Основное общее образование icon

Основное общее образование



Смотрите также:
Основное общее образование пояснительная записка...
Правила приема в гоу спо «Макушинский ме д ицинский техникум» на 2011-2012 учебный год...
На программы общего образования: начальное общее образование, основное общее образование...
Государственный доклад о положении детей в удмуртской республике в 2009 году структура...
Публичный отчет директора муниципального образовательного учреждения «Средняя...
Полное наименование образовательного учреждения...
Общеобразовательная программа: начальное общее образование основное общее образование среднее...
Публичный доклад директора гоу сош №1640...
Основные общеобразовательные программы n п/п Уровень (ступень) общего образования (дошкольное...
Содержание пояснительная записка...
Основное общее и среднее (полное) общее образование...
Основное общее и среднее (полное) общее образование...



страницы: 1   2   3   4   5   6   7   8   9   10
вернуться в начало
скачать

диалог-обмен мнениями - выражать точку зрения и соглашаться/не соглашаться с ней; высказывать одобрение/неодобрение; выражать сомнение, эмоциональную оценку обсуждаемых событий (радость/огорчение, желание/нежелание), эмоциональную поддержку партнера, в том числе с помощью комплиментов.

Комбинирование указанных видов диалога для решения более сложных коммуникативных задач.


Монологическая речь

кратко высказываться о фактах и событиях, используя такие коммуникативные типы речи, как описание/характеристика, повествование/сообщение, эмоциональные и оценочные суждения;

передавать содержание, основную мысль прочитанного с опорой на текст;

делать сообщение по прочитанному/услышанному тексту;

выражать и аргументировать свое отношение к прочитанному.


Аудирование

Восприятие на слух и понимание несложных текстов с разной глубиной и точностью проникновения в их содержание (с полным пониманием, с пониманием основного содержания, с выборочным пониманием) в зависимости от коммуникативной задачи и стиля текста.

Формирование умений:

выделять основную информацию в воспринимаемом на слух тексте и прогнозировать его содержание;

выбирать главные факты, опуская второстепенные;

выборочно понимать необходимую информацию прагматических текстов с опорой на языковую догадку, контекст;

игнорировать неизвестный языковой материал, несущественный для понимания.


Чтение

Чтение и понимание текстов с различной глубиной и точностью проникновения в их содержание (в зависимости от вида чтения):

с пониманием основного содержания (ознакомительное чтение);

с полным пониманием содержания (изучающее чтение);

с выборочным пониманием нужной или интересующей информации (просмотровое/поисковое чтение).

Использование словаря независимо от вида чтения.

Чтение с пониманием основного содержания аутентичных текстов на материалах, отражающих особенности быта, жизни, культуры стран изучаемого языка.

Формирование умений:

определять тему, содержание текста по заголовку;

выделять основную мысль;

выбирать главные факты из текста, опуская второстепенные;

устанавливать логическую последовательность основных фактов текста.

Чтение с полным пониманием содержания несложных аутентичных адаптированных текстов разных жанров.

Формирование умений:

полно и точно понимать содержание текста на основе его информационной переработки (раскрытие значения незнакомых слов, грамматический анализ, составление плана);

оценивать полученную информацию, выражать свое мнение;

комментировать/объяснять те или иные факты, описанные в тексте.

Чтение с выборочным пониманием нужной или интересующей информации - умение просмотреть текст (статью или несколько статей из газеты, журнала) и выбрать информацию, которая необходима или представляет интерес для учащихся.


Письменная речь

Развитие умений:

делать выписки из текста;

писать короткие поздравления (с днем рождения, другим праздником), выражать пожелания;

заполнять формуляр (указывать имя, фамилию, пол, возраст, гражданство, адрес);

писать личное письмо по образцу/без опоры на образец (расспрашивать адресата о его жизни, делах, сообщать то же о себе, выражать благодарность, просьбу), используя материал тем, усвоенных в устной речи, употребляя формулы речевого этикета, принятые в стране изучаемого языка.

Языковые знания и навыки

Орфография

Правила чтения и орфографии и навыки их применения на основе изучаемого лексико-грамматического материала.

Произносительная сторона речи

Навыки адекватного произношения и различения на слух всех звуков изучаемого иностранного языка, соблюдения ударения и интонации в словах и фразах, ритмико-интонационные навыки произношения различных типов предложений, выражение чувств и эмоций с помощью эмфатической интонации.

Лексическая сторона речи

Навыки распознавания и употребления в речи лексических единиц, обслуживающих ситуации в рамках тематики основной школы, наиболее распространенных устойчивых словосочетаний, оценочной лексики, реплик-клише речевого этикета, характерных для культуры стран изучаемого языка; основные способы словообразования: аффиксации, словосложения, конверсии.

Грамматическая сторона речи

Признаки нераспространенных и распространенных простых предложений, безличных предложений, сложносочиненных и сложноподчиненных предложений, использования прямого и обратного порядка слов. Навыки распознавания и употребления в речи

Признаки глаголов в наиболее употребительных временных формах действительного и страдательного залогов, модальных глаголов и их эквивалентов, существительных в различных падежах, артиклей, относительных, неопределенных/неопределенно-личных местоимений, прилагательных, наречий, степеней сравнения прилагательных и наречий, предлогов, количественных и порядковых числительных. Навыки их распознавания и употребления в речи.

Социокультурные знания и умения

Осуществление межличностного и межкультурного общения с применением знаний о национально-культурных особенностях своей страны и страны/стран изучаемого языка, полученных на уроках иностранного языка и в процессе изучения других предметов.

Знание:

значения изучаемого иностранного языка в современном мире;

наиболее употребительной фоновой лексики, реалий;

современный социокультурный портрет стран, говорящих на изучаемом языке;

культурного наследия стран изучаемого языка.

Овладение умениями:

представлять родную культуру на иностранном языке;

находить сходство и различие в традициях своей страны и страны/стран изучаемого языка;

оказывать помощь зарубежным гостям в ситуациях повседневного общения.

компенсаторные умения

Развитие умений выходить из положения при дефиците языковых средств, а именно: использовать при говорении переспрос, перифраз, синонимичные средства, мимику, жесты; при чтении и аудировании - языковую догадку, прогнозирование содержания.

учебно-познавательные умения

Овладение специальными учебными умениями:

осуществлять информационную переработку иноязычных текстов;

пользоваться словарями и справочниками, в том числе электронными;

участвовать в проектной деятельности, в том числе межпредметного характера, требующей использования иноязычных источников информации.


^ ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения иностранного языка ученик должен

знать/понимать

основные значения изученных лексических единиц (слов, словосочетаний); основные способы словообразования (аффиксация, словосложение, конверсия);

особенности структуры простых и сложных предложений изучаемого иностранного языка; интонацию различных коммуникативных типов предложения;

признаки изученных грамматических явлений (видо-временных форм глаголов, модальных глаголов и их эквивалентов, артиклей, существительных, степеней сравнения прилагательных и наречий, местоимений, числительных, предлогов);

основные нормы речевого этикета (реплики-клише, наиболее распространенная оценочная лексика), принятые в стране изучаемого языка;

роль владения иностранными языками в современном мире; особенности образа жизни, быта, культуры стран изучаемого языка (всемирно известные достопримечательности, выдающиеся люди и их вклад в мировую культуру), сходство и различия в традициях своей страны и стран изучаемого языка;

уметь

говорение

начинать, вести/поддерживать и заканчивать беседу в стандартных ситуациях общения, соблюдая нормы речевого этикета, при необходимости переспрашивая, уточняя;

расспрашивать собеседника и отвечать на его вопросы, высказывая свое мнение, просьбу, отвечать на предложение собеседника согласием/отказом, опираясь на изученную тематику и усвоенный лексико-грамматический материал;

рассказывать о себе, своей семье, друзьях, своих интересах и планах на будущее, сообщать краткие сведения о своем городе/селе, своей стране и стране изучаемого языка;

делать краткие сообщения, описывать события/явления (в рамках изученных тем), передавать основное содержание, основную мысль прочитанного или услышанного, выражать свое отношение к прочитанному/услышанному, давать краткую характеристику персонажей;

использовать перифраз, синонимичные средства в процессе устного общения;

аудирование

понимать основное содержание коротких, несложных аутентичных прагматических текстов (прогноз погоды, программы теле/радио передач, объявления на вокзале/в аэропорту) и выделять значимую информацию;

понимать основное содержание несложных аутентичных текстов, относящихся к разным коммуникативным типам речи (сообщение/рассказ); уметь определять тему текста, выделять главные факты, опуская второстепенные;

использовать переспрос, просьбу повторить;

чтение

ориентироваться в иноязычном тексте; прогнозировать его содержание по заголовку;

читать аутентичные тексты разных жанров с пониманием основного содержания (определять тему, основную мысль; выделять главные факты, опуская второстепенные; устанавливать логическую последовательность основных фактов текста);

читать несложные аутентичные тексты разных стилей с полным и точным пониманием, используя различные приемы смысловой переработки текста (языковую догадку, анализ, выборочный перевод), оценивать полученную информацию, выражать свое мнение;

читать текст с выборочным пониманием нужной или интересующей информации;

письменная речь

заполнять анкеты и формуляры;

писать поздравления, личные письма с опорой на образец: расспрашивать адресата о его жизни и делах, сообщать то же о себе, выражать благодарность, просьбу, употребляя формулы речевого этикета, принятые в странах изучаемого языка;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

социальной адаптации; достижения взаимопонимания в процессе устного и письменного общения с носителями иностранного языка, установления в доступных пределах межличностных и межкультурных контактов;

создания целостной картины полиязычного, поликультурного мира, осознания места и роли родного языка и изучаемого иностранного языка в этом мире;

приобщения к ценностям мировой культуры через иноязычные источники информации (в том числе мультимедийные), через участие в школьных обменах, туристических поездках, молодежных форумах;

ознакомления представителей других стран с культурой своего народа; осознания себя гражданином своей страны и мира.


^ СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
ПО МАТЕМАТИКЕ

Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

^ ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ
ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

АРИФМЕТИКА

Натуральные числа. Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем.

Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.

Дроби. Обыкновенная дробь. Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.

Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

Рациональные числа. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем.

Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Понятие о корне n-ой степени из числа*. Нахождение приближенного значения корня с помощью калькулятора. Запись корней с помощью степени с дробным показателем.

___________________________

* Курсивом в тексте выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников.


Понятие об иррациональном числе. Иррациональность числа. Десятичные приближения иррациональных чисел.

Действительные числа как бесконечные десятичные дроби. Сравнение действительных чисел, арифметические действия над ними.

Этапы развития представления о числе.

Текстовые задачи. Решение текстовых задач арифметическим способом.

Измерения, приближения, оценки. Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире.

Представление зависимости между величинами в виде формул.

Проценты. Нахождение процента от величины, величины по ее проценту.

Отношение, выражение отношения в процентах. Пропорция. Пропорциональная и обратно пропорциональная зависимости.

Округление чисел. Прикидка и оценка результатов вычислений. Выделение множителя - степени десяти в записи числа.

АЛГЕБРА

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.

Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях.

Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложения на множители.

Уравнение с двумя переменными; решение уравнения с двумя переменными. Система уравнений; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-линейных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической.

Решение текстовых задач алгебраическим способом.

Числовые последовательности. Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Cложные проценты.

Числовые функции. Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы.

Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.

Координаты. Изображение чисел очками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.


ГЕОМЕТРИЯ

Начальные понятия и теоремы геометрии

Возникновение геометрии из практики.

Геометрические фигуры и тела. Равенство в геометрии.

Точка, прямая и плоскость.

Понятие о геометрическом месте точек.

Расстояние. Отрезок, луч. Ломаная.

Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.

Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.

Многоугольники.

Окружность и круг.

Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.

Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинам сторон и углов треугольника.

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.


Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Измерение геометрических величин. Длина отрезка. Длина ломаной, периметр многоугольника.

Расстояние от точки до прямой. Расстояние между параллельными прямыми. Длина окружности, число ; длина дуги. Величина угла. Градусная мера угла, соответствие между величиной угла и длиной дуги окружности.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. Площадь четырехугольника.

Площадь круга и площадь сектора.

Связь между площадями подобных фигур.

Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса.

Векторы

Вектор. Длина (модуль) вектора. Координаты вектора. Равенство векторов. Операции над векторами: умножение на число, сложение, разложение, скалярное произведение. Угол между векторами.

Геометрические преобразования

Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.

Построения с помощью циркуля и линейки

Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.

Правильные многогранники.

^ ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ,
СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

Доказательство. Определения, доказательства, аксиомы и теоремы; следствия. Необходимые и достаточные условия. Контрпример. Доказательство от противного. Прямая и обратная теоремы.

Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Эвклида и его история.

Множества и комбинаторика. Множество. Элемент множества, подмножество. Объединение и пересечение множеств. Диаграммы Эйлера.

Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

Статистические данные. Представление данных в виде таблиц, диаграмм, графиков. Средние результатов измерений. Понятие о статистическом выводе на основе выборки.

Понятие и примеры случайных событий.

Вероятность. Частота события, вероятность. Равновозможные события и подсчет их вероятности. Представление о геометрической вероятности.


^ ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики ученик должен





оставить комментарий
страница3/10
Дата26.09.2011
Размер1,45 Mb.
ТипДокументы, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы: 1   2   3   4   5   6   7   8   9   10
Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Документы

наверх