скачатьЭлективный курс "Параметры в школьном курсе математики"Актуальность и перспективность опыта, его практическая значимостьВ связи с переходом на профильное обучение возникла необходимость в обеспечении углубленного изучения предмета и подготовки учащихся к продолжению образования. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления. Новизна опытаРазработана и апробирована программа элективного курса. Систематизирован теоретический и дидактический материал, отвечающий принципу последовательного нарастания сложности. РезультативностьУчащиеся более уверенно решают нестандартные задачи, задачи с параметрами. Повысилось качество подготовки учащихся к итоговой аттестации и к сдаче ЕГЭ. Адресная направленностьРазработанный элективный курс может быть использован учителями математики при подготовке к ЕГЭ и вступительным экзаменам в вузы. Необходимость перехода старшей школы на профильное обучение определена Правительством России в «Концепции модернизации российского образования на период до 2010 г.», где ставится задача создания специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения и социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда, отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования». Принятая в Концепции гибкая система профильного обучения предусматривает возможность разнообразных вариантов комбинаций учебных курсов, осваиваемых старшеклассниками. Эта система включает в себя курсы трех типов: базовые общеобразовательные; профильные общеобразовательные; элективные. Единый государственный экзамен-это словосочетание знакомо сегодня едва ли не каждой семье, в которой есть школьник. Одной из целей проведения ЕГЭ является совмещение итоговой аттестации выпускников и вступительных испытаний для поступления в вузы. Еще одна из целей введения ЕГЭ – попытка улучшения качества образования в России за счет более высокой мотивации на успешное его прохождение. Теперь детей надо готовить к экзаменам по-иному, так, чтобы они сдавали их успешно, а результаты можно было сравнить. Выдерживать такие экзамены – новая задача, как для школьников, так и для педагогов. Можно привести один из главных выводов эксперимента с ЕГЭ «Впервые за сто лет в России появился объективный и абсолютно прозрачный механизм оценки знаний школьников». Особое внимание при повторении следует обратить на задачи, содержащие модуль и параметр. В обязательном минимуме этот материал представлен, но в школьном курсу алгебры такие задачи рассматриваются пока крайне редко, бессистемно, поэтому вызывают трудности у школьников. На экзаменах прошлых лет общеобразовательных классах, как правило, задачи с параметрами и модулями не решались, а если решались сильными учащимися, то только частично. Дело в том, что методы решения уравнений и неравенств с параметрами и модулями учащимся неизвестно. Поэтому учителю, прежде всего, необходимо познакомить учеников с приемами решения этих задач, и делать это нужно не от случая к случаю, а регулярно. В процессе подготовки к экзамену необходимо отрабатывать у учащихся умение четко представлять ситуацию, о которой идет речь, анализировать, сопоставлять, устанавливать зависимость между величинами. Важно знакомить учащихся с различными способами решения задачи, а не отдавать предпочтение какому-то одному способу. Ученик должен знать, что при выполнении работы он может выбрать любой способ решения, важно, чтобы задача была решена правильно. При подготовке к экзамену большое внимание следует уделять накоплению у учащихся опыта самостоятельного поиска решений, чтобы на экзамене каждый ученик был готов к полной самостоятельности в работе. В связи с выше сказанным, возникла необходимость в разработке и внедрении в учебный процесс элективного курса по математике по теме: «Решение задач с параметрами». Основными формами проведения элективного курса являются изложение узловых вопросов курса в виде обобщающих лекций, семинаров, дискуссий, практикумов по решению задач, рефератов учащихся. Разработанный курс направлен на решение следующих задач:
Элективный курс «Решение задач с параметрами»Пояснительная запискаЦелью профильного обучения, как одного из направлений модернизации математического образования является обеспечение углубленного изучения предмета и подготовка учащихся к продолжению образования. Основным направлением модернизации математического школьного образования является отработка механизмов итоговой аттестации через введение единого государственного экзамена. В заданиях ЕГЭ по математике с развернутым ответом (часть С), а также с кратким ответом (часть В), встречаются задачи с параметрами. Обязательны такие задания и на вступительных экзаменах в вузы. Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры. Решению задач с параметрами в школьной программе уделяется мало внимания. Большинство учащихся либо вовсе не справляются с такими задачами, либо приводят громоздкие выкладки. Причиной этого является отсутствие системы заданий по данной теме в школьных учебниках. В связи с этим возникла необходимость в разработке и проведении элективного курса для старшеклассников по теме: «Решение задач с параметрами». Многообразие задач с параметрами охватывает весь курс школьной математики. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления. Задачи с параметрами дают прекрасный материал для настоящей учебно-исследовательской работы. Цель курса
В результате изучения курса учащийся должен:
Структура курса планирования учебного материалаТемы:
* - для курса 11 класса Краткое содержание курсаI. Первоначальные сведения.Определение параметра. Виды уравнений и неравенств, содержащие параметр. Основные приемы решения задач с параметрам. Решение простейших уравнений с параметрами вида Цель: Дать первоначальное представление учащемуся о параметре и помочь привыкнуть к параметру. К необычной форме ответов при решении уравнений. II. Решение линейных уравнений (и уравнений приводимых к линейным), содержащих параметр.Общие подходы к решению линейных уравнений. Решение линейных уравнений, содержащих параметр. Решение уравнений, приводимых к линейным. Решение линейно-кусочных уравнений. Применение алгоритма решения линейных уравнений, содержащих параметр. Геометрическая интерпретация. Решение системных уравнений. Цель: Поиск решения линейных уравнений в общем, виде; исследование количества корней в зависимости от значений параметра. III. Решение линейных неравенств, содержащих параметр.Определение линейного неравенства. Алгоритм решения неравенств. Решение стандартных линейных неравенств, простейших неравенств с параметрами. Исследование полученного ответа. Обработка результатов, полученных при решении. Цель: Выработать навыки решения стандартных неравенств и приводимых к ним, углубленное изучение методов решения линейных неравенств. IV. Квадратные уравнения, содержащие параметр.Актуализация знаний о квадратном уравнении. Исследования количества корней, в зависимости от дискриминанта. Использование теоремы Виета. Исследование трехчлена. Алгоритм решения уравнений. Аналитический способ решения. Графический способ. Классификация задач, с позиций применения к ним методов исследования. Цель: Формировать умение и навыки решения квадратных уравнений с параметрами. V*. Показательные и логарифмические уравнения, содержащие параметр. |
№ урока | Тема |
1 | Основные понятия уравнений с параметрами |
2 | Основные понятия неравенств с параметрами |
3-4 | Уравнения с параметрами (первой степени) |
5-6 | Неравенства с параметрами (первой степени) |
7-11 | Уравнения с параметрами (второй степени) |
12-14 | Неравенства с параметрами (второй степени) |
15-16 | Рациональные уравнения с параметрами |
17-18 | Графические приемы при решении |
19-20 | Свойства квадратичной функции |
21-23 | Текстовые задачи с использованием параметра |
24-25 | Иррациональные уравнения с параметрами |
26-28 | Параметр и количество решений уравнений, неравенств и их систем |
29-30 | Уравнения и неравенства с параметрами с различными условиями |
31-32 | Нестандартные задачи |
33 | Итоговая контрольная работа по курсу |
34 | Защита индивидуальных проектов |
Скачать 94,25 Kb. | оставить комментарий |
Дата | 21.09.2011 |
Размер | 94,25 Kb. |
Тип | Элективный курс, Образовательные материалы |