. Авторы вновь делают упор на работу школьников с готовыми таблицами и диаграммами, забывая о необходимости научить детей самостоятельному составлению таблиц и диаграмм.

Также в конце 6 класса школьникам предлагается начать изучение основ теории вероятностей. Этому посвящена отдельная 8 глава «Вероятность случайных событий». Школьники учатся оценивать вероятность наступления несложных случайных событий сначала на качественном уровне, а количественный подсчет вероятностей происходит позднее. В параграфе «Частота и вероятность случайного события» учащиеся знакомятся с понятиями частоты события как отношения числа наступления события к числу экспериментов, на конкретном примере показано, что же такое вероятность случайного события, прослежена её связь с частотой, введено обозначение вероятности, но пока авторы не дают строгого определения вероятности с использованием частоты события, а говорят лишь об "оценке вероятности случайного события по его частоте" на конкретном примере. Вероятности достоверных и невозможных событий авторы вводят как определения, со словами “естественно считать” без использования понятия частоты. Становиться непонятным, для чего вообще нужна частота: я считаю, дети вполне способны самостоятельно прийти к выводам о вероятности этих событий, опираясь на предыдущий материал и их определения. Аналогичным образом авторы подводят учащихся к классическому определению вероятности, показывая способ подсчета вероятности равновозможных событий на конкретном примере. Изложение материала в учебнике, в целом, логично и последовательно, но, несмотря на это, можно сделать несколько существенных замечаний.

Во-первых, в начале главы, говоря о случайных событиях, авторы не вводят обозначения для события, принятое в математике, однако в заданиях оно уже присутствует. Целесообразно, сразу после определения случайного события ввести и обозначение для него, как это всегда принято в математике при введении нового понятия.

Во-вторых, понятие равновозможных событий автор характеризует так: "Вы бросаете монету. Может выпасть "орел", а может - "решка". Возможности наступления этих событий одинаковы. Такие события называются равновозможными или равновероятными". Такое объяснение не только нельзя считать определением, но и оно вряд ли будет понятно школьникам. Равновозможность или равновероятность наступления этих событий целесообразнее попытаться объяснить следующим образом: "Вы бросаете монету. Может выпасть "орел", а может - "решка", но с математической точки зрения обе стороны монеты одинаковы, и ни одна из них не лучше и не хуже другой оставшейся, поэтому мы можем утверждать, что возможности наступления этих событий - выпадение "орла" или выпадение "решки" одинаковы, а значит события "выпадет "орел" и "выпадет "решка" равновозможны или равновероятны.

В-третьих, система задач, предлагаемых автором для закрепления и усвоения знаний, не всегда полна, поэтому учителю просто необходимо использовать дополнительную литературу для подготовки к уроку.

Учебник для 7 класса призван углублять, конкретизировать и уточнять знания по основам теории вероятностей, полученные учениками в 6 классе: дается строгое определение относительной частоты случайного события, вводится статистическое определение вероятности. Большинство заданий практической части направлены на формирование правильного понимания частоты случайного события и умений находить вероятность события по его частоте. Очень мало заданий, в которых требуется провести статистическое оценивание и прогноз, что является существенным недостатком, поскольку именно такие задания помогают развитию у школьников статистического мышления и интуиции.

В 8 классе предполагается изучение статистических характеристик ряда: моды, медианы, размаха и среднего арифметического. Задачи, предлагаемые авторами для решения, немногочисленны и не обладают практической направленностью. В большинстве своем, это задачи на нахождение статистических характеристик для имеющихся данных и на построение ряда по готовым статистическим характеристикам. Несомненно, такие задания нужны для отработки определений статистических характеристик и для их качественного и полноценного усвоения, но главный недостаток таких задач - их абсолютная бесполезность с практической точки зрения. Решая такие задачи, школьник просто оперирует с набором новых для него понятий, усваивая их и запоминая, не вдумываясь в то, что в каждом конкретном примере эти статистические характеристики несут в себе огромный практический смысл, опираясь на который, можно спрогнозировать, оценить и сделать важные выводы, полезные в этой ситуации. Поэтому задачи такого типа не должны занимать главенствующего места в учебнике.

В этом же классе изучение вероятностно-статистической линии продолжается рассмотрением классического определения вероятности и геометрической вероятности.

В учебнике для 9 класса интересующий нас материал изложен в главе «Статистические исследования». Глава «Статистические исследования» является завершающим фрагментом вероятностно-статистической линии курса. Здесь осуществляется переход от описательной статистики, которой учащиеся занимались с 5 по 8 класс, к начальному знакомству с математической статистикой. В главе рассматриваются доступные учащимся примеры комплексных статистических исследований, в ходе которых используются полученные ранее знания о случайных экспериментах, способах представления данных и статистических характеристиках, а также вводятся некоторые новые понятия, отражающие специфику данного исследования.

Для того чтобы сформировать у учащихся представление о статистическом исследовании, в учебнике рассмотрено 3 примера, близкие жизненному опыту школьников, соответствующие названиям параграфов в главе. Первый из них - исследование качества математической подготовки школьников.

В тексте отражены основные этапы этого исследования: обсуждается проблема построения репрезентативной выборки, демонстрируются приемы сбора данных и их наглядного представления, проводится анализ полученных результатов. По сути в учебнике представлен алгоритм, который используют статистики при проведении подобных исследований. Основная цель состоит в том, чтобы, опираясь на представленный образец, учащиеся при решении задач смогли воспроизвести его полностью или частично. При описании исследования используются уже известные учащимся вероятностно-статистические понятия, а также вводятся некоторые новые. Новые понятия возникают естественным путем, когда этого требует логика изложения. Это касается таких понятий, как генеральная совокупность, выборочное обследование, репрезентативная выборка, ранжирование ряда данных, полигон частот, интервальный ряд и гистограмма. Но авторы в тексте учебника не обращают внимание школьников на неоднозначность при построении интервального ряда, из-за которой при решении одной задачи могут получаться разные гистограммы, а также различные средние арифметические, что является, на мой взгляд, существенным недостатком.

Анализируя весь учебный комплект в целом, необходимо отметить соответствие содержания учебников требованиям государственного стандарта по математике. Но с методической точки зрения важно отметить некоторые недостатки данного учебного комплекта.

Во-первых, авторы рассматривают в учебниках, как того требует стандарт, все 3 определения вероятности: статистическое, классическое и геометрическое, но все определения разнесены по времени, то есть изучаются в разных классах и между ними не прослеживается никакая взаимосвязь. Не указаны недостатки и достоинства того или иного определения, области их применений, особенности каждого из определений вероятности. Изучение стохастической линии завершается статистическим материалом, но отсутствует подведение итогов изучения этой линии в основной школе, в конце обучения авторы словно забывают о вероятности вовсе. Следствием всего этого может быть неверное представление учащихся о вероятности случайного события: в каждом конкретном случае учащимся будет затруднительно выяснить, какое из понятий вероятности здесь применять и почему.

Во-вторых, задачный материал, предлагаемый в учебниках, как уже отмечалось выше, неполон и недостаточен. Задания, в основном, однотипные и для качественного усвоения учебного материала учителю просто необходимо использовать дополнительную литературу. Среди задач, представленных в учебниках, сравнительно немного задач, ценных с практической стороны, действительно служащих для формирования вероятностно-статистического мышления у учеников, иллюстрирующих тесную взаимосвязь изучаемого материала с действительностью.

Рассмотрим еще несколько учебных пособий, призванных восполнить отсутствие вероятностно - статистической линии в основном учебнике:

^ Мордкович А. Г., Семенов П. В. События. Вероятности. Статистическая обработка данных: Дополнительные параграфы к курсу алгебры 7-9 кл.

Характеризуя данное учебное пособие, следует отметить, что дополнительные параграфы ориентированы на курс алгебры 7 - 9 классов А. Г. Мордковича. Они предназначены для ознакомления учащихся с элементами теории вероятностей и математической статистики. Из основ теории вероятностей учебное пособие содержит только классическую вероятностную схему, не рассмотрены 2 оставшихся подхода к понятию вероятности: статистический и геометрический. Статистический материал собран в один параграф и рассмотрен поверхностно, авторы не обращают внимания школьников на практическую значимость многих статистических понятий и характеристик. Упражнения, представленные после каждого параграфа, в основном, направлены на усвоение новых понятий и алгоритмов, нет задач исследовательского характера, задач-проблем. Создается впечатление, что, это пособие написано наспех, так как содержит недостаточно сведений и задач для полноценного изучения школьниками вероятностно-статистической линии, соответствует далеко не всем требованиям стандарта и вряд ли может быть использовано учителем при проведении уроков как самостоятельная единица.

^ Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность: учебное пособие для 7-9 кл. общеобразовательных учреждений.

Данное учебное пособие содержит две главы посвященные теории вероятностей и математической статистике. В первой главе авторы рассматривают последовательно одно за другим все 3 определения вероятности случайного события: классическое, геометрическое и статистическое. Такая последовательность изложения ничем не обоснована, и, на мой взгляд, неверна, поскольку может послужить поводом для ошибок учащихся при решении задач. Между этими определениями не установлена взаимосвязь, не указаны их достоинства и недостатки, возможности использования определений в каждом конкретном случае, что тоже может привести к неверному представлению учащихся о вероятности. Статистический материал представлен неполностью, зато пособие содержит излишние факты и понятия: дискретные и случайные непрерывные величины, отклонение от среднего, дисперсия, среднее квадратичное отклонение, правило трех сигм не должны изучаться в основной школе ввиду их сложности. Как и в предыдущем случае, это пособие вряд ли претендует на право полноценно знакомства школьников с вероятностно-статистической линией с его помощью.

Исходя из анализа всей вышеперечисленной литературы, при построении методики изучения стохастической линии в основной школе необходимо учитывать следующие важные моменты:

· Содержание материала, обязательно изучаемого в рамках данной линии в средней школе, определяется требованиями государственного стандарта по математике.

· Изучение стохастической линии целесообразно начать со статистического материала и излагать весь последующий материал индуктивно.

· С учащимися необходимо рассмотреть различные понятия вероятности: классическое, статистическое и геометрическое. В противном случае происходит неполное представление о нем.

· Последовательность изучения понятия вероятности должна быть такова: вначале необходимо ввести и сформировать представление о статистической вероятности, затем, отмечая неудобство использования такого определения и его явную неточность, перейти к изучению классической вероятности и в завершении рассмотреть геометрическую вероятность как один из способов решения проблемы конечности числа исходов в классической вероятностной схеме. Такая последовательность изучения не соответствует историческому развитию науки, но помогает избежать типичных ошибок и неверных представлений о вероятности, способствует развитию вероятностного мышления и интуиции.

· При введении каждого из определений вероятности необходимо обращать внимание учащихся на его недостатки и области возможного применения.

· Поскольку основным средством обучения математике являются задачи, то при изучении вероятностно-статистической линии необходимо рассматривать с учащимися разнообразные задачи и примеры, особо выделяя среди них задачи практического характера, устанавливающие взаимосвязь изучаемых фактов и явлений с жизнью, опытом учащихся.

· Для полноценного и качественного усвоения данного материала необходимо максимально учитывать принципы дидактики. Поэтому необходимо:

1. Максимально использовать средства наглядности, опытную работу с учащимися.

2. Сопроводить изучение иллюстративными задачами и примерами.

3. Рекомендовать учащимся дополнительную литературу по данной теме, доступную для их понимания.

4. Предусмотреть задачи для самостоятельной работы учащихся.

5. Учитывать индивидуальные особенности школьника при решении различных задач и примеров.

6. Добиваться прочности знаний с помощью решения задач, опирающихся на ранее изученный материал.




Скачать 202,46 Kb.
оставить комментарий
Дата24.09.2011
Размер202,46 Kb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх