скачать ПРОГРАММА КУРСА «ИСТОРИЯ И МЕТОДОЛОГИЯ ПРИКЛАДНОЙ МАТЕМАТИКИ» (ИСТОРИЯ И МЕТОДОЛОГИЯ МАТЕМАТИКИ) для магистрантов факультета математики, механики и компьютерных наук, 6-Й КУРС, 1-Й СЕМЕСТР, 2009/2010 учебный год Доцент Ю.С.Налбандян1. Календарно-тематический план лекций 1 2. Рекомендуемая литература 4 3. Методические рекомендации по использованию литературы 7 4. Темы рефератов 7 5. Методические рекомендации по подготовке рефератов 8 Приложение (требования к зачету и «творческие» задания) 9 ^ ЛЕКЦИЯ 1 (2.09). Основные этапы развития математики: взгляды на периодизацию А.Н.Колмогорова и А.Д.Александрова. Формирование первичных математических понятий: числа и системы счисления, геометрические фигуры. Алгоритмический характер математики Древнего Египта и Вавилона. Влияние египетской и вавилонской математики. Основная литература: [1]-[2], [25], [20, т.1, ч.1, гл.1-3], [9, гл.1-3], [44, I, лекции 1-2], [45, гл.1,2]. ^ Формирование математики как науки в Древней Греции (начиная с VI в. до н.э.). Ионийская (милетская) школа Фалеса. Место математики в пифагорейской системе знаний. Несоизмеримость, теория отношений и первый кризис в развитии математики. Геометрия циркуля и линейки, античные измерительные инструменты и алгоритмы. Парадоксы бесконечности и апории Зенона. «Метод исчерпывания» и кинематические схемы Евдокса. Математика и механика в системах взглядов Платона и Аристотеля. Аксиоматика «Начал» Евклида и работы Евклида по прикладной математике. Работы Архимеда в области математики, прикладной математики, механики. Аполлоний, его теория конических сечений и ее роль в последующем развитии прикладной математики и математического естествознания (законы Кеплера, динамика Ньютона). Представление о движении, геоцентрическая система мира. Диофантов анализ. Герон Александрийский, его работы в области геометрии и механики. «Вычислительная математика» (логистика) в Древней Греции. Тригонометрия и таблицы хорд. Закат античной культуры и комментаторская деятельность математиков поздней античности. Основная литература: [9, гл.4-8], [20, т.1, ч.1, гл.4-5], [22, гл.I-II], [44, I, лекции 3-6], [45, гл.3]. ^ Освоение античного знания мусульманской наукой. Практический характер математики. Научные центры: Багдад (IX-X вв.), Бухара-Хорезм(X в), Каир (X в), Исфахан (XI в), Марага (XIII в.). Ал-Хорезми и выделение алгебры в самостоятельную науку. Работы Омара Хайяма (обобщающая теория кубических уравнений), ал-Бируни и Сабита ибн Корры (сферическая тригонометрия). Геометрические построения и исследования, алгоритмические методы на стыке алгебры и геометрии. Влияние науки мусульманского мира на европейскую науку. Основная литература: [20, т.1, ч.2, гл.3], [44, I, лекция 8], [45, гл.4], [48, гл.3], [29]. ^ Основные этапы развития математики в Китае и Индии. Древнекитайская нумерация и приспособления для вычислений. «Математика в девяти книгах» как итог работы математиков Китая 1-го тысячелетия до н.э. – энциклопедия прикладных математических знаний. Наивысший подъем алгебры в Китае в XIII в. Интерполяционные приемы китайских ученых. Важнейшие математические сочинения Индии («Правила веревки» – VII-V вв. до н.э., сиддханты – IV-V вв., «Ариабхаттиам» - V в., курсы арифметики Магавиры и Сриддхарты – IX-XI вв, «Венец науки» Бхаскары второго – XII в.). Индийская нумерация и особенности проведения арифметических действий, техника вычислений и вспомогательные приборы, алгебраические вычисления, приемы для нахождения площадей и объемов. Достижения индусов в области тригонометрии. Основная литература: [20, т.1, ч.2, гл.1-2], [44, I, лекция 7], [45, гл.2,4], [48, гл.1-2], [5], [11], [29], [49]. ^ Математическое образование в средневековой Европе, квадривиум и первые университеты. Беда Достопочтенный и теория пальцевого счета. Герберт, его популяризаторская деятельность и «правила счета на абаке». Дальнейшее совершенствование техники вычислений, «книга абака» Леонардо Пизанского (1202 г.). «Абацисты» и «алгористы» (приверженцы теоретической арифметики). Парижская и Оксфордская школы натурфилософии, проблемы места и движения. Иордан Неморарий (XIII в.): изложение алгористической арифметики и вопросы статики. Томас Брадварин (XIV в.) и учение о континууме. Николя Орм и учение об интенсивности форм. Региомонтан и развитие тригонометрии (XV в.). Совершенствование символики, школа коссистов (XVI в.). Решение алгебраических уравнений 3-й и 4-й степени в XVI в. (Сципион дель Ферро, Антон Мария Фиоре, Людовико Феррари, Николо Тарталья, Джироламо Кардано), алгебра Франсуа Виета. Симон Стевин и его работы по гидростатике и механике. Работы Леонардо да Винчи в области прикладной математики. Теория перспективы и работы Альбрехта Дюрера. Основная литература: [20, т.1, ч.2, гл.4-5], [44, I, лекция 9], [45, гл.5], [48, гл.4], [16, с.10-16], [22], [23]. ^ Тестирование по материалу лекций 1-6 (вопросы творческого характера см. в Приложении). Научная революция Нового времени и механическая картина мира. Практический характер математики XVII в. Гелиоцентрическая система мира (Н.Коперник, Т.Браге, И.Кеплер, Г.Галилей). Прогресс вычислительной техники: тригонометрические таблицы, открытие логарифмов и логарифмические таблицы. От вычислительной машины Шиккарда к арифмометру Лейбница. Механика Галилея. Введение в математику движения и появление переменных величин, работы П.Ферма и Р.Декарта и рождение аналитической геометрии. Картезианская картина мира. Первые теоретико-вероятностные представления и статистические исследования (П.Ферма, Б.Паскаль, Х.Гюйгенс, Я.Бернулли). Теория чисел и ее прикладной характер. Методы бесконечного приближения. Методы интегрирования до И.Ньютона и Г.Лейбница (И.Кеплер, Б.Кавальери, Г.Сен-Венсан, П.Ферма, Б.Паскаль, Э.Торричелли, Д.Валлис). Задачи о касательных и поиск экстремумов (работы Э.Торричелли, Ж.Роберваля, Р.Декарта, П.Ферма, Х.Гюйгенса). И.Барроу и обращение задачи о касательных. Создание проективной геометрии в работах Ж.Дезарга и Б.Паскаля. Вопросы механики в работах Х.Гюйгенса и И.Ньютона. Политехническая и Нормальная школа, их влияние на развитие математики. Основная литература: [20, т.2, гл.1-7], [44, I, лекции 10-13], [45, гл.6-7], [10, ч.1, гл.1-5; ч.2, гл.1-2, 6], [22, гл.III][4], [12], [16], [22], [23], [26. гл.1-3], [38]. ^ . Метод флюксий И.Ньютона и учение о бесконечно малых Г.Лейбница: различия в подходах, спор о приоритетах. Первые шаги математического анализа (работы И. и Я. Бернулли). Проблема обоснования дифференциального и интегрального исчисления: «Аналист» Беркли и работы К.Маклорена, подходы Л.Эйлера, Ж.Лагранжа, Л.Карно, Ж.Даламбера. Дифференциальные и интегральные принципы механики. «Аналитическая механика» Ж.Лагранжа и небесная механика П.Лапласа. Развитие понятия функции, теория рядов и интерполирование функций. Петербургская Академия наук и работы Л.Эйлера в области механики и прикладной математики. Исчисление конечных разностей, исследования Б.Тейлора, Д.Стирлинга, Ж.Лагранжа. Прикладные задачи и развитие теории обыкновенных дифференциальных уравнений и дифференциальных уравнений с частными производными. Теория непрерывных функций. К.Гаусс и его исследования в области чистой и прикладной математики. Построение теории пределов, работы О.Коши, Б.Больцано, К.Вейерштрасса. Становление неевклидовой геометрии, «Эрлангенская программа» Ф.Клейна и аксиоматика Д.Гильберта. Основная литература: [20, т.2, гл.8, т.3, гл.6-9], [44, I, лекции 14-15; II, гл.1-3, 8-9], [45, гл.6-8], [10, ч.1, гл.6-7; ч.3, гл.2], [21, т.1], [22], [24, гл.1], [43] ^ Тестирование по материалу лекций 7-11 (вопросы творческого характера см. в Приложении). История вариационного исчисления (теории экстремумов функционалов): изопериметрические задачи у И.Кеплера, Г.Галилея и П.Ферма, задача о брахистохроне и работы И.Бернулли, Г.Лейбница, Я.Бернулли, исследования Л.Эйлера, метод вариаций Ж.Лагранжа, приложения к задачам механики, оптики, математической физики, работы С.Д.Пуассона, теория сильного экстремума К.Вейерштрасса и теория Гамильтона-Якоби. Теория вероятностей и предельные теоремы, работы российских ученых XIX в.. Интерполяция и исчисление конечных разностей в XIX в. Преобразование геометрии в XIX веке: создание проективной геометрии, неевклидовы геометрии, рождение топологии. Дифференциальные и геометрические методы в механике. Математическая физика, исследования Ж.Фурье, О.Коши, С.Карно, Ж.Понселе, Ф.Неймана, Г.Гельмгольца и др. Аксиоматизация алгебры, алгебра логики и ее значение для компьютерной математики. Развитие вычислительной техники: Ч.Бэббидж и его «аналитическая машина», Ада Лавлейс и первые программы автоматических вычислений, вычислительные приборы российских математиков. Работы Э.Галуа, теория групп и ее влияние на различные области математики. Основная литература: [20, т.3, гл. 10], [44, II, гл.4-6, 7, 11], [45, гл.8], [31]-[33], [21, т.2], [24], [3], [16], [27], [43], [51]. ^ . Основные этапы жизни математического сообщества в XX в. Математические конгрессы, международные организации, издательская деятельность, научные премии. Ведущие математические центры и научные школы. Проблемы Гильберта. Теория множеств и основания математики. Математическая логика от Г.Лейбница до Г.Фреге (квантификация предикатов, символическая логика и исчисление высказываний), соединение электроники и логики. Методологические вопросы механики в работах Л.Больцмана, Г.Герца, Э.Маха, А.Пуанкаре. Задачи аэродинамики, Н.Е.Жуковский и С.А.Чаплыгин. Исследования А.Н.Крылова. ^ [22, гл. VIII-XV], [21, т.2-3], [45, гл.9], [31], [1], [25], [42]. ЛЕКЦИЯ 16. П.Л.Чебышёв и петербургская математическая школа. Дальнейшее развитие исследований теории чисел (Е.И.Золотарев, А.А.Марков, Г.Ф.Вороной), по теории вероятностей (А.А.Марков, А.М.Ляпунов), математической физике (В.А.Стеклов) Вопросы интегрирования в конечном виде. К.М.Петерсон и московская геометрическая школа. Петербургское и московское математические общества. Московская математическая школа в области теории функций. Д.Ф.Егоров и его ученики. Идеологическая борьба в математике, «дело» академика Н.Н.Лузина и социальная история отечественной математики. Основная литература: [13], [21, Т.2], [30], [31]-[34], [51], [94]. ^ Тестирование по материалу лекций 12-16 (вопросы творческого характера см. в Приложении). Период «машинной математики» по периодизации А.Д.Александрова. Н.Винер и создание кибернетики, линейное программирование Л.В.Канторовича, теория случайных процессов А.Н.Колмогорова и Н.Винера, принципы Джона фон Неймана. Математическое моделирование – от моделей Солнечной системы до экономических и биологических задач, исследования А.А.Самарского. Развитие языков программирования, элементной базы, архитектуры и структуры ЭВМ. Основная литература: [21, т.4, кн.2, гл.4-6], [19], [3], [26], [27], [16]. ^ Основная литература
Персоналии математиков1
^ Следует обратить внимание на особенности приведенного списка литературы Во-первых, в него включены основные публикации, с помощью которых студент может осваивать курс самостоятельно, причем подавляющее большинство позиций имеется в библиотеке факультета математики, механики и компьютерных наук. Во-вторых, фактически все рекомендуемые издания снабжены библиографическими указателями, использование которых позволяет глубже изучить материал. Особую роль играют списки литературы, приведенные в [20]-[21], [31]-[33], а также работа [15]; с их помощью можно организовывать тематический подбор материала (к изучаемым темам или подготавливаемому реферату). Содержание регулярно выпускаемых историко-математических сборников [18] разнообразно, туда включаются обзорные тематические публикации, статьи, посвященные конкретным вопросам истории различных математических дисциплин, а также тексты первоисточников, снабженные комментариями. Эти издания, прежде всего, рекомендуются при подготовке рефератов. Работы [1] (где среди других статей можно найти и [2] ) и [25] имеют важное значение при систематизации знаний и проведении периодизации истории математики, в [6] и [7] можно найти основные сведения об ученых; там же имеются важные библиографические ссылки. Труды [8], [17], [40], [44] , [45], [22] , [23] носят общий характер, [5], [9], [11], [13], [49], [51] посвящены развитию математики в различных регионах мира, а [3], [12], [14], [16], [26]-[29], [34]- [39], [43] – истории отдельных областей математики. Часть позиций рекомендуется при изучении конкретных тем ([4], [10], [19], [24], [30], [41]- [42], [46], [50]. Включены в список также материалы биографического характера [52]-[116]). Некоторые работы, приведенные в списках, можно найти в электронном виде, однако следует обратить внимание, что при составлении библиографических списков и цитировании необходимо указывать страницы, а значит, рекомендуется использовать «бумажные» издания. ^
Тема выбирается магистрантом из числа предложенных или может быть определена самостоятельно по рекомендации научного руководителя. Реферат должен включать в себя оглавление, введение, основную часть, заключение, биографические справки об упоминаемых в тексте ученых и подробный библиографический список, составленный в соответствии со стандартными требованиями к оформлению литературы, в том числе к ссылкам на электронные ресурсы. Работа должна носить самостоятельный характер, в случае обнаружения откровенного плагиата (дословного цитирования без ссылок) реферат не засчитывается. Сдающий реферат магистрант должен продемонстрировать умение работать с литературой, отбирать и систематизировать материал, увязывать его с существующими математическими теориями и фактами общей истории. Во введении обосновывается актуальность выбранной темы, определяются цели и задачи реферата, приводятся характеристика проработанности темы в историко-математической литературе и краткий обзор использованных источников. В основной части, разбитой на разделы или параграфы, излагаются основные факты, проводится их анализ, формулируются выводы (по разделам). Необходимо охарактеризовать современную ситуацию, связанную с рассматриваемой тематикой. Заключение содержит итоговые выводы и, возможно, предположения о перспективах проведения дальнейших исследований по данной теме. Биографические данные можно оформлять сносками или в качестве приложения к работе. Список литературы может быть составлен в алфавитном порядке или в порядке цитирования, в полном соответствии с государственными требованиями к библиографическому описанию. Ссылки в тексте должны быть оформлены также в соответствии со стандартными требованиями (с указанием номера публикации по библиографическому списку и страниц, откуда приводится цитата). Подготовку реферата рекомендуется начинать с библиографического поиска (см. рекомендации к работе с литературой) и составления библиографического списка, а также подготовки плана работы. Каждый из намеченных пунктов плана должен опираться на различные источники, при этом желательно провести сравнительный анализ как результатов, полученных разными специалистами, так и взглядов на эту темы различных специалистов в области истории науки. Необходимо выявить предпосылки и отметить последствия анализируемых теорий, отметить философские и методологические особенности. Текст реферата должен быть связным, недопустимы повторения, фрагментарный пересказ разрозненных сведений и фактов. Оформление реферата должно быть аккуратным, при использовании редакторов LaTeX или MS WORD рекомендуется шрифт 12 пт. Ориентировочный объем – не менее 15 страниц, при этом не допускается его искусственное увеличение за счет междустрочных интервалов. Титульный лист готовится в соответствии с требованиями, предъявляемыми к оформлению титульных листов дипломных работ. ^ Для оценки успешности освоения курса по окончании изучения трех основных разделов студентам предлагается дать короткий письменный ответ на один из контрольных вопросов и ответить на несколько тестовых вопросов, при этом разрешается использовать конспект (время работы – 15-20 минут). Итоговой формой контроля является подготовка реферата по выбранной теме, при этом требуется, чтобы закончивший изучение курса специалист владел информацией о генезисе и структуре основных математических понятий, ориентировался в исторических эпохах, в особенностях развития математики в различных странах, умел грамотно вести библиографический поиск и творчески осмысливать собранную информацию. Зачет выставляется по совокупности работ на основе рейтинговой системы. Каждый из трех письменных ответов оценивается в баллах (от 2 до 5); дополнительный балл может быть присужден за использование при ответе информации, не озвученной на лекции (это должно стимулировать студентов к изучению и конспектированию литературы). Реферат также оценивается в 2, 3, 4 или 5 баллов, при оценке «2» реферат возвращается на доработку, после которой оценка снижается на один балл. За невыполненную работу студент баллов не получает; пропуск более 25% занятий штрафуется снятием 0,5 балла, более половины пропущенных занятий приводят к потере 1 балла, за пропуск более 75% снимается 1,5 балла. Итоговая рейтинговая оценка определяется формулой ![]() Таким образом, максимальный балл, который студент может получить по окончании изучения курса – 11 (три оценки «5» за письменные ответы, по дополнительному баллу за каждый, «5» за реферат и отсутствие штрафов за пропуски). Минимальным баллом, при котором может быть выставлен «зачет», можно считать 5,5 (все письменные ответы и реферат оценены «3», дополнительных баллов нет, за пропуски сняты 0,5 балла). В случае, когда набранных баллов для зачета не хватает, магистранты сдают зачет на обычных основаниях, получив билет, состоящий из трех вопросов (методом случайного выбора, по одному из комплекса вопросов для каждого из основных разделов курса). При этом выполнение реферата все равно является обязательным! ^ Часть 1
Часть 2
Часть 3
1 Список приводится по алфавиту ученых, а не авторов книг.
|