Приказ № от 2010 г. Рабочая программа по математике по учебному курсу «Математика» 9 класс Базовый уровень icon

Приказ № от 2010 г. Рабочая программа по математике по учебному курсу «Математика» 9 класс Базовый уровень


1 чел. помогло.
Смотрите также:
Приказ № от 2010г...
Рабочая программа педагога пальговой г. В...
Приказ № от 2010 г / Сабитов Р. Ш./...
Приказ № от 2010 г. Рабочая программа по учебному курсу «Математика» 7 класс Базовый уровень...
Рабочая программа педагога мифтаховой Салимы Габдулловны...
Рабочая программа педагога жарковой Марины Евгеньевны...
Рабочая программа по математике 10-11 класс базовый уровень...
Приказ № от 2010 г. Рабочая программа по учебному курсу «Физика» 9 класс Базовый уровень...
Приказ № от 2010 г. Рабочая программа по учебному курсу «Физика» 8 класс Базовый уровень...
Приказ № от 2011 г /./. Рабочая программа по математике для 5 класса по учебному курсу...
Рабочая программа педагога прутовой Людмилы Евгеньевны по учебному курсу «Геометрия» 11 класс...
Приказ № от 2010г. Рабочая программа по учебному курсу «Информатика 8» Базовый уровень...



Загрузка...
страницы:   1   2
скачать
Муниципальное образовательное учреждение

«Староромашкинская

средняя общеобразовательная школа»


«Рассмотрено»

Руководитель ШМО

____________Давлетшина Р.Г


Протокол № ___ от

«____»____________2010 г.


«Согласовано»

Заместитель директора школы

по МОУ «Староромашкинская СОШ»

_____________ Гизатуллина Р.Р.


«____»____________2010 г.


«Утверждено»

Директор МОУ «Староромашкинская СОШ»


_____________Сабитов Р.Ш.


Приказ № ___ от «___»____2010 г.




^ РАБОЧАЯ ПРОГРАММА по математике

по учебному курсу « Математика»

9 класс

Базовый уровень


Составитель: Закирова Рамзия Рашитовна, учитель

первой квалификационной категории


^ 2010 - 2011 учебный год


Рабочая программа учебного курса по математике для 9-го класса.

Пояснительная записка


Учебная программа «Математика-9класс» составлена на основе Федерального компонента государственного стандарта по математике, Москва, Дрофа,2009г. ; базисных и примерных планов для общеобразовательных учреждений РТ, реализованных программ начального общего и основного общего образования утвержденного приказом МО и Н РТ от 328.04.2010г., Примерной программы основного общего образования по математике(2006г.) и содержит обязательный минимум содержания образовательной программы по математике. Программа конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

При составлении учебного плана я руководствовалась инструктивно-методическим письмом МО и Н РТ «Об особенностях изучения математики в условиях перехода на федеральный компонент государственного стандарта общего и среднего/полного общего образования № 1293/9 от 02.03.2009г.; письмом Мо и НРТ №7294/9 от 29.09.09 «О преподавании математики»; приказом МО и НРФ №822 от 23.12.09 «Федеральный перечень учебников допущенных министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, на 2010-2011 уч.год»

1. Рабочая программа составлена с учётом примерной программы для общеобразовательных учреждений Алгебра 7-9 классы : / Составитель :

Т.А. Бурмистрова . Издательство « Просвещение» , 2008 г.

    2. Программы для общеобразовательных школе: Геометрия, 7-9 кл. /Сост. Т.А. Бурмистрова. М.: Порсвещение, 2008г.

3. Стандарт основного общего образования по математике. Математика в школе. – 2004г,-№4, -с.4


Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса обучающиеся овладевают приёмами вычислений на калькуляторе.

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышле­ния, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.


^ Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится 5 ч в неделю в 7-9 классах. Из них : на алгебру по 3 часа в неделю или 105 часов в год; на геометрию по 2 часа в неделю или 70 часов

^ Отличительные особенности рабочей программы по сравнению с примерной:

В настоящей рабочей программе изменено соотношение часов на изучение тем, добавлены темы элементов статистики. В программу внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем. Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.


^ Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ. Учащиеся проходят итоговую аттестацию – ГИА в форме ЕГЭ.


^ Уровень обучения – базовый.


Срок реализации рабочей учебной программы – один учебный год.


Цели и задачи, решаемые при реализации рабочей программы

  • расширить сведения о свойствах функ­ций, ознакомить учащихся со свойствами и графиком квадратич­ной функции, выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной;

  • выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем;

  • дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида;

  • научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач;

  • развить умение применять тригонометрический аппарат при решении геометрических задач;

  • расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы их вычисления;

  • познакомить учащихся с понятием движения и его свойствами, с основными видами движений;

  • дать представление о статистических закономерностях в реальном мире и о различных способах их изучения, об осо­бенностях выводов и прогнозов, носящих вероятностный ха­рактер;

  • формировать ИКТ компетентность через уроки с элементами ИКТ;

  • формировать навык работы с тестовыми заданиями;

  • подготовить учащихся к итоговой аттестации в новой форме.



^ Общая характеристика учебного предмета

Математика состоит из 4 содержательных разделов: АРИФМЕТИКА, АЛГЕБРА, ГЕОМЕТРИЯ, ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТИ.


^ Распределение курса по темам


Раздел

Количество часов в рабочей программе

Контрольные работы

Зачеты

1. Свойства функций. Квадратичная функция

18

1




2. Степенная функция. Корень n -й степени.

5

1

1

3. Векторы

12

1




4. Уравнения и неравенства с одной переменной

14

1




5. Метод координат

10

1

1

6. Уравнения и неравенства с двумя переменной

16

1

1

7. Соотношение между сторонами и углами прямоугольного треугольника

11

1




8. Арифметическая и геометрическая прогрессии

15

2

1

9. Длина окружности. Площадь круга

12

1

1

10. Элементы комбинаторики и теории вероятностей

13

1




11. Движение

8

1




12.Начальные сведения из стереометрии

10







13. Повторение

31

1




Всего часов

175

13

5


^ Содержание обучения


п/п

Тема

Содержание

1

Свойства функций Квадратичная функция

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квад­ратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у = ах2 + n, у = а(х – m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + + с > 0 и ах2 + bх + с < 0, где а 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у = хn при четном и нечетном натуральном показателе n.. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

2

Векторы


Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам.

Цель: научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

3

Уравнения и неравенства с одной переменной

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых с одной переменной, Выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограни­чиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

4

Метод координат

Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Цель: расширить и углубить представления учащихся о методе координат, развить умение применять алгебраический аппарат при решении геометрических задач. Учащиеся должны усвоить, что практическое применение метода координат состоит в том, что вводится подходящим образом прямоугольная система координат, условие задачи записывается в координатах и далее решение задачи проводится с помощью алгебраических вычислений.

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конк­ретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.


5

Уравнения и неравенства с двумя переменными

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Цель: выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких ситем к решению квадратного уравнения.

Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с особой осторожностью и ограничиваться простейшими примерами.

Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

6

Соотношения между сторонами и углами треугольника

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Цель: развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.


7

Прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

8

Длина окружности и площадь круга

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Цель: расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления. В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2n-угольника, если дан правильный n-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь – к площади круга, ограниченного окружностью.

9

Элементы комбинаторики и теории вероятностей

Комбинаторное правило умножения. Перестановки, размеще­ния, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

10

Движения

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Цель: познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений. Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

11

Начальные сведения из стереометрии .


Цель: дать более глубокое представление о си­стеме аксиом стереометрии. Предмет стереометрии. Геометрические тела и поверхности. Многогранники: Призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.


12

Повторение

Повторение, обобщение и систематизация знаний, умений и навыков за курс математики основной общеобразовательной школы.



^ Сетка контрольных работ




п/п

Тема контрольной работы

1

Контрольная работа №1 «Входная контрольная работа»

2

Контрольная работа №2 «Квадратичная функция и ее график»

3

Контрольная работа №3 «Векторы»

4

Контрольная работа №4 «Уравнения и неравенства с одной переменной»

5

Контрольная работа №5 «Метод координат»

6

Контрольная работа №6 «Уравнения и неравенства с двумя переменными»

7

Контрольная работа №7 «Соотношения в треугольнике, скалярное произведение векторов»

8

Контрольная работа №8 «Арифметическая прогрессия»

9

Контрольная работа №9 «Геометрическая прогрессия»

10

Контрольная работа №10 «Длина окружности и площадь круга»

11

Контрольная работа №11 «Элементы комбинаторики и теории вероятностей»

12

Контрольная работа №12 «Движения»

13

Итоговая контрольная работа №13







оставить комментарий
страница1/2
Дата21.09.2011
Размер0,95 Mb.
ТипРабочая программа, Образовательные материалы
Добавить документ в свой блог или на сайт

страницы:   1   2
отлично
  1
Ваша оценка:
Разместите кнопку на своём сайте или блоге:
rudocs.exdat.com

Загрузка...
База данных защищена авторским правом ©exdat 2000-2017
При копировании материала укажите ссылку
обратиться к администрации
Анализ
Справочники
Сценарии
Рефераты
Курсовые работы
Авторефераты
Программы
Методички
Документы
Понятия

опубликовать
Загрузка...
Документы

Рейтинг@Mail.ru
наверх