Рабочая программа педагога жарковой Марины Евгеньевны, Iквалификационная категория по учебному курсу «Математика» 10 класс Базовый уровень icon

Рабочая программа педагога жарковой Марины Евгеньевны, Iквалификационная категория по учебному курсу «Математика» 10 класс Базовый уровень


Смотрите также:
Рабочая программа педагога мифтаховой Салимы Габдулловны...
Рабочая программа педагога нуждиной Ольги Сергеевны Iквалификационная категория по учебному...
Рабочая программа педагога федюниной Елены Андреевны Iквалификационная категория по учебному...
Рабочая программа педагога федюниной Елены Андреевны Iквалификационная категория по учебному...
Рабочая программа педагога федюниной Елены Андреевны Iквалификационная категория по учебному...
Рабочая программа педагога прутовой Людмилы Евгеньевны по учебному курсу «Геометрия» 11 класс...
Рабочая программа Балдиной Любови Сергеевны Iквалификационная категория по учебному курсу...
Рабочая программа педагога пальговой г. В...
Рабочая программа педагога щербининой Татьяны Викторовны...
Рабочая программа Балдиной Любови Сергеевны Iквалификационная категория по учебному курсу...
Рабочая программа педагога бухариной Нины Анатольевны 1 квалификационная категория по учебному...
Рабочая программа педагога шашаевой татьяны георгиевны...



Загрузка...
страницы:   1   2   3
скачать



Муниципальное общеобразовательное учреждение

«Малощербединская средняя общеобразовательная школа»

Романовского района Саратовской области


«Рассмотрено»

Руководитель МО

_____________


Протокол № ___ от

«____»____________2010 г.


«Согласовано»

Заместитель директора по УВР

_____________Зенченко Т.В.


«____»____________2010 г.


«Утверждено»

Директор МОУ

Малощербединская СОШ


_____________ Зенченко В.А.


Приказ № ___ от «___»____2010 г.




^ РАБОЧАЯ ПРОГРАММА ПЕДАГОГА


Жарковой

Марины Евгеньевны,

I квалификационная категория


по учебному курсу «Математика»

10 класс

Базовый уровень


Рассмотрено на заседании

педагогического совета школы

протокол № ____от «__»_______2010г.


с. Малое Щербедино

2010- 2011 у.г.


^ РАБОЧАЯ ПРОГРАММА

ДЛЯ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ

(Базовый уровень)


Пояснительная записка

Статус документа

Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов:

1.      Программа для общеобразовательных школ, гимназий, лицеев:

Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2002; 4-е изд. – 2004г.

2.      Стандарт основного общего образования по математике.

Стандарт среднего (полного) общего образования по математике // Математика в школе.– 2004г,- № 4 ,- с.9

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.

Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Цели


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.



^ Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени среднего (полного) общего образования отводится 4 ч в неделю 10 и 11 классах. Из них на геометрию по 2 часа в неделю Программа 10-го класса разработана согласно БУП 2004 года. Примерная программа рассчитана на 270 учебных часов (на алгебру и геометрию). В МОУ «Малощербединская СОШ» на изучение математики отводится 5 часов в неделю, из них 2 часа на геометрию (68 в год) и 3 часа на алгебру (102 в год).


^ ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ
ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ

ГЕОМЕТРИЯ

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность и перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью.

Параллельность плоскостей, перпендикулярность плоскостей, признаки и свойства. ^ Двугранный угол, линейный угол двугранного угла.

Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. ^ Расстояние между скрещивающимися прямыми.

Параллельное проектирование. Площадь ортогональной проекции многоугольника. Изображение пространственных фигур.

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб.

Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. ^ Усеченная пирамида.

Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире.

Сечения куба, призмы, пирамиды.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

^ Тела и поверхности вращения. Цилиндр и конус. Усеченный конус. Основание, высота, боковая поверхность, образующая, развертка. Осевые сечения и сечения параллельные основанию.

Шар и сфера, их сечения, касательная плоскость к сфере.

Объемы тел и площади их поверхностей. Понятие об объеме тела. Отношение объемов подобных тел.

Формулы объема куба, прямоугольного параллелепипеда, призмы, цилиндра. Формулы объема пирамиды и конуса. Формулы площади поверхностей цилиндра и конуса. Формулы объема шара и площади сферы.

^ Координаты и векторы. Декартовы координаты в пространстве. Формула расстояния между двумя точками. Уравнения сферы и плоскости. Формула расстояния от точки до плоскости.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Координаты вектора. Скалярное произведение векторов. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.


^ СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

10 класс (2 ч в неделю, всего 68 ч)

1. Введение (аксиомы стереометрии и их следствия). (3 ч).

Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.

Цель: ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий.

О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников.

Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

^ 2. Параллельность прямых и плоскостей. (17 ч).

Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.

Цель: дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.

В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.

Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

^ 3. Перпендикулярность прямых и плоскостей. (18 ч).

Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.

Цель: дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.

В данной теме обобщаются известные из планиметрии сведения о перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.

В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

^ 4. Многогранники (14 ч).

Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.

Цель: сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники.

О с н о в н а я ц е л ь – познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.

Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

^ 5.Векторы в пространстве (10 ч).

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

Цель: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

^ 6.Повторение (6 ч).

Цель: повторить и обобщить материал, изученный в 10 классе.


Календарно-тематическое планирование


^ Но-мер уро-ка

Название темы урока

п/п

Сроки

Сроки

Основные понятия, термины

Цели и задачи обучения

^ Примечания, диагностика




Введение (аксиомы стереометрии и их следствия) (3часа)

1

Предмет стереометрии. Аксиомы стереометрии.

п.1,2







^ Плоскость, аксиома

Изучить основные аксиомы плоскости




2

Некоторые следствия из аксиом

п.3










Умение доказывать некоторые следствия из аксиом




3

Решение задач на применение аксиом стереометрии и их следствий

п.1-3










Выработать навыки применения аксиом стереометрии и их следствий при решении задач




Глава I. Параллельность прямых и плоскостей (17 часов)

§1. Параллельность прямых, прямой и плоскости ( 4часа)

4,5

Параллельные прямые в пространстве. Параллельность трех прямых.

п.4,5







^ Скрещивающиеся прямые

Изучить взаимное расположение двух прямых в пространстве. Ввести понятие параллельных и скрещивающихся прямых

Кратковременная контрольная работа

6

Параллельность прямой и плоскости.

п.6







^ Параллельность прямой и плоскости

Изучить возможные случаи взаимного расположения прямой и плоскости в пространстве




7

Решение задач на параллельность прямой и плоскости

п.4-6










Выработать навыки решения задач на параллельность прямой и плоскости




§2. Взаимное расположение прямых в пространстве. Угол между двумя прямыми (5часов)

8

Скрещивающиеся прямые.

п.7










Изучить признак скрещивающихся прямых и теорему о проведении через одну из скрещивающихся прямых плоскости, параллельной другой прямой и применять их на практике




9

Углы с сонаправленными сторонами. Угол между прямыми

п.8, 9










Изучить теорему об углах с сонаправленными сторонами и применять ее при решении задач




10,11

Решение задач по теме «Параллельность прямой и плоскости»

п.4-9










Повторить теорию, подготовить учащихся к контрольной работе.

Тест

12

Контрольная работа №1 на тему «Параллельность прямой и плоскости»













Контроль знаний учащихся




§3. Параллельность плоскостей (2 часа)

13,14

Параллельные плоскости. Признак параллельности двух плоскостей. Свойства параллельных плоскостей.

п.10,11

2,5







Ввести понятие параллельных плоскостей, уметь доказывать признак параллельности двух плоскостей, теорему существования и единственности плоскости, параллельной данной и проходящей через данную точку пространства, изучить свойства параллельных плоскостей




§4. Тетраэдр и параллелепипед (6 часов)

15,16

Тетраэдр. Параллелепипед. Свойства граней и диагоналей параллелепипеда.

п.12,13







^ Тетраэдр, параллелепипед

Ввести понятие тетраэдра, параллелепипеда, рассмотреть свойства ребер, граней, диагоналей параллелепипеда.




17,18

Задачи на построение сечений.

п.14







Сечение

Сформировать навык решения простейших задач на построение сечений тетраэдра и параллелепипеда




19

Решение задач по теме «Параллельность плоскостей, тетраэдр, параллелепипед»

п.10-14










Выработать навыки решения задач




20

Контрольная работа №2 «Параллельность плоскостей»













Контроль знаний учащихся




Глава II. Перпендикулярность прямых и плоскостей (18 часов)

§1. Перпендикулярность прямой и плоскости ( 5часов)

21

Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости.

п.15-16










Доказать лемму о перпендикулярности двух параллельных прямых к третьей прямой. Дать определение прямой, перпендикулярной к плоскости.




22

Признак перпендикулярности прямой и плоскости

п.17










Доказать признак перпендикулярности прямой и плоскости и уметь применять его при решении задач




23

Теорема о прямой, перпендикулярной к плоскости

п.18










Доказать теоремы существования и единственности прямой, перпендикулярной к плоскости




24-25

Решение задач на перпендикулярность прямой и плоскости

п.15-18










Сформировать навык применения изученных теорем к решению задач

Тест

§2. Перпендикуляр и наклонные. Угол между прямой и плоскостью (5 часов)

26

Расстояние от точки до плоскости. Теорема о трех перпендикулярах

п.19-20







^ Наклонная, проекция наклонной

Ввести понятие расстояния от точки до плоскости, перпендикуляра к плоскости из точки, наклонной, проведенной из точки к плоскости, основания наклонной, проекции наклонной. Рассмотреть связь между наклонной, ее проекцией и перпендикуляром. Доказать теорему о трех перпендикулярах




27

Угол между прямой и плоскостью.

п.21







^ Прямоугольная проекция фигуры

Ввести понятие прямоугольной проекции фигуры. Дать определение угла между прямой и плоскостью




28,29

Решение задач на применение теоремы о трех перпендикулярах, на угол между прямой и плоскостью

п.19-21










Сформировать навык применения изученного материала к решению задач

Тест

30

Лабораторно-практическая работа













Сформировать конструктивный навык нахождения угла между прямой и плоскостью; расстояния от точки до прямой. Научить обосновывать или опровергать выдвигаемые предположения




§3. Двугранный угол. Перпендикулярность плоскостей (8 часов)

31,32

Двугранный угол. Признак перпендикулярности двух плоскостей.

п.22-23










Ввести определение двугранного угла, изучить свойства двугранного угла




33,34

Прямоугольный параллелепипед

п.24










Ввести понятие прямоугольного параллелепипеда, доказать свойства диагоналей прямоугольного параллелепипеда




35,36

Решение задач по тепе «Двугранный угол. Перпендикулярность плоскостей»

п.22-24










Сформировать навык решения задач по изученной теме




37

Повторение темы «Перпендикулярность прямой и плоскости»

п.15-24










Подготовить учащихся к контрольной работе




38

Контрольная работа №3 «Перпендикулярность прямых и плоскостей»













Контроль знаний учащихся




Глава III. Многогранники (14 часов)

39,40,41,42

Понятие многогранника. Призма, площадь поверхности призмы

п.25-31







^ Многогранник, призма, геометрическое тело, теорема Эйлера, пространственная теорема Пифагора

Ввести понятие многогранника, призмы и их элементов. Рассмотреть виды призм, ввести понятие площади поверхности призмы

Тест, доклад «Геометрическое тело», «Биография Эйлера», «Биография Пифагора»




43,44,45,46,47

Пирамида. Правильная пирамида. Усеченная пирамида. Площадь поверхности пирамиды

п.32-34







Пирамида

Ввести понятие пирамиды, правильной пирамиды, усеченной пирамиды, площади поверхности пирамиды







48,49

Симметрия в пространстве. Понятие правильного многогранника, элементы симметрии правильных многогранников

п.35-37







^ Тетраэдр, октаэдр, додекаэдр, икосаэдр

Ввести понятие правильного многогранника

Проектная работа «Многогранники»

50,51

Решение задач по главе III «Многогранники»



















52

Контрольная работа №4 «Многогранники»

п.25-37










Контроль знаний учащихся




Глава IV. Векторы в пространстве (10 часов)

53

Понятие вектора. Равенство векторов.

п.38-39







вектор

Ввести понятие вектора в пространстве




54,55

Сложение и вычитание векторов. Сумма нескольких векторов. Умножение вектора на число

п.40-42










Сформировать навык действий над векторами в пространстве




56,57

Решение задач



















58,59

Компланарные векторы. Правило параллелепипеда. Разложение вектора по трем некомпланарным векторам

п.43-45







^ Компланарные векторы

Ввести понятие компланарных векторов, правило сложения для трех некомпланарных векторов, доказать теорему о разложении любого вектора по трем некомпланарным векторам




60,61

Решение задач по теме «Векторы в пространстве»

п.38-45










Сформировать навык решения задач по данной теме




62

Контрольная работа №5 «Векторы в пространстве»

п.38-45










Контроль знаний учащихся




Итоговое повторение курса геометрии 10 класса (6 часов)


63-68

Введение. Глава I – 2часа

Глава II – 2 часа

Глава III – 1 час

Глава IV – 1 час

п.1-45










Повторить и обобщить курс геометрии за 10 класс

Проектная работа «Векторы в пространстве»




оставить комментарий
страница1/3
Дата21.09.2011
Размер0,49 Mb.
ТипРабочая программа, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2   3
Ваша оценка этого документа будет первой.
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх